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It is proposed that some low-energy properties of the interaction of one or more fermions 
with a monopole are sensitive to, and hence can be used as probes for, extremely small distances. 
One possible example of such properties is studied in detail. 

1. Introduction 

It has been realized recently [1] that there is no zero-energy bound state for 
fermions in the field of a fixed SU(5) grand unified monopole [2-4]. Therefore, in 
this case, the Rubakov effect [5] (monopole catalysis of proton decay at strong- 
interaction cross sections) is expected to be absent. This leads to the following two 
possibilities: 

(a) This absence of the Rubakov effect holds for all grand unified theories; or 
(b) the Rubakov effect is present for some grand unified theories, and absent 

for others. 
In scenario (b), the Rubakov effect provides a deep probe of the structures of 

the underlying group and Higgs system [6]. Furthermore, since monopoles can 
form bound states with various atoms and molecules [7], the presence of the 
Rubakov effect implies that the passage of a monopole through a proton-decay 
detector is likely to lead to spectacular events. Such events will give a wealth of 
information about interactions at extremely short distances. 

What can we expect for scenario (a)? Although such spectacular events do not 
appear, we can nevertheless look for deep probes into such very short distances 
of the order of 10 -28 era. This is the motivation for the present considerations• 

As a step in this direction, we study in this series of papers several interrelated 
but distinct problems of the interaction between spin-½ fermions and a monopole. 
All these problems are to be treated on the level of the c-number field equations. 

• 1 In this first paper, we study the scattering of a spm-~ fermion by a fixed Dirac 
dyon. Our interest is not restricted to the dyon, but is also due to the following 
reasoning. Six years ago, Kazama, Yang, and Goldhaber [8] investigated the 
scattering by a fixed Dirac monopole [9], and found it necessary to introduce the 
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artifice of an infinitesimal extra magnetic moment for the fermion. When this same 
procedure is applied to the present case of a dyon, the result turns out to be 
completely different: the limit does not exist when the extra magnetic moment 
approaches zero with the dyon charge kept fixed. If the extra magnetic moment 
and the dyon charge approach zero simultaneously, then the result depends on the 
way the limit is taken. The possible limiting theories are parametrized by one real 
constant. This main result of the present paper is obtained in sect. 4. 

The Dirac monopole has a singularity which is absent for grand unified monopoles. 
The indeterminacy of this real parameter thus means that the parameter is sensitive 
to the phenomena at short distances. It is accordingly a promising candidate for 
the deep probe of extremely short distances. 

2. Monopole harmonics and radial equations 

Let Z e  be the electric charge of the " 1 spm-~ fermion, while Z d e  and g are the 
electric and magnetic charges of the dyon respectively. Thus the wave function for 
the fermion in the field of the fixed dyon depends on the quantities 

q = Z e g ,  (1) 

= Z Z d e  2. (2) 

We shall always exclude the case q = 0. The Dirac quantization condition [9] is that 
2q is an integer, which may be positive or negative, but imposes no restriction on 
the value of ~'. While Z is an integer, Zd need not be. In particular, the dyon 
reduces to a monopole in the limit ~" -> 0. 

The hamiltonian is given by 

Ho = a • ( - i V - Z e A )  + [ 3 M  - ~ / r ,  (3) 

where M is the mass of the fermion, and the vector potential A is defined in terms 
of two or more functions in a corresponding number of overlapping regions [10]. 
A convenient choice of the Dirac matrices is 

, __ [O O] '  "--[~0 _0] .  (4) 

The basic idea of Kazama et al. [8] is to replace this Ho by 

Kq~e.  r H = H o - ~ ,  (5) 

and eventually take the limit r ~ 0+ or K ~ 0- .  
Since H is rotationaUy invariant, it is possible to carry out partial wave decomposi- 

tion in terms of monopole harmonics [8, 10]. For the present purpose, only the 
simplest partial waves are of interest. They are those where the upper two and the 
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lower two components have identical angular dependences: 

V (r)' ' '] (6) 
¢J -- Lg(r)r/r~J ' 

where f (r)  and g(r) ~lre scalar functions of the radial variable r, while r/,. has two 
components 

I ( ] q l - m  +1~1/2y, 17 

l - t r +-i-- j " "" I 
, 7 . :  I [Iql+m+~'/2y, .,+1|" (7) 

L L 21q--G-iT ~,,~l, ~j 
In (7), Y are the monopole harmonics and rn is in the range -(lql-½) to Iq1-1. 
In the simplest case Iql = ½, there is only one such ?/. To get a complete orthonormal 
set of such two-component sections, these ~7 must be supplemented by an infinite 
number of other eigensections of the total angular-momentum operators j2  and Jz. 

The substitution of (6) and (7) into the Dirac equation 

H $  = E $ ,  (8) 

gives the radial equations 

• . .  ¢ Klql 
[ m - t ~ -  r 2-Mr2 

I i q (d+l~ 
L -F@~ ;J 

. q  / d  1\ -I 
I v,,>l 

, .  ~ ~ '+ K l q l / L g ( r ) J  

- "  - ' ~ - ;  2--~J 

= 0.  (9) 

3. Behavior for small r 

In order to understand the limiting behavior of small r, it is essential to analyze 
the behavior of f (r)  and g(r) for small r. Let [12] 

r = ]Kq]p/(2M), (10)  

f = (Kq/lrql)F/r,  g = -- iG/r ,  (11) 

then (9) becomes 

dGdp .... =[K]q](M-E) K IKIP 1 ]  F' 

dE rKIqI (M+E)  K ~" 1 ]  ~=1_ ~ +j;j; ; o .  

(12) 

For K ~ 0 with fixed p, the first terms on the right-hand sides of (12) are negligible. 
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Thus the approximation for small r is 

dG K ~ I ) F ,  d E  K 

do =( I,,Io --- 

The first step is to solve eq. (13) exactly with the boundary conditions 

F(0)  = G(0) = 0.  
Let 

F = e-~/2(O 1 -  O2), 

G = -e-~/2(O~ + O2), 
where 

then 
x = 2/p, 

d02 K ¢-01+0z d01 = ~ ~_ 0 2  , = - - - -  . 
dx IKIx dx I~lx 

The elimination of O2 gives 

(13) 

(14) 

(15) 

(16) 

(17) 

2 

x ' 

and hence, because of (14), 

01 = xiC!P (i~, 1 +2i~; x) 

F(-2i() x~CO(i~, 1 +2i~'; " F ( 2 i ( )  -,ca, r_; = F(-i() x ) + ~ x  -,-, .~r, 1 - 2 i ~ ' ; x ) ,  (19) 

where • and ~P are confluent hypergeometric functions [13]. The substitution into 
(17) then yields 

K i~r . 0 2 = ~ x  ~( l+ t~ ' ,  l+2 i~ ' ;x )  

_ K . I ' F ( - 2 i ~ ' )  ] I~1 t [ ~  x'~°(l÷i~' 1 + 2 i ~ , x )  F(2i()x-'CO(1-i~'F(i() 1 - 2 i ~ ' ; x ) j .  (20) 

With (11), (15), (19) and (20), the behavior of f(r) and g(r) in the range 

IKqI/M << r << 1/M, (21) 

is found to be 

4Mr x zr 3 
- ~ r-l(-~ cosh (~:))-.2 cos .[ ~ In T:~7 ÷ ~ 3 *  *o(:)/ ,  f(r) [~ql 

(22) 
ir-' l [ ] g(r)-- (~cosh0r~.))_l/2cos ~.ln4Mr K ~r 
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where 

~bo(~') = arg IF(½+ i~')]. (23) 

In writing down (22), the Legendre duplication formula for the F function has 
been used. This behavior is consistent with the Coulomb wave function for a Dirac 
particle [14]. The right-hand sides of (22), and hence f(r) and g(r) for all r, do not 
approach any limiting values when x ~ 0+ or r -* 0 -  with fixed ~" # 0. 

The important point here is that the magnitude of x appears on the right-hand 
sides of (22) in an essential way when ~" ~ 0, although not when ~ = 0. This is the 
underlying reason why the present result for the dyon is qualitatively different from 
that of ref. [8] for the monopole. 

4. The monopole 

Consider next the limiting process K ~ 0, ~" ~ 0 simultaneously. This is a natural 
way to study the monopole. Let us study the various terms in the arguments of the 
cosines in (22). For a fixed r, clearly 

~" In (4Mr/lq[) --> O, 

in this limit. Since 4~o(~') -~ 0 as ~" ~ 0, the interesting term is 

-~" In [K 1. (24) 

As ~" ~ 0 and X -~ 0 simultaneously, this quantity may or may not have a limiting 
value. Furthermore, it can be made to approach any real value by a suitable choice 
of the limiting process. This is the parameter discussed in the introduction. 

This limiting process need to be discussed in some detail. Since the sign of X 
appears in the arguments of the cosines in (22), it is essential to restrict the limiting 
processes to X -" 0+ or X ~ 0-- in order to get a finite theory for the monopole. In 
other words, x should approach zero through either positive values or negative 
values, but no t  in a way that oscillates between the positive and negative values. 
In both of these two cases x ~ 0+ and x --> 0 - ,  one of the many possible choices 
of the continuous parameter is, up to modulo 2~- because of the zeros of / ,  

K (xq  +g_'~ 
to = lim,_,o lim¢_,o 2 I-~_arg \lKql / ) "  (25) 

K ~ 0  

Explicitly, this angle is 

to = - 2  lim (~" In [K 1) + ½~rr/[x 1, (26) 
K'-~O 

modulo 2zr. 
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Once this angle to is specified, the hamiltonian (3) with ~" = 0 can be used to describe 
the interaction between a spin-½ fermion and a monopole, leading to, in particular, 

M - e  V(r)]--O (27) 

-iiq~(dd-~+rl- ) - M - E  j tg(r)J ' 

together with the boundary condition 

2 lim arg [ Kq + g(r)] = K ,-,o tl~ql f(r).l [~ca' (28) 
modulo 2w. The key point here is that (27) implies that f and g are 90 ° out of 
phase and hence this boundary condition (28) is actually independent  o f  the sign oi: 
K. Accordingly, without loss of generality, K can be taken to be positive and the 
boundary condition is 

2 !Lm0 arg --l- f--(-~-j = to, (29) 

or equivalently 

l img(r)  . q . , - , 0 / -~  = '  ~ tan ~to. (30) 

In this way, the possible theories for the interaction of a spin-~ fermion and a 
monopole are classified in terms of this angular parameter ca. (For some purposes 

1 such as charge conjugation, to'---to q-~¢r may be more convenient.) 

S. Bound-state energy 

As an especially simple application of this angle to, consider a fermion-monopole 
bound state. This involves solving the radial equations (27) for [El < M. the solution 
is 

f ( r )  = N q-- r -1 exp [ - ( M  2 -E2)1 /2r]  
Iql 
" M - . E ' I / 2  -1 

g ( r ) = i N ( ~ - - - ~ )  r e x p [ - ( M 2 - E 2 ) i / 2 r ] ,  

(31) 

where N is the normalization constant. The boundary condition (30) then gives 
the bound-state energy 

E = M cos to, (32) 

if 0< to  <Tr; there is no bound state for - w  ~<to ~<0. 
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It is seen from (26) that the limiting processes used by Kazama et al. [8] correspond 
to the following special values of to: 

x >O<-*to = ~¢r, K <O~-*to =--~Ir,  (33) 

with the former giving a zero-energy bound state [12]. 

6. Discussions 

Although r modifies the properties of the fermion while ~" modifies those of the 
monopole, they should both be considered to be short-distance cut-offs. Removal 
of these cut-offs does not lead to a unique theory but instead to a class of theories 
parametrized by the angle to. All properties related to these partial waves under 
consideration depend significantly on this angle, and include not only the bound- 
state energy as given by (32), but also phase shifts, effective potentials [7] etc. 
Accordingly, when monopoles becomes available in the laboratory, there are in 
principle many ways to determine this angle to. 

It is less clear precisely what short-distance property this angle measures. In a 
later paper of this series, scattering from an SU(5) monopole [4] will be studied. 
Within the context of the c-number field theory, this angle probes the structure 
within the monopole radius. While this is believed to be also the case for a more 
complete theory, other longer distances can be expected to give significant 
modifications. 

I thank Professor Hans Joos, Professor Erich Lohrmann, Professor Paul S6ding, 
Professor Volker Soergel, and Professor Thomas Walsh for their kind hospitality 
at DESY. 
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