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With the aim of understanding weak interactions as residual hypercolor interactions among 
composite quarks and leptons, we investigate a confining SU(2) L x SU(2)R hypercolor gauge theory 
with only fundamental fermions (i.e. without fundamental scalars). A scenario with two different 
confinement scales, AL ~ GF 1/2 ~ 300 GeV and AR > AL, is systematically analyzed as a function 
of the parameter s c= AR/A L. The general requirement of anomaly saturation is combined with 
effective lagrangian techniques--a powerful procedure also of interest for more general confining 
product groups. Two solutions, separated by a phase boundary, emerge. Phase I for 1 ~< ~< ~cr~t: 
a left-right symmetric spectrum of massless composite quarks and leptons with a possibility for 
dominance of V-A effective low-energy interactions. Phase II for ~ > ~:c~it: only left-handed massless 
composite quarks and leptons (of the Abbott-Farhi type). Phase II results from separate anomaly 
saturation at the two scales A R and AL, Phase I from joint anomaly saturation (matching). 
Dynamical insight comes from treating confinement in two steps, at Ar~ and A L consecutively, 
which amounts to a complementary version of the technicolor mechanism; it necessarily entails 
the appearance of Goldstone bosons in the intermediate momentum range, A L < p < AR, which 
play the r61e of dynamical scalars being subject to SU(2)L confinement. 

1. Introduction 

R e c e n t l y  s t r o n g - c o u p l i n g  conf in ing  ve r s ions  of  e l e c t r o w e a k  g a u g e  m o d e l s  [ 1 - 4 ]  

h a v e  s t i m u l a t e d  the  i n t r i gu ing  q u e s t i o n  of  w h e t h e r  w e a k  i n t e r a c t i o n s  a r e  in fac t  

" s t r o n g " .  T h e  g e n e r a l  i dea  is t ha t  a set  of  f u n d a m e n t a l  f ields e x p e r i e n c e  a s t r o n g  

con f in ing  g a u g e  f o r c e  at an  e n e r g y  scale  A ~ G F  ~ /2= 0 (300  G e V ) .  Q u a r k s  a n d  

l e p t o n s  e m e r g e  as b o u n d  s ta tes  of  t h e s e  f u n d a m e n t a l  f ields;  t h e y  a r e  s ingle ts  w i th  

r e s p e c t  to  t h e  " s t r o n g "  e l e c t r o w e a k  g a u g e  fo rce .  W e a k  i n t e r a c t i o n s  as m e a s u r e d  at  

p r e s e n t l y  ava i l ab l e  e n e r g i e s  a r e  r e s i d u a l  i n t e r a c t i o n s  a m o n g  c o m p o s i t e  q u a r k s  and  

l e p t o n s  m u c h  in t he  s a m e  w a y  as t he  c o n v e n t i o n a l  s t r o n g  i n t e r a c t i o n s  (sca le  AOCD 

200  M e V )  a m o n g  c o m p o s i t e  h a d r o n s .  S o m e  ch i ra l  s y m m e t r y  has  to  be  p r e s e n t  in 

o r d e r  to  p r e v e n t  " n a t u r a l l y "  t he  q u a r k s  and  l e p t o n s  f r o m  a c q u i r i n g  a mass  of  t h e  

o r d e r  of  A = 0 ( 3 0 0  G e V ) .  ( H e r e  t h e  a n a l o g y  wi th  Q C D  ceases . )  U s u a l l y  ' t  H o o f t ' s  

f r a m e w o r k  [5] is a d o p t e d ,  w h e r e  t he  mass less  f u n d a m e n t a l  f e r m i o n i c  f ields i n t r o d u c e  

a ch i ra l  s y m m e t r y  in to  t he  g a u g e  l ag rang ian .  Th is  chi ra l  s y m m e t r y  is a s s u m e d  to  

i Heisenberg Fellow. 
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"survive" strong binding and to keep (via 't Hooft 's  anomaly matching conditions 
[5-7]) a set of fermionic bound states, the quarks and leptons, massless. 

The confining SU(2)L model of the weak interactions, as proposed by Abbott  
and Farhi [3], provides a simple generic realization of these ideas. Let  us briefly 
recapitulate the basic features of this model, since it represents a starting point for 
our approach. The Abbott  and Farhi gauge lagrangian is formally identical with 
the one of the standard electroweak Glashow-Salam-Weinberg (GSW) model. 

(i) It exhibits an SU(2)L × U(1) local gauge symmetry. 
(ii) It involves the same fundamental fields, i.e. 4 × nf massless left-handed fermion 

doublets F and one complex scalar doublet 05 (nf = number of families). 
(iii) It has the same global SU(4nf)x  SU(2) symmetry in the limit of vanishing 

electromagnetic and color coupling constants (e, gc~ 0) and absence of Yukawa 
couplings; the chiral SU(4n0 being introduced by the massless fundamental fer- 
mions, the global SU(2) by the fact that 05 is complex and thus appears in the 
potential V(05) only in the combination 0505t. 

However,  the parameters entering the gauge lagrangian are different. 
(a) The scalar potential V(05) is supposed to be such that no spontaneous 

symmetry breaking, i.e. no Higgs mechanism takes place. Correspondingly, the 
gauged U(1) symmetry is identified with the electromagnetic U(1) ....... the global 
SU(2) with the SU(2)wt of global weak isospin. 

(b) The SU(2)L gauge coupling constant is supposed to be large such that the 
SU(2)L gauge interactions become strong at an energy scale of order AL-- G v  1/2 

300 GeV. Confinement is presumed to occur; physical states are SU(2)L singlet 
bound states. 

The physical fermions, to be identified with the left-handed quarks and leptons, 
are the SU(2)L singlet bound states of the fundamental fermion doublet F and the 
scalar doublet 05, each. The relevant composite SU(2)L singlet operators are 

fup = El05 *i abbreviated by "F05¢", 

f~ow. = Fieq05j abbreviated by "F05",  (1) 

for i, j = 1, 2. All these composite, left-handed quarks and leptons are kept massless 
most elegantly by 't Hooft 's  anomaly matching conditions with respect to the triangle 
anomaly involving three chiral SU(4nf) currents. The W ~, Z ° bosons are SU(2)L 
singlet bound states with masses of order AL. 

The confining Abbott  and Farhi model is complementary [5, 8-10] to the standard 
GSW model; it leads essentially to the same effective, low-energy weak interaction 
lagrangian as the GSW model [3, 11, 12]. 

Even though Abbott  and Farhi's model is very attractive, it exhibits two theoreti- 
cally unsatisfactory features. 

(i) It involves elementary scalar fields. At least without supersymmetry such 
theories are in conflict with 't Hooft 's  principle of "naturalness" [5]; an incredible 
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fine-tuning of parameters  with respect to a large inherent scale (grand unification 
scale or Planck mass) is required. 

(ii) Only the left-handed quarks and leptons are composite fermions with radius 
AL 1 . Their right-handed partners,  in contrast, are point-like spectators. 

Other  existing realizations [2,4,  13-17] of a strong-coupling confining gauge 
theory for the weak interactions share at least one of the problems (i) and (ii). In 
ref. [13], for example, problem (ii) is avoided in the f ramework of a confining 
hypercolor theory with a global SU(2)L x SU(2)R symmetry (for e ~ 0). A left-right 
symmetric spectrum of composite quarks and leptons is obtained and parity violation 
arises via spontaneous symmetry breaking of the chiral SU(2). This model, however,  
still involves fundamental  scalars along with fundamental  fermions. 

Problem (i) of violation of "naturalness"  is shared with the GSW model. A 
"dynamical scalar" as a bound state of fundamental  fermions is a natural answer 
to (i). Such a "complementa ry"  version of the technicolor [18, 19] idea for confining 
models has been recently proposed in refs. [14-16]. Double confinement due to 
product gauge groups 

SU(2)L x SU(N)  nc (2) 

with different confinement scales At.<< Anc, A L  ~ G F  1/2 ~ 300 G e V  are considered. 
SU(N)Hc confines first at A u o  Dynamical scalars as bound states of pairs of 
fundamental  fermions are formed. Such a scalar & has to transform like a doublet 
under SU(2 )L .  In order that it does not decouple from the physics at the scale AL 
(Symanzik-Appelquist-Carazzone theorem [20]) its mass should not be too large 
as compared to AL. This is most naturally achieved, if 05 is a (pseudo-)Goldstone 
boson [14], associated with the spontaneous breakdown of some global symmetry 
through SU(N)H c confinement. The consistent realization of a dynamical scalar in 
the form of a Goldstone boson is by no means trivial. E.g. in the class of models 
discussed by Abbott ,  Farhi and Schwimmer [15], the scalar is composite but not 
obviously a Goldstone boson. The models of refs. {14-16] live with the asymmetry 
of composite left-handed quarks and leptons as opposed to elementary right-handed 
ones. The starting point of our investigation was an at tempt to find a natural joint 
remedy for the two shortcomings (i) and (ii) in the f ramework of a strong-coupling, 
confining gauge theory of the weak interactions. More precisely, we looked for a 
simple scenario which describes left-handed as well as right-handed quarks and 
leptons as massless bound states of fundamental fermions only, but which is poten- 
tially able to explain parity violation of low-energy residual weak interactions. 

The specific model to be presented in this paper  is analyzed by combining the 
general requirement of anomaly saturation [5-7]  with effective lagrangian techniques 
in various momentum ranges. This way a considerable amount of dynamical informa- 
tion about  the non-perturbat ive sector of the theory may be obtained. It is a second 
goal of this paper, to illustrate in detail this method of analysis which is useful for 
a much larger class of theories. 
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2. A scenario of the weak interactions with double confinement 

In this section we outline the framework,  the strategy of investigation and the 
main results of this paper. 

We take Abbot t  and Farhi 's  confining SU(2)L model with confinement scale 

A L ~ GF 1/2 ~ 300 G e V  (3) 

as a starting point. Next we try to implement the complementary  version of the 
technicolor idea, i.e. a double confinement mechanism. The simplest  product gauge 
group leading to double confinement is 

SU(2)LX SU(2)R, (4) 

where SU(2)R is assumed to confine at an energy scale AR with 

A R > A L .  (5) 

A set of fundamental fermions (preons) is chosen with the following transformation 
properties 

F =  (2, 1) ,  F ' = ( 1 , 2 ) ,  T = ( 2 , 2 ) ,  (6) 

with respect to SU(2)L x SU(2)R. Fermionic bound states, which are singlets under 
(4) can be built, if an F, an F '  and a T type preon are combined. Clearly the choice 
(6) is m i n i m a l  for obtaining three-preon, f ermionic  bound states which are SU(2)L x 
SU(2)R singlets. 

The multiplicities and handedness with which the different types of preons F, F '  
and T appear  give rise to a global chiral symmetry.  Since we aim at a left-right 
symmetric spectrum of massless fermionic bound states, we choose the same multi- 
plicity M for F and F '  and, for simplicity, multiplicity 1 for T. To be more specific, 
we choose M left-handed preons of the type ]w, M right-handed preons of the type 
F '  and one left-handed preon* of the type T. In a purely left-handed Weyl formula- 
tion (where each right-handed state is replaced by its left-handed charge conjugate 
one) we have the following classification of preons with respect to the resulting 
symmetry group 

(SU(2)L x SU(2)R)g~ug~d, × (SU(M) × SU(M)'  x U(1)v x U(1) v, × U(1)T)g,ob~,, (7) 
strong 

F = ( 2 , 1 / M ,  1)~,o,o, F '  = (] ,  2/1,  ]~t)o _1,0, T = ( 2 , 2 / 1 , 1 ) o . o , 1 .  (8) 

The set of three subindices denotes the three U(1) quantum numbers. Only one 
combination of the three U(1)s, an axial U(1),  survives breaking through SU(2)L × 
SU(2)R instantons. 

* We could have equally well started from a right-handed Weyl multiplet T; it will turn out to be a 
Majorana fermion anyway. 
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The global chiral symmetry group will have to contain the exactly conserved 
SU(3)cxU(1)  .... as a subgroup (treating the color and electromagnetic gauge 
couplings, g~ and e, as negligibly small at AL--300 GeV). The minimal choice for 
M is correspondingly M = 4 leading to 

SU(4) × SU(4)'  = SU(3)~ × U(1) . . . . .  (9) 

The minimal model with M = 4, i.e. symmetry group 

(SU(2)L x SU(2)R)gauged X (SU(4) × SU(4)'  × U( 1 ) a x i a l ) g l o b a  I (10) 
s t rong  

and preon content 

F =  (2, 1/4, 1 ) , ,  F '  = (1, 2/1,  4 )_ , ,  T=(2 ,2 /1 ,1 )2 ,  (11) 

will be systematically explored in this paper. 
In the spirit of 't Hooft 's  program [5], the global chiral symmetry is assumed to 

survive, at least partially, the SU(2)Lx SU(2)R confinement. The surviving chiral 
symmetry in turn singles out, via 't Hooft 's  anomaly matching conditions [5-7], a 
set of massless fermionic bound states, the candidates for composite quarks and 
leptons. 

As an aside let us briefly confront this SU(2)L x SU(2)R double-confining gauge 
model with the well-known left-right symmetric extension [21, 22] of the GSW 
model. The latter is also an SU(2)LxSU(2)R gauge theory involving, however, a 
double Higgs mechanism. By comparing the degrees of freedom of fundamental 
fields we feel that our preon content is convincingly economical. Both, representa- 
tions and multiplicities of the fundamental fermion fields in the spontaneously 
broken version are identical to those of our preon fields F and F' .  The simple 
additional fermion multiplet T in the confining version substitutes, however, the 
very complicated Higgs sector [22] of the spontaneously broken version. 

As formulated above, the dynamics of our model depends on two independent 
parameters, the confinement scales AL and AR. AL is considered to be fixed, 
AL ~ Gv ~/2 ~ 300 GeV. Thus it is convenient to treat the dynamics as a function of 
the dimensionless parameter 

AR (12) 

There are two regions in ~, where information on the dynamics can be obtained by 
combining effective lagrangian techniques with the general requirement of anomaly 
saturation. 

(i) ~:= 1, (Aa~-AL). A one-step confinement with respect to the non-abelian 
product gauge group SU(2)LxSU(2)R takes place. All anomalies are saturated 
(matched) in one-step. The appropriate language for 

p ~> AL --~ AR : ~gauge(R),gauge(L), (13) 
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is a lagrangian which is gauged with respect to SU(2)L and SU(2)~ with comparable 
gauge couplings, gL ~ gR" The fundamental fields (besides the gauge fields) are the 
fermions F, F '  and 7". For 

p<< AL~-AR : ( ~ e f I ( R ) , e f l ' ( L )  , (14) 

the system is described by a lagrangian which is effective with respect to SU(2)L 
and SU(2)R. The fields are those composite fermions (quarks, leptons . . . .  ) which 
are kept massless on account of 't Hooft 's  anomaly matching conditions. 

(ii) c >> 1, (AR >> AL). At momenta p = 0(AR) SU(2)R confines, while the SU(2)L 
gauge coupling is still negligibly small gL = 0; at momenta p = 0(AL) SU(2)L event- 
ually becomes confining as well. Parallel to this two-step confinement runs an anomaly 
saturation in two steps. One distinguishes three different regions of momenta, each 
having a different appropriate language: 

p ) A R > > A L  : ( ~ g a u g e ( R )  , gL----0, (15) 

where the lagrangian is gauged only with respect to SU(2)a. The SU(2)R singlet 
fermions F decouple and play the r61e of spectators. The fundamental fields are 
the M + 2 left-handed, SU(2)r~ doublet fermions F '  and T giving rise to a global chiral 

S U ( M + 2 )  symmetry (i.e. SU(6) for M =4)  (16) 

of ~gau~e(R). The triangle anomalies involving three global SU(M + 2) currents have 
to be saturated by massless SU(2)R singlet bound states [6, 7]. In sect. 3 these are 
shown to be necessarily Goldstone bosons accompanying a spontaneous breakdown 
of the chiral S U ( M + 2 )  symmetry. 
For 

AL<p<AR : .~eff(R).gauge(L) (gL :~ 0) ,  (17) 

the appropriate lagrangian is effective with respect to SU(2)r~ and gauged with 
respect to SU(2)L. The relevant fields are the fundamental fermions F and the 
Goldstone bosons appearing due to SU(2)~ confinement. Clearly, the Lgetr methods 
[18] developed for dynamical symmetry breaking, i.e. technicolor, can be adapted 
easily to this complementary version of technicolor, where the SU(2)L non-singlet 
Goldstone bosons are confined (instead of being responsible for the Higgs 
mechanism). 

Finally, for 
p<< AL: 5~efr(m,e~(L), (18) 

we again encounter the effective lagrangian involving those massless composite 
fermions which are necessary to match the anomalies in the second confinement 
step. These massless composite fermions now have two alternative interpreta- 
tions: either as three preon bound states (of the type "FF'T") or bound states of 
the type "F05" of a preon F and a dynamical scalar 05, which has been identified 
as a (pseudo-) Goldstone boson. 
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We perform separately a two-step and a one-step confinement analysis. Combining 
the results we obtain the following two solutions, separated by a phase boundary 
at some critical value ~:crlt of s c = AR/AL. 

(i) In the region 1 <~ s c < ~crit we find the solution we were looking for: a left-right 
symmetric spectrum of one family of massless composite quarks and leptons. The 
global SU(2) symmetry of weak isospin as well as the V - A  nature of the residual, 
low-energy weak interactions among the composite quarks and leptons will emerge 
approximately (sect. 5) provided AR is sufficiently much larger than AL (i.e. 
sufficiently much larger than 1). These important dynamical features will be inferrred 
from the two-step confinement analysis in sects. 3 and 5. 

(ii) In the region ~:> ~crit a spectrum of left-handed massless composite quarks 
and leptons appears. This is an Abbott-Farhi  [3] type, or more precisely an Abbot t -  
Farhi-Schwimmer [15] type solution, however, with composite Goldstone bosons 
playing the r~31e of the scalars in the confining SU(2)L gauge theory. The V - A  
nature and global weak isospin symmetry will be exact in this solution. 

In both solutions no exotics, i.e. no unwanted massless composite fermions with 
exotic quantum numbers are present. 

Both solutions are interesting in their own right, both are candidates (or come 
close to being candidates) for the description of weak interactions. The issue of 
which one is the more likely solution of course depends on the size of (crit, the 
critical value of ~c = AR/Ac, over which we have no control. 

3. Two-step confinement analysis 

The idealized two-step confinement analysis is appropriate for AR>>A L. As 
outlined in sect. 2, in the first step SU(2)R confinement for p - A R  is considered 
with negligibly small SU(2)L gauge coupling, g c ~ 0 ;  in a second step SU(2)L 
confines at p - AL. In the first step, for momenta p ~> AR, the SU(2)R singlet preons 
F decouple and play the r61e of spectators. The fundamental fermions entering the 
SU(2)R gauge lagrangian are the SU(2)R doublet preons F '  and T. 

A major r61e in the two-step analysis will play the requirement of anomaly 
saturation [6, 7]. Quite generally, the triangle anomaly present on the preon level 
of a confining gauge theory has to be accounted for in the bound state sector by 
the appearance of massless bound states. These can be massless composite Goldstone 
bosons signalling spontaneous breakdown of the chiral symmetry present on the 
preon level or massless composite fermions if the chiral symmetry survives confine- 
ment in Wigner-Weyl realization (or a combination of both in case of partial 
spontaneous breakdown). The appearing massless composite fermions are then 
subject to 't Hooft 's  anomaly matching [5] conditions. 

In our two-step analysis the crucial question is whether the anomalies introduced 
in the first step by the preons T and F '  and those introduced in the second step by 
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the preons F (for gL ~ 0) are saturated separately or jointly. Corresponding to these 
two distinct possibilities we shall find two different solutions. 

Let us now go through the two steps of the two-step analysis in detail. In the first 
step 

for p~>AR and gL~-0, (19) 

there are M + 2  left-handed preons transforming as doublets under SU(2)R, 2 
contained in T and M contained in F ' .  Correspondingly, the SU(2)R gauge 
lagrangian has a 

global SU(M + 2) symmetry*,  (20) 

which of course contains SU(2)L as a subgroup. The M + 2 preon doublets, let us 
call them q,, transform according to 

0=  F =(2 ,  M + 2 ) = ( 2 , [ 1 ) ,  (21) 

with respect to 

SU(2) R,gauged X S U ( M  --[- 2) global" (22) 

As mentioned already in sect. 2 there are non-vanishing triangle anomalies 
involving three global SU(M + 2) currents in the preon sector of the SU(2)R gauge 
theory. These anomalies have to be accounted for in the bound state sector by 
massless SU(2)R singlet bound states (bosonic or fermionic [6, 7]). All  SU(2)R 
singlet bound states necessarily involve an even number of preons and hence 
necessarily are bosons. Thus the S U ( M + 2 )  3 anomaly has to be accounted for by 
composite Goldstone bosons accompanying a necessary spontaneous breakdown of 
the global SU(M + 2) symmetry. 

Next, since there are no fundamental scalars available, a condensate of preons 
must form, when SU(2)R forces become strong, in order to effect the required 
spontaneous breakdown of the SU(M + 2) symmetry. Given the single preon multip- 
let q, there is a unique candidate for a two-preon condensate: (~Oq,)¢ 0. Using the 
"most attractive channel" rules [23], the qJ¢, condensate is an SU(2)a singlet and 
thus automatically leaves SU(2)R unbroken, in accord with our intention to have a 
confining SU(2)R: 

0 q J = ( 1 , M + 2 x m + 2 ) = ( 1 , 8 ) + ( 1 ,  ~ 3 ) ,  (23) 

with respect to SU(2)R x SU(M + 2). The Fermi principle forbids the formation of 
a (1, [5]52 ) scalar condensate leaving a uniquely determined two-preon condensate 

q,O = (1, ~ )  with respect to S U ( 2 ) R X S U ( M + 2 ) .  (24) 

According to the standard analysis of classical potentials [24] (restricted to fourth- 
order polynomials), a scalar in the antisymmetrical tensor representation leads to 

* The U ( M + 2 )  symmetry  is broken by SU(2) R instantons to the S U ( M + 2 )  symmetry.  
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two possible stability channels* 

SU(M + 2) ~ Sp(M + 2) ,  

SU(M + 2) ~ SU(2) × SU(M) ' .  

117 

(25a) 

(25b) 

(Here we assumed for simplicity of presentation M to be even.) The SU(M) group 
in eq. (25b) is distinguished by a prime from the SU(M) associated with the preons 
F. 

The Goldstone bosons accompanying the symmetry breaking (25) transform like 
the broken generators of S U ( M +  2), i.e. like 

x(½M(M+3))  with respect to Sp ( M + 2 ) ,  (26a) 

X(2, M) +X*(2, ~,I)+ ~0(1, 1) with respect to SU(2) × S U ( M ) ' ,  (26b) 

respectively. 
Next we consider step 2 of our confinement analysis for AL E p < An. The SU(2)L 

gauge coupling ge becomes appreciable in this momentum range. A lagrangian 
which is gauged with respect to SU(2)L and effective with respect to SU(2)R becomes 
the appropriate language. The participating fields are the SU(2)L gauge fields, the 
massless SU(2)L doublet fermions F and finally the massless composite Goldstone 
bosons, surviving as the only (leading) manifestations of SU(2)a confinement in the 
momentum range p<< AR. The original global S U ( M + 2 )  symmetry is realized 
non-linearly in terms of these Goldstone bosons alone (see e.g. refs. [25, 26]). It is 
explicitly broken by the SU(2)L gauge interactions (which also give rise to radiative 
masses [18] for the Goldstone bosons). 

The explicit form of the lagrangian =~'(~eff(R),gauge(L) (for p / A R = O ( g L ) )  can be 
obtained from a straightforward adaptation of Weinberg's general analysis [18] of 
dynamical symmetry breaking to the complementary, double-confinement scenario 
(see sect. 5). Of particular importance is the question of vacuum alignment [18], 
i.e. the question of how the gauged SU(2)L is embedded in the original group 
S U ( M + 2 )  with respect to the rest symmetries, Sp(M+2)  and SU(2)xSU(M) ' ,  
respectively, which remain after spontaneous symmetry breaking. The technicolor 

* channel (25a): ( ~ ) =  C 

0 1  0 

t 
- 1 0  0 1  

-1 

0 

0 
' " 0  1 

-1 0 

, i.e. (TT), (F'F') # 0, 

channel (25b): (~P~)= C 

o 1 
-1 o 

0 

0 

0 

0 

i.e. (TT) ~ 0 but (F'F') = O. 
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type mechanism of dynamical symmetry breaking would require the SU(2)L gen- 
erators to be among the broken S U ( M + 2 )  generators [18, 19]. The Goldstone 
bosons corresponding to these generators would play the r61e of dynamical Higgs 
scalars, the SU(2)L would suffer "spontaneous breakdown" by a dynamical Higgs 
mechanism. This is not what we aim at. We want a confining SU(2)L, i.e. the 
complementary version of the technicolor mechanism. This realization is possible, 
whenever the rest symmetry group is large enough to contain the gauged subgroup, 
which is the case in our setting: 

Sp(M + 2) ~ SU(2)L x S p ( m ) ,  (27) 

with the Goldstone bosons transforming as 

X -- ~b (2, M) + SU(2)L singlets, (28) 

and (most conveniently) 

SU(2) x SU(M) '  --- SU(2)L X S U ( M ) ' ,  (29) 

with the Goldstone bosons transforming as 

X(2, M) + X*(2, M) + ~(1, 1),  (30) 
respectively. 

We observe that in both cases, those Goldstone bosons which are subject to 
SU(2)L gauge interactions are SU(2)L doublets! They are composite scalars which 
suffer SU(2)L confinement along with the fermions F for p-~ AL. 

Let us briefly comment on the preon content of the 0qJ condensate and the 
Goldstone bosons. The 00  condensate of course has to be a singlet with respect to 
the rest symmetry. In the case of Sp(M + 2) all M + 2 preons T and F '  participate 
in the condensate [24] and acquire a spontaneous Majorana mass. In the case of 
SU(2) x SU(M) '  with SU(2) - SU(2)L it is straightforward to see [24] that only the 
T component of the ( M ÷ 2 ) - p l e t  0 participates in the condensate, i.e. that 
" R e ( T T ) "  acquires a non-vanishing vacuum expectation value. Thereby the preon 
T becomes a Majorana fermion 

TL = T~ ,  (31) 

with a spontaneous Majorana mass. The F' preons do not participate in the 
condensate and thus remainmassless.  This is reflected in the remaining global 
SU(M) '  symmetry. The preon content of the Goldstone bosons X and ~ associated 
with the spontaneous breakdown (25b), is easily established to be 

X(2, M) = " (TF ' )  +'' , 

X*(2, ]Q) = " T F '  ", 

~(1, 1 ) = I m  " T T " .  (32) 

In the subsequent part of the analysis we shall specialize to M - - 4  (see eqs. (25): 
S U ( M + 2 )  becomes SU(6), S p ( M + 2 )  becomes Sp(6) and SU(2)LXSU(M) ' 
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becomes SU(2)LXSU(4) ' ) .  We shall mention in the end which of our results go 
through for general M. 

We now return to the question of anomaly saturation, in particular to the issue 

of separate versus joint anomaly saturation. 
The spontaneous breakdown (25a), S U ( 6 ) ~ S p ( 6 ) ,  leads to the anomaly free 

subgroup Sp(6). This means that all anomalies present on the level of the preons 
T and F '  have been saturated in the SU(2)R bound state sector in terms of the 
associated Goldstone bosons (26a). The SU(4) 3 anomalies on the level of the SU(2)R 
singlet preons F then have to be saturated separately in the bound state sector of 
the SU(2)L confining gauge theory. Thus the channel S U ( 6 ) ~ S p ( 6 )  necessarily 
corresponds to separate anomaly saturation at the two scales AR and AL. 

In the case of the spontaneous breakdown (25b), S U ( 6 ) ~  SU(2)L X SU(4) ' ,  there 
remain the non-vanishing SU(4) '3 anomalies, associated with the massless preons 
F ' ,  which have not been saturated in the bound state sector of SU(2)R. Obviously 
this channel could not be dynamically realized, if one were to insist on separate 
anomaly saturation. It is only accessible, if the remaining SU(4) '3 anomalies are 
saturated jointly with the SU(4) anomalies associated with the preons F. Thus, the 
channel SU(6) ~ SU(2)L x SU(4) '  necessarily corresponds to joint anomaly saturation 
(of the anomalies of F and F ') .  Joint anomaly saturation may well make  sense for 
AR> AL, as long as AR is not too large as compared to AL. The meaning of "not  
too large" will be specified further. 

Let us now discuss both cases, S U ( 6 ) ~  Sp(6) with separate anomaly saturation 
and S U ( 6 ) ~  SU(2)L x SU(4) '  with joint anomaly saturation. 

In the case SU(6) -~ Sp(6) = SU(2)L x Sp(4) it only remains to saturate the SU(4) 3 
anomalies associated with the preons F in the bound state sector of the confining 
SU(2)L. We aim at anomaly matching in terms of massless composite SU(2)L singlet 
fermions, to be identified with quarks and leptons. These will have to be bound 
states of the SU(2)L doublet  preons F and the Goldstone bosons 05, transforming 
as (2, 4) with respect to SU(2)L×Sp(4)  (cf. eq. (28)). A solution to 't Hoof t ' s  
anomaly matching equations is only obtained, if a further breakdown of the global 
Sp(4) to its maximal subgroup S U ( 2 ) x S U ( 2 )  occurs. With respect to SU(2)L x 
(SU(2) × SU(2))global the Goldstone boson multiplet ~h decomposes as 

05 ~ 05,(2/2, 1) + 052(2/1,2). (33) 

Both, 05~ and 052, behave like doublets with respect to the confining SU(2)L and like 
doublets with respect to one of the global SU(2)s (and like singlets with respect to 
the other one). Comparing now our intermediate lagrangian ~e~r~R).gaug<L) with the 
Abbot t  and Farhi lagrangian [3] (specialized to one family) we can identify the 
composite Goldstone bosons 051, say, with their fundamental scalar multiplet. Its 
classification as a doublet  with respect to a global SU(2) symmetry allows for 
anomaly matching with the habitual solution of one family of left-handed massless 
composite quarks and leptons. The global SU(2) is of course nothing else but the 
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SU(2)w~ of weak isospin. Notice, the anomaly matching equations only allow one 
of the two ~bis in eq. (33) to appear  as constituent of light SU(2)L singlet composite 
fermions. 

This is the result of strict separation of anomaly saturation. It can be summarized 
as follows. Saturation of the anomalies due to the T and F '  preons in the bound 
state sector of the confining SU(2)R theory leads to those massless composite 
Goldstone bosons necessary to play the r61e of the fundamental scalars in Abbot t  
and Farhi 's lagrangian. Saturation of the anomalies due to the four preons F in the 
bound state sector of the confining SU(2)L theory then leads in the well-known way 
to one family of left-handed, massless composite quarks and leptons. 

This result can be rather straightforwardly extended to general M/>4 .  For 
M = 4 .  nf one obtains n~ families of left-handed, massless composite quarks and 
leptons. However,  for increasing values of M one has to live with an increasing 
number  of superfluous Goldstone bosons and with an increasing degree of global 
symmetries in the Goldstone boson sector of the intermediate lagrangian 

o(o~eff(R ) ,gauge(L). 

Next, we discuss the case S U ( 6 ) ~  SU(2)L×SU(4) '  with joint saturation of the 
SU(4) '3 anomalies due to F' and the SU(4) 3 anomalies due to F. As far as anomaly 
saturation is concerned, we find ourselves almost in the same starting position as 
in the one-step confinement analysis, where besides SU(4) '3 and SU(4) 3 anomalies 
also the anomalies related to the axial U(1)A, the SU(4)'2 × U(1)A, SU(4)2 × U(I)A 
and U(1)A 3 anomalies have to be saturated. However ,  as we shall see in sect. 4, 
the requirement of anomaly matching in terms of massless composite SU(2)L× 
SU(2)R singlet fermions (quarks and leptons) will enforce a spontaneous breakdown 
of the U(1)A also in the one-step confinement analysis. Hence,  as far as joint 
saturation of the SU(4) '3 and SU(4) 3 anomalies is concerned, the results of the 
two-step and the one-step analysis are identical. In sect. 4 we shall find the solution 
to joint anomaly matching: one standard family of left-handed as well as right-handed 
massless composite quarks and leptons. 

However ,  as concerns the dynamics of the residual interactions among the quarks 
and leptons at low momenta ,  p<< AL, the two-step confinement analysis will be 
crucial. From the one-step analysis for AL --~ AR one obviously would obtain left-right 
symmetric residual interactions and furthermore,  there is no apparent  origin for 
the global SU(2)w~ symmetry of weak isospin. Both characteristic features of weak 
interactions, the V - A  nature as well as global weak isospin symmetry,  will have 
to arise as approximate properties for AR > AL in the f ramework of the two-step 
confinement analysis (see sect. 5). 

Let us summarize. Joint anomaly saturation which makes sense only if AR is 
"sufficiently close" to AL leads to a solution of one family of left-handed and 
right-handed composite quarks and leptons. Separate anomaly saturation which 
makes sense only for AR "sufficiently much larger" than AL has led to a solution 
of one family of left-handed composite quarks and leptons only. 
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The two solutions can obviously not coexist in the same phase. There have to be 
two phases and it is extremely suggestive that the p h a s e  t rans i t ion  happens at some 
cri t ical  v a l u e  ~cri t  of the parameter  ~: = A R / A L .  The vague terms, "sufficiently close" 
and "sufficiently much larger",  used above, are then substantiated as follows: the 
symmetric phase with a left-right symmetric spectrum lives below ~crit, 1 ~ ~'~ ~:crit, 

the asymmetric phase with a purely left-handed spectrum above sccrit, ~> ~:crit. 
Unfortunately, we have no control over the size of ~crit ( e v e n  ~crit ~ 1 cannot be 
excluded). The left-right symmetric solution becomes an admissible solution for 
the description of weak interactions as residual S U ( 2 ) L  x S U ( 2 ) R  interactions, if ~:crit 
is at least of the order of 3, say. 

Throughout  the one-step confinement analysis in sect. 4 we shall a s s u m e  ~Tcrit ~ 1. 

4. One-step confinement analysis 

This analysis is appropriate for A L ~ Ar~. The preons F, F '  and T are treated on 
an equal footing. They are subject to confinement due to the product gauge group 
S U ( 2 ) L X  SU(2)R at p - A L  ~ A R. The global symmetry is SU(4)x  SU(4)'  × U(1)A, 
where U(1)A is anomaly free with respect t o  S U ( 2 ) L X S U ( 2 ) R  (see eqs. (10), (11)). 

The complete list of left-handed, spin-½, fermionic three-preon bound states 

which are singlets under the confining SU(2)LXSU(2)R is given by 

T F F '  , T + F + F  ' , T + F F  '+ , T F + F  '+ . (34) 

They are the candidates for massless composite quarks and leptons. The m a s s l e s s  

composite fermions among (34) have to be singled out by means of 't Hooft 's  
anomaly matching conditions. There are five different types of triangle anomalies 
to be matched, the SU(4) 3 anomaly involving three SU(4) currents the (SU(4)') 3 
anomaly, the U(1)A 3 anomaly and the mixed SU(4) 2 x U(1)A and (SU(4)') 2 x U(1)A 
anomalies. 

It is straightforward to work out that there is no  solution to 't Hooft 's  anomaly 
matching equations for unbroken U(1)A, SU(4) and SU(4)' symmetries. We are 
forced to assume that the strong S U ( 2 ) L  x SU(2)p .  forces cause spontaneous break- 
down of U ( 1 )  A as well as of SU(4) xSU(4) ' .  The maximal left-right symmetric 
subgroup, which admits a solution is 

SU(3) x SU(3)'  x U(1) x U( 1 ) ' c  SU(4) x SU(4) ' .  (35) 
"chira] color" "chiral charge" 

It contains SU(3)cxU(1)  ..... as the diagonal (vectorial) subgroup. We feel that we 
would be stretching the model too far, if we went too much into the details of these 
breakings. Nevertheless let us mention the following interesting features. 

As became already apparent in the two-step analysis the obvious candidate for 
a dynamical scalar breaking the U(1)A is a "Re(  T T ) "  condensate. The spontaneously 
broken U(1)A may be interpreted as playing the r61e of an automatic Peccei-Quinn 
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[27] U(1) in a confining SU(2)L framework: it is axial and thus forbids mass terms: 
moreover it is anomalous with respect to SU(3)c if the color gauge coupling is turned 
on. Hence, there is an automatic solution of the strong P and CP problem. The 
chiral symmetry needed to eliminate the 0 dependence of QCD is not ad hoc but 
a consequence of the fermion representations of the fundamental hypercolor theory 
[28]. The Goldstone boson "Im TT" ,  associated with the spontaneous breakdown 
of U ( I ) A ,  then plays the r61e of an axion with extremely small coupling. 

The breakdowns (35) are not unwelcome, since they single out SU(3)~ and U(1) .... 
from a unifying Pati-Salam type SU(4). Obvious candidates for dynamical scalars 
achieving the spontaneous breakings [24] 

SU(4) ~ SU(3) x U ( 1 ) ,  

SU(4)' ~ SU(3)' x U(1)'  (36) 

respectively, are the condensates* 

(TF) (TF)  + = (1, 1/15, 1) ,  (TF ' ) (TF ' )  + = (1, 1/1, 15),  (37) 

respectively, classified with respect to SU(2)KXSU(2)RXSU(4)xSU(4) ' .  They 
transform like the adjoint of SU(4) and SU(4)' respectively. The Goldstone bosons, 
associated with these breakings are all color triplets or antitriplets and thus event- 
ually subject to QCD confinement, when the color coupling becomes large. (Possibly 
interesting consequences for the hadron spectrum and QCD phenomenology remain 
to be explored.) 

With respect to the remaining symmetry group 

( S U ( 2 ) L  x SU(2)R)gauge  x ( S U ( 3 )  x S U ( 3 ) '  x U ( I )  x U(1) ' )g ,oba l  (38) 

the preons are classified as 

T =  (2, 2/1,  1)o,o, 

L = ( 2 , 1 / 1 , 1 ) - 1 / 2 , o ,  L ' = ( 1 , 2 / 1 , 1 ) o , , / 2 ,  

O = ( 2 , 1 / 3 , 1 ) 1 / 6 , 0 ,  Q '  = (1 ,  2 / 1 ,  3 ) 0 _ 1 / 6 ,  (39) 

with F = (L, Q) and F ' =  (L',  O'). Notice that only the preons O and O' carry 
"chiral color". The set of candidates for massless composite fermions is listed in 
table 1. For each candidate we introduce an integer index li, k;, mi, ni with i = 
1,2, 3, 4. Remember,  the index is defined as the number of left-handed minus the 
number of right-handed massless fermions in a given representation. 

* The formation of these condensates is supported by the 'most attractive channel'  rules extended to 
multi-preon condensates [29]. Exploiting for AL = Arc the isomorphism SU(2)L x SU(2)R - SO(4) we 
find the following relative strengths of attraction from the Casimir rules of ref. [29]. The condensates 
(37) are as likely as the TT condensate, responsible for the breaking of U(1)A, and "twice as likely" 
as e.g. an F'F' or FF condensate. This is, moreover, consistent with our previous result of sect. 3 
that no F'F'  condensate is formed in the phase appropriate for 1 ~< ~:< £crit. 
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TABLE 1 

123 

Three preon composite fermions 
Index classified w.r. to Quark and lepton candidates 

SU(3) x SU(3)' x U(1) x U(1)' (for positive index) 

11 TLL'=(1,  1) 1/2,1/2 vL, v,~ 
12 TLQ' = (1, 5)-1/2, 1/6 a~ 
13 TL'Q = (3, 1)1/6,1/2 u L 
14 TQQ' = (3, 3)1/6,-1/6 contains u L, u~ 

kl T(LL')+=( 1, 1)1/2, 1/2 VL, PR 
k2 T(LQ') + = (1, 3)1/2,1/6 b/L 
k3 T(L 'Q)+=( 3, f) 1/6,-1/2 a~:~ 
k 4 T(QQ') + = (5, 3)_1/6,1/6 contains v L, v~ 

ml (TL')+L=( 1, 1)-1/2, i/2 eL 
rn 2 (TQ')+L = (1, 3) 1/2,1/6 dL 
m3 ( TL')+Q = (3, 1) 1/6,-1/2 dL 
m 4 (TQ')+Q = (3, 3)1/6.1/6 contains d~ 

nl (TL)+L ' = (1, 1)1/2,a/2 e~ 
n 2 (TL)+Q ' = (1, 3)1/2, 1/6 d~ 
n3 (TQ)+L '=(3 ,1)  1/6.1/~ d~ 
n4 ( TQ)+ Q ' = (3, 3)-1/6. 1/6 contains d L 

The color representations are of course obtained from a decomposition of the Kronecker 
product of the two chiral SU(3) representations, the electromagnetic charge is the sum of the 
two U(1) quantum numbers. We indicate in the table which composite fermions are candidates 
for quarks and leptons with respect to the color and charge quantum numbers. The states are 
left-handed for positive index and right-handed for negative index. In the latter case they 
have to be replaced by their charge conjugates in order to conform with our left-handed Weyl 
notation. 

G i v e n  t h e  s y m m e t r y  ( 3 8 ) ,  t h e  se t  of  p r e o n s  (39 )  a n d  t h e  c a n d i d a t e s  fo r  m a s s l e s s  

c o m p o s i t e  f e r m i o n s  in t a b l e  1, we  s ing le  o u t  t h e ~ c o m p o s i t e  f e r m i o n s  k e p t  m a s s l e s s  

by  t h e  u n b r o k e n  c h i r a l  S U ( 3 )  × S U ( 3 ) '  x U (  1 ) x U ( 1 ) '  b y  m e a n s  of  ' t  H o o f t ' s  a n o m a l y  

m a t c h i n g  e q u a t i o n s .  I t  is s t r a i g h t f o r w a r d l y  d e r i v e d  t h a t  all  t r i a n g l e  a n o m a l i e s  i n v o l v -  

ing  t h r e e  S U ( 3 )  t y p e  c u r r e n t s  o r  t h r e e  U ( 1 )  t y p e  c u r r e n t s  o r  t w o  S U ( 3 )  t y p e  a n d  

o n e  U ( 1 )  t y p e  c u r r e n t s  o n  t h e  p r e o n  a n d  o n  t h e  c o m p o s i t e  l eve l  a r e  m a t c h e d  if t h e  

f o l l o w i n g  set  of  e q u a t i o n s  is sa t i s f i ed  

L 2 -  M e  = L I -  M I  , 

L2  + M 2 =  L4 + M 4  , 

L3  + M 3  = L l  + M 1 ,  

L3 - M ~  = L 4 -  M 4  , 

L~ + M 1  + 3 ( L z + M 2 )  = 2 ,  

L l  -- M1 + 3 (L3  - M3)  = 2 ,  (40)  
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where 

L i = l i - k i ,  M s = r n s - n i ,  for i = 1 , 2 , 3 , 4 .  (41) 

These anomaly matching equations turn out  to have only t w o  solutions, if the weak 
condit ion is added that  

all Li and Mi take only the values 0 ,  + 1 ,  + 2 .  (42) 

This is certainly a reasonable  condit ion in view of the fact that  L~ and Mi are 

d i f f e r e n c e s  of indices. The two solutions are given by 

L2 = 12- k2 = 1 ,  

M2 = m 2 -  n2 = - 1  , 

L z  = 1 2 -  k2  = O , 

M 2 = m 2 - n 2 = 1 ,  

L3 = 13 - k3 = 1 , L4 = 14- k4 = 0 , 

M3 = m3 - n3 = 1 , M4 = m 4 -  n4 
= 0 ,  (43) 

L 3 = 13 - k 3 = 0 , L 4  = 1 4 -  k4 

= 1 ,  

M 3 = m 3 - n 3 = - l  , M 4 = m 4 - n 4  

= 0 .  (44) 

(i) L1 = ll -- kl = 2 ,  

M l = r n l - n l = O ,  

(ii L1 - ll - kl = - 1  , 

M1 = ml - / t / l  = 0  , 

Case (ii) is discussed in appendix A. It is also potential ly interesting; however ,  we 
have not  yet  fully explored it. Let  us concent ra te  in the following on case (i). Unde r  
the restriction to positive indices only, eq. (43) admits the following simple solution. 

11 = 2 ,  k l = 0 ,  

m l = l ,  n l = l ,  

13 = 1 , k3 = 0 ,  12 = 1 , k2 = 0 ,  

tn  3 = 1 , n3 = 0 ,  n2 = 1 , m 2  = 0 ,  

14 = k4 = m4 = 04 = 0 .  (45) 

With  the exception of 11 (see below), all non-vanishing indices ("multiplicit ies") 

are +1,  which is a necessary condit ion [30] that  the states be "g round  states". The  
anomaly  constraints (43) are obviously invariant under  any of the following replace- 

ments  

1 1 = 2 ,  kl =0--> 11 = 1 , k 1 = - 1 ,  

1 2 = 1 ,  ke = 0--> 12= 0 ,  k 2 = - l ,  

/ 3 = 1  , k3 =0-->/3 = 0  , k 3 = - 1  , 

m l = l  , n l =  1-> ml = - 1  , n l = - - I  , 

m 2 = O ,  n 2 = l o m 2 = - - I  , n 2 = O ,  

m 3 = l ,  n3=O-~ m 3 = O ,  n 3 = - - l .  
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The replacement of an index+ 1 by an i n d e x - 1 ,  however, turns a "ground state" 
into an excited state, typically involving derivatives in the composite fermion 
operators. As usual we shall discard such operators throughout. In our left-handed 
notation, the spectrum of massless composite fermions corresponding to solution 
(45), consists of the following set of states classified with respect to SU(3) x SU(3)'  x 
U(1) xU( 1 ) '  (see table 1) 

u-= UK = (TL ' )L  = (1, 1)_2'21, 

e ~ - e L = ( T L ' ) + L = ( 1 ,  1)_~, ~, 

u -= Ue = ( T L ' ) Q  = ( 3 ,  1)61, ~ , 

d =- dL = (TL' )+Q = (3, 1)L_ ~ , 

l y !  ~ c VR = (TL)L '  = (1, 1)_~,~, 

e'=-e~ = ( T L ) + L ' = ( 1 ,  1)~! 
z 2 ,  2 

u'-= u~ = (TL)Q '  = (1, 3)_1. ~, 

d'=- d~ = ( TL)+ Q '=  (1, 3)~, _~, (47) 

each one appearing with a "multiplicity" (index) of 1. Thus our aim, to obtain a 
left-right symmetric spectrum of composite quarks and leptons, has been achieved. 
The quarks and leptons (47) obviously make up one standard family*. No additional 
massless composite fermions with exotic color or charge assignments appear. 
Moreover,  the leptons are formed from the colorless preons, T, L and L'. Thus, 
the composite leptons have zero color radius, which is reassuring. The neutrinos 
are built from charged preons (electromagnetic charge of T, L, and L'  is 0, -½ and 
+ ½ respectively). This implies a non-vanishing charge radius for the neutrino which 
is necessary [12] for obtaining the correct low-energy effective weak interaction 
lagrangian. 

A further remark concerning VL and v~ is in place. We chose to interpret the 
result l~ = 2  of anomaly matching, eq. (45), such that VL and u~ appear with 
multiplicity l each. This implies identical preon content and hence identical internal 
quantum numbers for UL and its partner v~. The Pauli principle then requires that 
the corresponding composite operators differ in their spin couplings (once derivatives 
are discarded). This fact will play an important r61e in sect. 5, in connection with 
parity violation for p < AL. 

One (critical) comment is in order concerning the electrons eL and e~ in the 
spectrum (47). Our solution (45) represents a minimal saturation of the anomaly 
equations (43) with the exception of the choice m~ = nl = 1 instead of zero. The 
electrons are, correspondingly, not protected by a chiral symmetry from acquiring 
a mass. In order to overcome this shortcoming one has to resort to left-over discrete 
symmetries. The most attractive possibility is to replace the TT condensate, breaking 
the U(1)A symmetry, by a T T T T  condensate which leaves a discrete Z(4) subgroup 
of U(1)A unbroken. Besides keeping the electrons massless, it also opens up the 
possibility of solutions of the anomaly equations (43) with more than one light 
family. This issue of higher generations will be discussed elsewhere. The replacement 

* We recall that SU(3)color  is the diagonal subgroup of SU(3)×SU(3)' and U(1) . . . .  the diagonal 
subgroup of U(1) × U(1)'. 
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( 0 ~ ) ¢  0 by ((0O0t))+)~ 0 in eq. (24), has the important advantage that all our 
previous considerations of breaking the global SU(6) symmetry remain untouched, 
since the totally antisymmetrized representation of (0000)  ÷ suggested by the Fermi 

principle is again the (15) of SU(6). 
Next, let us discuss a further neat feature of the spectrum (47). It exhibits a higher 

global classification symmetry, namely one enlarged by an "accidental" global 
SU(2) x SU(2)' symmetry. We rewrite the generators of the global U(1) groups as 

follows 

U(1): T~ globaI + 1 ( B - L ) ,  

U(1)' :  T3 globa I +½(B-L) ' ,  (48) 

T~globa I denote the diagonal generators of SU(2)globa! and where T3globa 1 and 
SU(2)'gJoba~ respectively. Moreover,  

(B - L) vector~,~ = (B - L) + (B - L)'  = physical baryon minus lepton number 

and as usual 

t O ..... = ( 7"3 + T3 ) global -[- 2(B - L) vectoria~ = electro-magnetic charge.  

(49) 

(5O) 

Then we obtain a classification of the quarks and leptons of eq. (47) with respect to 

(SU(2)L × SU(2)R)gauge X (SU(3) × U(1)~(B-L) × SU(3)' × U(I)~(B L), 

× SU(2) × SU(2)')g,oba, (51) 

as follows 

e;dldzd~]L (TL,)+ (L;O,0203)=(1,111~ ,/2®3,/6,1ol2,1), (52) 

F 

e;d, d2d~/R (TL) ÷ (L';O'10;O;)=(1,1110,1,/2®3~ ,/611,2). (53) 
F' 

Since the preons are singlets with respect to the global SU(2) x SU(2)'  groups, their 
U( 1 ) and U( 1)' charges just correspond to ½(B - L) and ½(B - L)'  respectively. Thus, 
the classification of the preons F and F '  with respect to the symmetry group (51) 

reads 

F=(L;  010203)=(2,  1/1 ,/2@31/6, 10/1, 1),  (54) 

F '  = (L';  Q~Q'Q' 2 3 ) = ( 1 , 2 / l o ,  1,/2®3-1/6/1,  1). (55) 

We observe a striking one-to-one correspondence of the preon representations (54), 
(55) with those of the quark-lepton family (52), (53). In fact, the representations 
with respect to [SU(2)L×SU(2)R]gauge and [SU(2)×SU(2)']g~ob~ are just inter- 
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changed for the preons and the composite fermions! Moreover,  it is most intriguing 
that with respect to this higher global classification symmetry (51) all anomalies are 
matched with index+l .  Al l  composites are kept massless. Furthermore,  the 
anomalies are matched separately between preons F and the left-handed composites 
and preons F '  and the right-handed composites. The way how anomalies are matched 
is most obvious and elegant. This pattern of anomaly matching appeared already 
in Abbott  and Farhi's confining SU(2)L model [3], however, for the left-handed 
sector only. Here we find the left-right symmetric realization of it. 

The crucial question is, of course, to what extent the global [SU(2)×SU(2) ' ]  
classification symmetry, or part of it, is also a symmetry group of the composite 
quark and lepton interactions [for e ~ 0 ] .  It is obvious that this global [SU(2)× 
SU(2)'] symmetry coincides with the habitual chiral SU(2) symmetry of the QCD 
lagrangian involving "pointl ike" massless quarks and their interactions with gluons 
which are charge and flavor neutral. (It will be spontaneously broken by a qq 
condensate at low energies, when SU(3)color becomes strong, giving rise to a Gold- 
stone boson to be identified with the 7r meson . . . .  ) 

The non-trivial question of whether the global SU(2) classification group of the 
left-handed quarks and leptons turns out to be the weak isospin SU(2)Wl symmetry 
group of the residual V - A  weak interactions for p < A L  will be addressed in 

sect. 5. 

5. Global weak isospin symmetry and parity violation 

At low energies, p<< AL, residual [SU(2)L x SU(2)R]gaug  e interactions among the 
massless composite quarks and leptons take place. The residual four-fermion interac- 
tions should reproduce the properties of the measured weak interactions, in par- 
ticular the global SU(2)w~ symmetry of weak isospin (for e ~ 0 ) ,  the ( V - A ) x  
( V - A )  dominance and quark-lepton universality. 

First, let us consider our Abbott  and Farhi type solution, obtained from separate 
anomaly saturation and valid for s c = AR/AL> ~:crit. As pointed out already, in this 
solution the global SU(2)wI symmetry is exact. It is present already on the preon 
level as an (unbroken) subgroup of the global Sp(4). Moreover,  since there is only 
a left-handed composite quark-lepton multiplet, its four-fermion interactions are 
automatically restricted to a ( V - A ) x  ( V - A )  form [3] (of course, at the expense 
of having point-like right-handed quarks and leptons). Quark-lepton universality 
is a consequence of the SU(4) symmetry, in analogy to ref. [3]. 

As emphasized already, the situation is much less simple in the case of the solution 
(47) with a left-right symmetric spectrum of composite quarks and leptons, as 
obtained from joint anomaly saturation and valid for 1 ~< ~ = A R / A L <  ~:crit. Here,  
the SU(2)wI of global weak isospin is not a symmetry of the fundamental preon 
lagrangian. Moreover,  since now both the left-handed and right-handed quarks 
and leptons are composites in distinct representations of chiral symmetry, their 
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four-fermion interactions may, a priori, comprise besides ( V - A ) x  ( V - A )  also 
( V - A )  x ( V + A )  and ( V + A )  x ( V + A )  terms. For An = AL we even face V - A m  
V + A symmetry instead of ( V -  A) x ( V -  A) dominance. 

In this section we study this solution with a left-right symmetric spectrum for AR 
substantially larger than AL. The crucial quest'ion is, whether the global S U ( 2 ) W l  

symmetry and the ( V - A ) x ( V - A )  structure may then arise approximately. 
However,  this section also serves a more general purpose. It is to illustrate the type 
of information, one may obtain on the dynamics of a generic class of composite 
models with a hierarchy of scales by combining effective lagrangian techniques 
[18, 25, 26] with the requirement of anomaly saturation [5-7]. We recall that the 
crucial function of the latter is to select a natural set of preferred fields [26] in terms 
of which the effective lagrangian is written down (c.f. sect. 3)! 

First, let us attack the question of an approximate SU(2)wE by constructing the 
intermediate interaction lagrangian, "~eff(R),gauge(L) appropriate for the momentum 
range AL < p < AR. 

The first step is to write down Lfefr(R) for g L=0  in terms of the (composite) 
Goldstone bosons X and q~ only (i:e. with preons F still decoupled). According to 
eq. (30) X and q~ transform linearly with respect to the stability group SU(2)Lx 
SU(4)'  as (2,4) and (1, 1) respectively and have to realize the original global 
SU(6)symmetry non-linearly. Following a classical method by Coleman, Wess and 
Zumino [25] it is convenient in our case to first define a non-linear function 
M = M(X, ¢) of X and ¢ as follows*. 

(i) M(X, ¢) transforms linearly with respect to SU(6) like an antisymmetrical 
tensor ( ~  = 15). 

(ii) This 6 x 6 antisymmetrical matrix satisfies the usual constraint that a general 
SU(6) invariant potential, depending on powers of the SU(6) invariants T r M M  + 
and T r M M + M M  +, becomes a constant. 
Then 

LeemR);gL=0 = -- ½Tr (O~M(O"M)+) , M = M(X, ¢ ) .  (56) 

Since M decomposes with respect to SU(2) x SU(4)' like 

M(15)  ~ S(1, 1) +X(2, 4) + re( l ,  6) ,  (57) 

M may be parametrized in terms of the 2 × 4 Goldstone boson matrix X and the 
singlet Goldstone boson ¢ as 

. /7{ - i z2S(x ,  q~) X ) = _ M  T 
M(X, ~o) = ' ,2 \  _xT re(X, ¢) ' (58) 

* As a reminder we note that for the SU(2) x SU(2) non-linear o--model M= M(=)  takes the following 
familiar form M ( = ) =  ~/fz_ =2+ ix .=  = (2, 2), with Tr M M  + =f2. In general, the representation of 
M is restricted to contain a singlet when decomposed with respect to the invariant subgroup [25]. 
This leads to M = ( N , N )  for SU(N)LXSU(N)n -*SU(N)L+ R and to M = ( 1 5 )  for our case of 
SU(6) --> SU(2) L x SU(4)'. 
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with auxiliary fields 

re(X, q~) =--mT= xT(--ir2)x/ S(x, q~) , 

S(X, ~) = e i*/I" or(x), (59) 

and tr(X) being a solution of the constraint equation 

~4+ (Tr (XX+)-f2)o-2+det (XX +) = 0 ,  o-x= 0 = f ,  (60) 

equivalent to Tr M M  ~ =f2. Eqs. (58)-(60) imply Tr MM+MM+oCTr M M  ÷. The 
decay constant f is the large parameter in the game, 

f =  O(AR). (61) 

Upon inserting the parametrization (58) for M(X, ~) into eq. (56), ~Tea(R).gL=0 takes 
the following non-linear form in terms of X and 0p~¢ 

~ e f f ( R ) ; g L =  0 = - - 1 T r  [arx(arx) +] - l a r ~  ar~ 

+ ~int (Tr XX+; det XX+; 

xf(--iTz)X; a~, Tr XX+; 0~, det XX+;arxf(--i~'2)X; ar~) .  (62) 

To leading order 1 / F ~  1/A~ we find for ~i~t 

1 l 
"~int = ~ { ~ 0 ,  (Tr XX +) O r (Tr XX +) 

r v + 1 + Tr[Or(x f(--ir2)X) "0 (X (--ir2)X) ] } + ~ 3 ( d i m 7 - o p e r a t o r s ) + ' ' "  (63) 

Note that terms involving the "axion" ~ only appear to order 1/A 3. 
Next, we switch on the SU(2)L gauge interactions (gk ~ 0), whence the fermion 

multiplet F is locked in. The meson sector is gauged by simply performing in eq. 
(56) the replacement 

O.M -, ( ~ . M )  = arM - " / tgLA r (AiM + MAT), (64) 

with 

Ai= ~0 t 0 ] '  i =  1,2, 3, (65) 

1 o ~  i,,u. v and adding the usual Yang-Mills kinetic term -z~ i , r~ '  for the SU(2)L gauge 
fields A~,. Expressed in terms of the Goldstone boson fields 9( and q~ eq. (64) induces 
the replacement 

• i OrX ~ ( ~rX) = OrX - tgLAr ~';X , (66) 

in the kinetic term for the X field only (see eq. (62)). In particular ~int in eq. (62) 
remains unchanged although it also involves derivatives of the X fields. The reason 
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is that these derivatives only act on the auxiliary, SU(2)L singlet fields or(X) and 
re(X, ~) which, according to eqs. (59), (60), only involve X fields in locally SU(2)L 
invariant combinations. 

Before writing down the final form of ~eff(R),gauge(L), let us introduce a notation, 
more suitable for our investigation of an approximate SU(2)wI invariance. For 
guidance, we first identify the left-handed quarks and leptons, appearing as three- 
preon composites in the left-right symmetrical solution (47), as bound states of the 
preon multiplet F and the composite Goldstone boson multiplet X (using the 
correspondence (32)). In fact, as concerns the left-handed quarks and leptons, their 
composition is like in the Abbot t  and Farhi model [3]: we find, in compact matrix 
notation, 

(k', Ul U2U3) L = eh+F, (e, dld2d3) > = (ir2q~*)+F, (67) 

with F = (L, Q) written as a 2 x 4 matrix. All left-handed composites involve the 
same complex scalar SU(2)L doublet 

4',) _= ,,(TL,)+,,, 
4'= 4'2 (68) 

appearing in the decomposition of the 2 x 4 Goldstone boson matrix 

X =(&, a ) =  ~b(2, 1) ~@a(2,  3)~ (69) 

with respect to SU(2)L × SU(3)'  × U(1)' .  The Goldstone boson 

A(2, 3)~ = " ( T O ' )  +' '  , (70) 

does not appear  as a constituent of the left-handed quarks and leptons. As in ref. 
[3] we may now exhibit the global SU(2)w~ symmetry by introducing the 2 x 2 matrix 

,Q = (&, iT2~b*) , 

in terms of which eq. (67) turns into the analogue of eq. (52) 

(71) 

(/)~ Ul U2 U3X~ 
e, dl  d2d3] L = gI+F" (72) 

/'2 transforms like a (2, ft.) of SU(2)LxSU(2)w~ 

g2 -~ UI2, U ~ SU(2)L, 

S2-~ J2V + , V e SU(2)w~, (73) 

such that the composite fermion operator  (72) is SU(2)ijnvariant and a doublet of 
SU(2)w~. By means of the new field /2 we are now ready to examine explicitly to 
what extent SU(2)w~ is a symmetry of SYemm,gauge(L ) . Expressing the X field in terms 
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of g2 and d using eqs. (62), (63), (64), (66), (69), (71)) we finally obtain 

= __~o~ oz~... _ pL y .  ~ . F L _  ½Tr [@.~ (@.a)+]  =~/~eff(R),gauge(L) -- 10~xq~ 0 ~  4'?" i, tLu '~" 

-ITr [~J/x~('~ ( ~ ' ~ ' ~ ) + ]  4- -¢fSU(2)wl- ~ in t  -~-~i  BR , ( 7 4 )  

5o sU(2~w~ and a where we have split ~int of eq. (62) into an SU(2)wI invariant part --in, 
Lf~nt. Obviously, all other terms in (74) are SU(2)wI invariant. breaking part BR 

In leading order 1/ f  2~ 1/A~, eq. (63) gives 

°'~SU(2)W'mt = + { T r  (3~(g~T(--ir2)A)oU(J'lT(--ir2)A) +) 

+ T r  (3u( A'r(--ir2)A )O~*( A T(--ir2)A )+) 

+½O. Tr ( ½ a a + + a a + ) o  - Tr  ( l a a + + a a + ) } + . .  • , ( 7 5 )  

1 
£Pi~ R = Wr (r,O,(oT(--ira)k)O"(~T(--ir2)a)+)+'' ' .  (76) 

4 f  2 

Because of the presence of r3, GliB,, R is only invariant under the global transformations 

O - + O V  +, V = e i ~ s c U ( 1 ) ,  (77) 

corresponding to the U(1) subgroup of SU(2)wI. 
Let  us summarize. The dim<~4 operators are SU(2)wl symmetric; violations 

appear on the level of dim/> 6 operators. In conclusion, for AR sufficiently large, 
we have an approximate SU(2)w~ symmetry, at least at this classical level (ignoring 
loops). Its origin is twofold. 

(a) The scalar field X = ((b, k)  is a complex SU(2)L doublet, allowing for the 
introduction of the scalar mult iplet /2 = (4~, iraqi*) which transforms like (2, 2) with 
respect to SU(2)L x SU(2)w~ as in ref. [3]. 

(b) The scalar fields X and ~ are Goldstone bosons, in terms of which a higher 
symmetry, the SU(6) symmetry, is realized non-linearly in the lagrangian for gL = 0. 
This fact prevents, besides mass terms, SU(2)L x SU(4)'  invariant interaction terms 
of dimension 4, like Trxx+X)¢ + or d e t x x  +, to appear already at the classical level 
with coefficients of order 1. Such terms would violate the SU(2)wI symmetry of 
order 1 instead of order (p/AR) 2. 

Of course, one has to worry about quantum effects. Since the SU(2)L gauge 
interactions break the global SU(6) symmetry intrinsically, loops containing SU(2)L 
gauge bosons will generate mass terms of the Goldstone fields X as well as SU(2)wt 
violating terms (which vanish for gL-+ 0). The scale AR plays the rSle of a cut-off. 
However,  since the SU(2)L gauge interactions are confining, it is difficult to state 
precisely, to which approximation the SU(2)Wl symmetry will feed through into the 
regime p < AL. Nevertheless, it is suggestive that the SU(6) symmetry will leave its 
traces even below AL, such that SU(2)w~ violations of order ( p / A R )  2 for p >  AL 
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will turn into SU(2)Wl violations of order 

(Aq  
A-RR] ' for p < A L . (78) 

These are the violations we expect for the full low-energy effective lagrangian. We 
recall that the breaking of SU(2)wI is associated with the interactions of the colored 
A field which is not a constituent of the left-handed quarks and leptons. Correspond- 
ingly one expects the breaking of global weak isospin symmetry in their residual 
( V -  A )  × ( V -  A )  four-fermion interactions to be much weaker. 

Next, we address the question of an approximate ( V -  A) × ( V -  A) structure of 
the (residual) four-fermion interactions at low energies p < AL. 

Again, within the two-step confinement picture, a neat (though not conclusive) 
mechanism offers itself. Also in this case, the mechanism to be discussed is not 
specific to our model. 

Let  us start by reinterpreting the preon content of the right-handed quarks and 
leptons (47) in the language of the two-step confinement picture. This reinterpreta- 
tion will provide the key to the suppression mechanism. 

Consider first the right-handed SU(4)' multiplet of the "down"  type (see eq. (47)) 

(e, dl d2d3)n = L ( T F ' + ) .  (79) 

The SU(2)R singlet, mesonic operator TF '+ involves strong SU(2)R forces and 
transforms like 

1 1 ~(~, ~) (80) 

under the homogeneous Lorentz group. It is very suggestive to associate with TF '+ 
a vector-meson-multiplet dominating the SU(2)L x SU(4) current 

F [  yuTL = (2, 4) .  (81) 

Its divergence is related to the Goldstone boson multiplet X = (2, 4), since the current 
(81) transforms like the corresponding broken generators of SU(6). However,  in 
contrast to the relatively light (pseudo-) Goldstone boson multiplet X (with SU(2)L 
constituent mass - A L) its vector-meson par tner"  TF'  +" will have a canonical SU (2) R 
mass  ~ AR. Consider next the right-handed SU(4)'  multiplet of the "up"  type (see 
eq. (47)) 

(v, ul U2U3)R = L + ( TF' )  + • (82) 

A priori, there are two possibilities for the SU(2)R singlet mesonic operator  (TF ' )  + 
to transform with respect to the homogeneous Lorentz group 

£f(0,0) + Lf(1, 0) .  (83) 

The scalar part of " (TF ' )  +'' just corresponds to the Goldstone boson multiplet X. 
In order to decide whether the right-handed composite quark-lepton operator (82) 
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may involve the same scalar multiplet as the left-handed one, eq. (67), we make 
use of an important observation stated in sect. 4. It concerned VL and v~ having 
identical preon composition and thus identical internal quantum numbers. The Pauli 
principle, therefore, requires the operators coupling to VL and v~ to differ in their 
spin structure, which means that 

vR = L+(TL') + involves "( TL')*" transforming like ~ (1 ,  0) .  (84) 

In view of the SU(4)'  symmetry we are thus led to associate again with (TF ' )  + in 
the "up"  quark-lepton multiplet (82) an effective spin-1 field of (canonical) mass 
AR transforming like (2, 4) x ~ (1 ,  0). 

Altogether,  from the two-step point of view the following picture has emerged. 
The left-handed quark-lepton multiplet is composed of the massless preon F and 
a relatively light (pseudo-) Goldstone scalar I-2. The right-handed quark-lepton 
multiplet, in contrast, involves heavy effective spin-1 fields of m a s s - A R  together 
with the massless preon L. In the light of Preskill and Weinberg's [31] results, the 
massive vector mesons may well be constituents of massless fermionic bound states 
below a phase boundary at some critical value ~crit of ~: = AR/AL (enforced by the 
Symanzik-Applequist-Carazzone theorem [20]). This interpretation of the right- 
handed composite quarks and leptons also provides a natural explanation for the 
existence of our second Abbott  and Farhi type solution (see sect. 3) for ~:> ~:crit: at 
~:= ~:crit the system has to undergo a phase transition to a solution without right- 
handed, massless composite quarks and leptons since the vector fields of mass - Ar~ = 
~:AL become too heavy and must decouple completely. The left-handed massless 
composite fermions involve the light Goldstone bosons only and therefore persist 
also for ~: > ~crit- 

Finally, let us explore the consequences of this picture for the residual interactions 
of the right-handed quark-lepton multiplet. Instead of the non-linear form (74) of 
~emm.gauge{Lt for AL < p < AR let us imagine a linear realization involving also the 
heavy, effective fields of spin-1. According to the decoupling theorem [20] their 
effect in calculating Green functions with light external fields for AL <p<< AR is 
suppressed by powers of p / A a  (in the framework of perturbation theory). For 
precisely this reason heavy fields are usually omitted in the non-linear version of 
~ett(R).gauge(L) at the tree-level. However,  in our case, for p ~ AL these vector fields, 
being SU(2)Ldoublets, experience strong SU(2)L forces and. may be invoked in 
SU(2)L singlet bound states. Some of those, the right-handed quarks and leptons 
are kept massless through chiral symmetry and anomaly matching. However,  all 
other SU(2)L singlet bound states involving the heavy fields of mass~AR will 
themselves have masses ~ Aa. (This is analogous to heavy "quarkonium" states in 
QCD the mass of which is proportional to the heavy quark mass and not related 
to AocD.) This fact is crucial for the following argument. The residual interactions 
between left-handed and right-handed massless composite quarks and leptons may 
be intuitively pictured by drawing connected constituent rearrangement diagrams 
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in analogy to the familiar duality diagrams of strong interactions. It is easy to see 
that for the case of interest, of four external chiral fermion multiplets, left-handed 
and right-handed ones must occur in pairs. Thus if right-handed quarks or leptons 
are involved their residual interaction proceeds always through the exchange of a 
SU(2)L singlet boundstate of mass ~ AR made up from at least one heavy spin-1 
field. In contrast, if all four external fermions are left-handed quarks or leptons the 
exchange of the composite SU(2)w~ triplet WS, W~ 

( - + -,/2 W.~  = 
. O+~ ,O-½Tr ( l l+O,d2 )= \ , f~W_  " - W  3 ] ~. W , ,  (85) 

is involved. Since it is a SU(2)c singlet boundstate of Goldstone bosons ~2 its mass 
should be only O(AL). By comparison, the residual four-fermion interactions involv- 
ing the right-handed massless composite quarks and leptons should be suppressed 
relative to those with only left-handed ones by (positive) powers of 

~aa] ' (86) 

Let us emphasize again: we have been forced to include heavy vector meson fields 
of mass O(AR) in the effective lagrangian ~eU~m,gauge~'), in contrast to usual experien- 
ces with effective lagrangians, because anomaly matching enforces the right-handed 
quarks and leptons containing these vector mesons to be massless on the scale AL. 

The resulting picture is quite appealing. The existence of the right-handed massless 
composite quarks and leptons, harbouring a heavy vector meson constituent, is a 
matter  of "yes" or "no" ,  i.e. a discontinuous function of s ~ = AR/Ac:  they exist for 
s c < G,it and do not exist for ~ > Grit. Ther effective residual interactions, however, 
are continuous functions of ~, becoming weaker for increasing ~:. 

Let us finally address the question of quark-lepton universality in the effective 
low-energy lagrangian (p<< AL). The ( V - A ) x  ( V - A )  four-femion term has to 
exhibit the original SU(4) symmetry even though the SU(4) is spontaneously broken 
to SU(3) x U(1) (see eq. (35)). The low-energy effect of this spontaneous breakdown 
only appears in terms of higher dimension involving the associated Goldstone boson 
fields besides the four-fermion fields. These terms are suppressed by additional 
powers of p/AL.  The SU(4) symmetry of the leading ( V - A )  x ( V - A )  four-fermion 
term then implies quark-lepton universality as in the Abbott  and Farhi model [3]. 

6. Summary and conclusions 

The purpose of this paper was to explore further the attractive idea that the weak 
interactions at present energies are residual hypercolor interactions among com- 
posite quarks and leptons. One main objective was to find a realization of this 
picture satisfying certain desirable requirements, such as the absence of fundamental 
scalar fields and the possibility for a left-right symmetric spectrum of composite 
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quarks and leptons. This has led us to systematically investigate a SU(2)L x SU(2)R 
hypercolor gauge theory with "double"-confinement  [34]* corresponding to the 
two scales AL and AR with AL- -Gv  1/2 <AR. The smallest possible global chiral 
symmetry one encounters at the preon level for e, ~coJor~0 is SU(4)LXSU(4)R × 
U(1)axia~ = SU(3)color x U(1) ...... As concerns the number of fundamental fields, this 
model, in fact, represents a minimal composite model with only fermionic preons 
in fundamental hypercolor representations. (For instance, it involves fewer hyper- 
color gauge bosons and fewer fundamental Weyl fermions than the Rishon model 
of ref. [1].) On the other hand it has revealed a wealth of dynamical structure due 
to the two confinement scales AL and AR. Keeping AL--G~ 1/2 fixed we have 
presented a detailed analysis of this SU(2)LxSU(2)R model as a function of the 
parameter  ~ = AR/AL. Effective lagrangian techniques were employed in combina- 
tion with the general requirement of anomaly saturation. The important function 
of the latter is to select a natural set of (composite) "preferred fields [26]" and 
their representations, in terms of which (non-linear) effective lagrangians may be 
constructed and analyzed. In fact, a second objective of this paper was to illustrate 
the type of dynamical information one may gain by means of such a general strategy 
for a class of generic composite models with a hierarchy of confinement scales. 

Our analysis was performed along two complementary lines. For ~:- l SU(2)L x 
SU(2)R was treated as a confining product group ("one-s tep"  confinement). For 
the simplest case of a global chiral SU(4) symmetry we find one standard family of 
massless left-handed and right-handed composite quarks and leptons. No light 
exotics appear. Moreover  there is the possibility of higher generations, if discrete 
symmetries are invoked. The quarks and leptons are three preon bound states and 
satisfy 't Hooft 's  anomaly matching conditions after a necessary partial symmetry 
breaking SU(4) x SU(4)'  × U(1)ax ia l  ~ SU(3) x SU(3)'  × U(1) x U(1)'.  Furthermore,  
the composite spectrum exhibits a higher classification symmetry. More precisely, 
the original symmetry is enlarged by a global SU(2)×SU(2) '  symmetry, which 
coincides with the familiar "accidental" chiral SU(2) symmetry of the QCD 
lagrangian with massless quarks. It is an intriguing result that all anomalies are 
matched with respect to this higher global symmetry in an obvious and most elegant 
way. 

For ~: = AR/AL >> 1 an important dynamical insight comes from treating confine- 
ment in two steps, at AR and AL consecutively. Around p - ARSU(2)R confines while 
SU(2)L interactions are still negligibly weak. All SU(2)R singlet bound states are 
mesons, since they necessarily involve an even number of preons. Therefore,  in the 
intermediate region AL < p < AR we face an effective lagrangian involving the SU(2)L 
interactions of composite meson fields with left-over massless preons. Some of these 
mesons are massless Goldstone scalars, enforced by the requirement of anomaly 

* An S U ( N ) x  SU(2)L x SU(2)R extension of our SU(2)L x SU(2)R model was recently studied in ref. 
[35]. The structure of the resulting quark and lepton spectrum remains (largely independent  of N)  
similar to our solution (47). 
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saturation around AR. All SU(2)L non-singlet Goldstone bosons are SU(2)L doublets. 
They serve as "preferred fields" in a non-linear effective lagrangian and finally are 
subject to SU(2)L confinement together with the left-over preons. Thus, a picture 
complementary to technicolor emerges. 

We find two distinct solutions of composite quarks and leptons separated by a 
phase boundary at some value ~crit > 1. Phase I I (~> ~crit) corresponds to separate 
anomaly saturation, phase I (~ < ~crit) to joint anomaly saturation around the scales 
AL and AR. For ~:> ~:crit (phase II), an Abbott and Farhi type solution [3] results, 
where only the left-handed quarks and leptons are composite fermions, containing 
preons and composite (pseudo) Goldstone bosons. The latter replace the funda- 
mental scalars of the Abbott and Farhi model. The residual (four-fermion) weak 
interactions are p u r e ( V - A ) ×  ( V - A ) ,  global SU(2)wI symmetry of weak isospin 
is exact and quark-lepton universality holds because of SU(4) symmetry as in ref. 
[3]. For ~:< ~:c~it (phase I),  the solution found in the "one-step" analysis, with 
massless left-handed and right-handed composite quarks and leptons is recovered. 
However, in the "two-step" language they appear as SU(2)L singlet bound states 
of fermionic preons and composite meson fields. Those involved in the left-handed 
quarks and leptons are all relatively light (pseudo) Goldstone bosons (with SU(2)L 
constituent mass--AL) as in phase II. In contrast, the right-handed quarks and 
leptons involve heavy effective vector fields of mass ~ AR. We face a situation as 
discussed by Preskill and Weinberg [31]. For a range ~: < ~crit massive fields may be 
forced by chiral symmetry and anomaly matching to occur in massless composite 
fermions. If ~: gets too large, ~: > S~cr~t, the system has to undergo a phase transition 
into phase II, where the heavy meson fields have decoupled and no light composite 
right-handed quarks and leptons can exist. 

This characteristically different composition of the left-handed and right-handed 
quarks and leptons also provides the key for a neat suppression mechanism of the 
residual (V + A ) ×  (V + A) four-fermion interactions relative to those of the pure 
( V - A )  × ( V - A )  type by (positive) powers of (AL/AR) 2. Moreover, by analyzing 
the non-linear effective lagrangian involving only preons and Goldstone fields for 
AL < p < AR we were able to argue for an approximate validity of the global SU(2)w~ 
symmetry and quark-lepton universality in the left-handed quark-lepton sector. 

Both solutions (phase I and phase II) are interesting in their own right and possible 
candidates for describing weak interactions. Unfortunately, we have no control on 
the actual value of 

~c~, = ( A R / A L ) ~ .  > 1. 

In this paper we have refrained from discussing the question of quark-lepton mass 
generation. Let us emphasize that a possible mechanism is at hand through radiative 
effects of the electromagnetic and color gauge interactions, which we have considered 
to be switched off up to now. This type of mechanism has been advocated by 
Weinberg [32] and also by Fritzsch [33]. 
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Appendix A 

We choose to satisfy the solution (44) of the anomaly matching equations (40) 
by indices taking only the values 0, +1: 

l 1 = 0 ,  kl = 1 , 

12 = kz = 0 ,  

13 = k3 = 1 , 

/4 = 1, k 4 = O ,  

m l = n l = l ,  

me = 1, n 2 = 0 ,  

m 3 = 0 ,  n 3 = l ,  

m 4 = / , / 4  = 0 . 

(A.1) 

This is minimal except for ml = nl = 1 and 13 = k 3 - - i  instead of 0. The resulting 
spectrum is again one generation of left-handed as well as right-handed quarks and 
leptons, accompanied, however,  by an exotic, charge neutral, color octet quark: 

v =- VLC ( T Q ' ) Q  = (3, 3)L_ 1 , 

e -~  e L = ( T L ' ) + L = ( 1 ,  1)_ L ~, 

u =- UL = ( T L ' ) Q  = (3, 1)Lx, 

d =- dr. = ( T Q ' ) + L  = (1, 3)_L~, 

v,=_ c ( T L , + ) L + = ( 1 ,  ' , VR = 1)>--~ ,  

= ( T L ' + ) + L  + = (1, 1)1.~, e '  =- eR 

u '  =- u ~  = ( T L ' + ) O  + = (3, l)_L_1, 

d '=-  d ~  = ( TL '+)+  Q + = (3, 1)_L1. 

(A.2) 

Again, in order to keep the electron and in addition the u-quark massless one has 
to invoke discrete symmetries. 

Notice, this spectrum of composite fermions is again left-right symmetric as 
concerns color and charge quantum numbers,  but it is asymmetric as concerns the 
preon content, in contrast to solution (47) of case (i). The left-handed neutrino is 
different from the right-handed one in that it is the color singlet component  of a 
chiral (3, 3) representation. It thus has a color radius. 

In contrast to solution (47) there is no obvious way, how the global SU(2) 
symmetry of weak isospin could arise on the level of the composite fermions. 
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