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The method of paper (I) of this senes is applied to the O(N) non-hnear sigma model Due to 
the use of non-mamfestly mvanant perturbation theory the ~mprovement part of the acuon, 
computed exphcltly to one-loop order, is not manifestly O(N) lnvariant It can be brought into 
mamfestly O( N ) mvarlant form by use of linear ldentmes among dimension-four operators, which 
follow from the field equations of the unimproved acnon The adequacy of the resuttmg 
two-parameter family of manifestly O( N ) invanant improved actions lb verified to one-loop order 

1. Introduction 

The non- l inear  sigma model  is defined by a linear con t inuous  symmetry,  here 

O ( N ) ,  and a non- l inear  constraint .  To apply per turba t ion  theory this const ra int  

must  be resolved: to write the action in terms of canonical ly  independen t  fields. The 

l inear symmetry  hereby turns into a non-hnea r  one which is not  mamfest  in the 

pe r tu rba t ion  expansion.  In two dimensions  where the O ( N )  symmetry  cannot  be 

broken  [1], pe r tu rba t ion  theory leads to IR divergences that cancel only in lnvar iant  

l inear  combina t ions  [2] after, to define per turba t ion  theory for the model, e.g. an 

external  symmetry-breaking field H is in t roduced and then allowed to approach zero 

at the end. 

In  2 + e d imensions  (Re e > 0), convenient  for the improvement  technique of 

paper  (I) of this series [3], pe r tu rba t ion  theory does not  require an IR regulator bu t  

leads into the phase of broken symmetry  due to spontaneous  magnet iza t ion at low 

temperature.  The subtract ions  described m sect. 4 of (I) lead to the ac tmn A 0 + AA 0 

+ a2A~ where AA 0 and  aZA1 conta in  no t -mani fes t ly -O(N)  invar iant  terms. In  AA 0, 

the non-symmet ry  is related to renormal iza t ion  of the coupling cons tant  [4] which 

occurs in pe r tu rba t ion  theory in a non-symmetr ic  way, and the analog of the 

t rans format ion  described In subsect. 3.3 of (I) removes AA 0. The remain ing  lm- 
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206 K Svmanzlk / Improved actton m lattice theories (I1) 

provement part aZA'l (cf. subsect. 4.2 of (I)) IS still not manifestly symmetric though 
of the form found by Brrzin, Zinn-Justin, and Le Guillou [4] to be compatible with 
the O ( N )  Ward ~dennties. The non-symmetric form here reflects merely the freedom 
of choice concerning that part, due to several identities among dimension-4 opera- 

tors derivable from the field equations of A 0, analogous to the idennnes m if4 theory 
described in subsect. 5.2 of (I). By use of these identities, a2A'~ can be brought into 
manifestly symmetric form, with still two parameters free due to two ~dennnes 
among manifestly mvariant d~mension-4 operators. 

In sect. 2 we construct the subtracted action perturbatively to one-loop order. It  ts 
to this order related to the local effective action (LEL) in 2 + e dimensions merely by 
change of sign. The dim2 + e and d im4 + e terms we find are indeed the ones 
allowed by the Ward identines [4]. Their coefficients to this order are computed m 
appendix A and B. In sect. 3, identines among d~m-4 operators are derived. We also 
show that the self-contracnons that make the difference between normal and 
ordinary operator products affec! only the next loop-order, w~th some algebra 
relegated to appendix C. The two-parameter family of improved and manifestly 

O ( N )  mvanan t  actions, with coefficients as follow from sects. 2 and 3, is m sect. 4 
d~rectly derived by requiring the improvement of Green funcnons to one-loop order 
and extended to all orders. Sect. 5 contains concluding remarks. 

2. Perturbatively subtracted lattice action 

2 1 STRATEGY 

We apply the prescriptions of sect. 4 of (I). Since the field has dimension zero, or ½e 
in 2 + ~ dimensions, we need to subtract all VFs four times. This is best done as 
follows. For the action subtracted up to E -  1 loop order, one constructs the effecnve 
action In the sense of Coleman and Weinberg [5] up to 4th order in momenta,  with 

Re e > 2~-  i for the 4th-order term, to E-loop order (the ( E -  1)-loop orders vamsh 
by construction). This effective action, rewritten for the lattice and with the 
"classical field" replaced by the lattice field operator, is w~th change of sign the 
E-loop-order subtraction. In the present model, however, It is advisable to perform 
the reparametrlzation described in subsect. 4.2 of (I) and a further t ransformanon 
described here in subsect. 4.3 in each loop order separately before proceeding to the 
next loop order. 

2 2 GENERAL FORM OF THE MOMENTUM-EXPANDED EFFECTIVE ACTION 

We use the functional method [6]. The generating functional F(~r) of the VFs (in 
our case, ~r has N - 1 components) can, upon Taylor-expanding all VFs to 4th order 
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i n  m o m e n t a  a t  all  m o m e n t a  zero ,  b e  w r i t t e n  in  t he  c o n t i n u u m  
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+~4aTO.~O~ax~r W ~  x(~)  + O ( m o m S ) ] .  (2.1) 

In the presence of hypercubic lattice symmetry (called military symmetry by R. 
Jost), Z is proportional to 8uv, S ~ 0, and T, U, W consist of terms proportional to 
the tensors 8~vS~x, 8~8~, 8~6~, and 6~8~8~. 

For the action 

A 0 = Y'. [ -  ½¢rK~r + S(~r)] a 2+~-  measure term (~r), (2.2) 

the functions in (2.1) are obtained [6] by momentum-expanding one-particle-irre- 
ducible lattice graphs made of propagators [ K -  S (or)]- 1 and vertices that are third 
and higher derivatives of S(~r), with 7r space-"t ime" independent throughout the 
graph. Uncontracted ~r-indIces at vertices are external arguments, at which infinitesi- 
mal momenta,  to first or higher powers, enter these graphs. Thus, in (2.1) the 

coefficient functions are obtained by momentum-expanding graphs as just described 
with the indicated number  (up to four) of external arguments. 

2 3 SECOND ORDER IN MOMENTA 

For our model, (2.2) is 

A0 =a2+~ E [ - ½ % , ' ( k ' ~ ) , - l g  'o,(~2o), ,-a 2 - q n % ] ,  (2.3) 
n C 3 t 2  ~v 

where ~ = (or,, l = 1. . .  N - 1), o ~- (1 - g,~2)1/2 and (see subsect. 4.1 of (I)) 

2+e 

k= E [-0 0;+1a2(0 0;12] 
/~=1 

(2.4) 

A constant magnenc field H would play the r61e of Am 2 in the q~4 model of (I), and a 

source term ho would also bring in VFs with composite-operator arguments to which 
the subtraction technique extends in an obvious way. (In contrast to Am 2 in (2.5) of 

(1), a non-constant source term h appears also at non-zero momentum 1.e. differenti- 
ated.) For simplicity, we omit such terms in this section. (See, however, subsect. 3.1 
below). 
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Comparing (2.3) with (2.2) we have 

S t'; ( qT ) = - g o - l qr t I(~ ( o - l qT y ) -'}- o - l [ ~ u -~ g o - 2 qT t qT j ] X o , (2.5) 

whereof the last term vanishes for ~r space-" time" independent. The propagator is, 
therefore, 

(2.6) 

In 

F'  '°°P(Ir) = - ½ T r l n [ K -  S"(~r)] - m e a s u r e  term (Tr) (2.7) 

the last term already effects the subtraction at zero momenta [7]. 
Differentmtlng (2.7) twice leads to the one-loop contributions to Z and T m 

(2.1). The vertices follow from (2.5), and we obtain the graphs shown in fig. 1. 
Hereby, a broken line denotes k of (2.4) and a dashed solid line the propagator 
(2,6). The number of derivatives of o is indicated by strokes, and the two lettered 
arguments are the external ones carrying infinitesimal external momentum, to 
second order y~eldlng Z, to 4th order T m (2.1). Dots indicate dummy arguments 
contracted by the propagator (2.6). 

Diagrams A and B of fig. 1 contribute to both Z and T m (2.1) and can, using 
o,' = - g o  lTr,, be combined: 

K-gRo-l,ltrR l(~rs--g'B'rqT"s)O I ' B ' s K = O 2 R .  (2.8) 

I I " 
- -g O," A ~ O f f  

. I O n /  \ . g2 ~ ~ . . ~ O j  

B 

• • 

C \/ "/D 
0"" O" 

O' 

x/~/1 \ \\ 
. i_o, ' ¢',.~o_'__~,. & o" ";o" 

E F "-o,-I' 

-~o, '  . . . . . .  0"j - ~  . . . . . . . . . .  %' 

Fig 1 One-loop diagrams contributing to Z,/and T,/in (2 1) 
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Furthermore, noting that (2.6) contains the inverse of the mamx structure of 

o,'j = - g o  l(3,j + go 2~r, wj), (2.9) 

we have 

2 . . . .  = g 2 ( ~ l y  + g O  2q71qTy), (2.10) 0 01,(~rs -- g~r,~rs)o,s 

such that the (A + B) contribuuon to (2.1) to 2nd order in momenta 

= - l g 2 ( O . ' ~ . O . ~ + g - ' O . o O . o ) × ( p 2 c o e f f i c l e n t o f f i g .  Za ). (2.11) 

(A sohd line denotes the bare improved propagator k ~). Due to k - l k  = 1, 
diagrams C and D contribute from k to second order only in momenta since the 
triangle reduces to a tadpole, and gives 

(C + D) contnbunon to (2.1) = o IAo. (diagram fig. 2b), (2.12) 

where A is the laplaclan Diagram E contributes only to T in (2.1). Diagram F, again 
due to K - ~ k  = 1, is momenta independent and g~ves zero. Finally, upon s~mple 
algebra, 

(G + H) contribution to (2.1) = - ½(U + 1)o- IAo. (diagram fig. 2b). 

Collecting, we have 

F0 loop( 7r ) + F l loop( ~r ) to second order in momenta 

= - ½ f d x ( 0 , ' ~ . 0 . ~ + g  ' 0 . o 0 o ) [ l + g - ( p 2 t e r m o f f l g .  2a)] 

-½(N-l)fdxo lAo-flg.  2b. 

The two 
first-order poles at e = 0 

(2.13) 

(2.14) 

coefficients are evaluated in appendix A, (A.2) and (A.4). They have 

Q_) 
a b 

Fig 2 Graphs needed for one-loop renormahzatxon coefficients 
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It is now seen that the terms obtained are, as they must be, the two terms that 
were found by Br6zm, Zmn-Justin, and Le Guillou [4] to be compatible with the 
O ( N )  Ward idennties. Noting that 

(2.15) 

we can rewrite RHS of (2.14) 

(2.16a) 

~ = g +  ( N -  1 )gZa  - ' .  ( A . 4 ) +  . . .  - g Z ,  Z ~ ' ,  

6 -= (1 - ~ r2 )  '/2 , (2.16b) 

Z 3 = 1 + ga - ~ .  (A 2) + - - . .  (2.16c) 

Our subtraction prescription requires us to subtract the latnce forms (where --A 
becomes K )  of the l-loop terms m (2.14) from A0; however, the analog of the 
transformation in subsect. 4.2 of (I) brings them with opposite sign to the LEL side 
again, such that (2.16) is, to one-loop order and, by the arguments of ref. [4], to all 
orders the form of L~) of eq. (4.4) of (1). 

The fimte parts of the one-loop terms in the coefficients in (2.16) differ from 
the ones obtained with the unimproved propagator. This difference determines the 

"A-rat io" A,mp/Astan that shows up when comparing computer results for the 
improved action with the corresponding ones for the unimproved (standard) action, 

at the same value of g. This rano is given in (A.7). 

2 4 FOURTH ORDER IN MOMENTA 

Diagrams A and B (which combine as before) contribute to T in (2.1) by 
expanding fig. 2a to fourth order m momentum. Dmgram E contributes to T w~th 
fig. 3a taken at zero momentum. We shall not write out in full all the diagrams 
contributing to U and W In (2.1). It may immediately be seen, however, that as far 
as momentum structure is concerned, in addition to figs. 2a and 3a, only the 
expansion of the diagram fig. 3b (of. figs. 1C, D) to second order in momenta,  and of 
the diagram fig. 3c (cf. figs. 1B, F) to fourth order in momenta  are needed; whereby 
only the terms linear m p and q, respecnvely linear m p, q, r, and s are relevant since 
each of these momenta  should appear to first order at least. The calculation is given 
in appendix B. 
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Performing the trivial but lengthy O(N)  algebra (which can be streamlined using 
the method of Brown and Duff [6]) and collecting all results, we find 

F 1 l°°P(~r) to 4th order in momenta 

a2-~ f  dx [ -  41~Cl(e)g2( a2~ • 02"~ + g '02O020 ) 
t 

1 2 + l l 2 c 2 ( e ) g 2 E ( O d ~ ' O ~ + g -  O~oO,o) 
~v 

'c )2 
3t tg2E (a;,. + g-'a oa.o 

+ ¼ ( N -  1)cs(e)(o  'Ao)2] .  (2.17) 

The coefficients c(e) are defined in (B.1)-(B.5). Again one notes that precisely the 
same dim-4 terms companble with the Ward ~dennties found by Br6zin, Zmn-Justm, 
and Le Gufllou [4] appear, considering that under lattice symmetry also the 
structures of the first and fourth term in (2.17) are allowed. In one-loop order, the 
term A~r. A~ + g ~ AoAo of ref. [4] has zero coefficient. 

The terms in (2.17), rewritten as lattice terms and with opposite sign, yield the 
improvement part aZA] in (4.4) of (I) to one-loop order. When transferring (2.17) 
onto the lattice, its terms should, by virtue of the derlvanon of (2.17), be interpreted 
as normal products in the sense of Zlmmermann [8]. While massless self-contracnons 

k 
s r 

-p -q  

Fig 3 Graphs  needed for one-loop improvement coeffaclents (besides fig 2a) 
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are zero in dimensional integraUon, they are not zero on the lattice and ought to be 
put in. We shall show in subsect. 3.3, however, that these extra terms are two-loop 
ones and thus outside the one-loop approxamaUon. Therefore we can ~gnore them. 

Choosing the lattice terms invanant under the latUce symmetry operations ( 0~ 
- O~, and ½r rotations) the simplest transcription y~elds at this stage the one-loop 
improved latUce action 

A' lOOp = a2 +~ ~_., { - ½~p . [£ep - a 2-~ln o ~mp 

+ a 2 - ' [ 4 ~ c , ( e ) g ~  3~O: d?. O~,3:ep 

+ 2 

+ A C 2 ( E ) g 2 ( ¢ ~ .  K¢~)2_  ~ 6 6 c 3 ( E ) g 2 E ( ~ .  ~0/t+¢~)2 
/t 

+ ¼c4(t)gep" ( K ¢ ) o - ' K o -  ¼ ( N -  1 ) c s ( t ) ( o - l K o ) 2 ] } .  

(2.18) 

Hereby, we wrote ff --- (~, g -  1/2o) and used the fact that in the improvement parts m 
the square bracket, the ummproved latUce laplacian in (2.2) of (I) could be used to 
sufficient accuracy such that m (2.18), at most, the next-nearest-neighbor couphngs 
appear. LatUce symmetry invariance could also have been achieved in ways other 
than m (2.18), however, the difference to (2.18) would have consisted of a 4 t terms 
that would have an effect on improvement coefficients only in two-loop order when 
they themselves appear in loops. The c(e)  are meromorphlc, and regular at e = 0. 
The c(0) are listed in (B.6). 

Rather than calculating two-loop graphs with the one-loop-improved action 
(2.18), as would be the analog of the procedure m sect. 4 of (I), we shall first 
transform (2.18) into manifestly O(N)  mvariant form by the tools of the following 
section, and take up the question of tugher-loop orders only in subsect. 4.3. 

3. Operator identities and normal products 

3 I NOT-MANIFESTLY-INVARIANT OPERATOR IDENTITIES 

The action (2.3) amended by source terms a 2 + ~Y~n ("In" % + g l/2h no,,) leads to the 
field equation 

- [('rr + a - I~r-Ka + J - g l/2h a - txt + a - 2 Eg o - 2,rr = O. (3 .1)  
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It  is convenient  to interpret  ~ as a 2 ~O/OJ acting on the functional  integral with 

sources, whereupon  (3.1) becomes  the Schwinger-Dyson equation.  Mult iplying (3.1) 

f rom the left by g'~ and rearranging yields 

q _ g ( j . ~ q _ g  I /2ho)q_a-2 -eg  0 2 + ( N _ 2 )  a 2 F g = 0 ,  ( 3 2 )  

which is the "coun t ing  identi ty" [9] of the model.  
F r o m  (2.3) with source terms included follows 

O / ( O g ) ( A o + s o u r c e t e r m s ) = , ~ g  2 2+a ~ E [  a , ( [ £ o _ g , / 2 h ) + a  2-~ o 2g,~z] 

(3.3) 

I f  we had included the h source term in the subtract ion steps in subsects. 2.3 and 2.4, 
o ~ Ao in (2.12) would have been replaced, as expected f rom ref. [4], by the negative 

of  the first term in (3.2) r emember ing  that, on the a ° level, k is the required 
t ranscr ipt ion of - A  onto the lattice. This conf i rms that  ,rr and g 1/2o would be 

r enormahzed  to one- loop order, and by the a rgument  of  ref. [4] to all orders, in the 
I a 2 - -2  ~)4 same way. (In this respect, g-  I/2ho is not analogous to -- 2amBq~ of the theory, 

since dt )2 there requires an independent  renormal lzat lon factor  as does ~r 2 -  (~r 2) in 

the present  model  [4, 10].) The two last terms in (3.2) and the last one m (3.3) are 
two-loop ones: mulnply lng  (3.2) by a ~, which is dimensional ly  its factor as 
ln tegrand in (2.14), allows us to write e.g. the last term as a 2 ~(ga F)+ 
a 2 "(ga ")(o 2 - 1 ) ,  showing It to be a two-loop term in compar i son  with 

- a  2 qn o in (2.3) which is a one- loop one. 
Mult iplying (3.2) f rom the left by g( 'n-  K,n + g ~o/£o) yields 

g(~,. k, ,  + g - ' , /~o)o  ' (ko  - g'/:h) 

_ g2(~, . /~, ,  + g - ,o / to )2  + ~ 2 ( j . , ,  + g - , / 2 h °  ) 

× (~- /£~r  + g lo/£a) + 2-loop terms = 0.  (3.4) 

A m o n g  the two-loop terms herein is also the c o m m u t a t o r  

[g ( , a ' . /~ ,n '+g  IoKo),gJ. ' rr]  =a-2-eg2( ' r t . [<]~+g l o K o ) - - a  2 *go l e o .  

(3 5) 

Namely ,  mul t ip lying the R H S  by  a 2-~, dimensional ly  in (2.17) the coefficient of the 
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first term m (3.4), yields 

( g , - ~ ) 2 [ ~ , . k ~ , + g  ' o K o ] - ( g a  ' ) [a- - 'o  ~ko],  

~denufymg these as a°-level two-loop terms since the square brackets hereto are zero 
and one-loop terms, respecuvely. 

Multiplying (3.2) from the left by the same expressions with all signs except that 
of the first term reversed yields 

[0 l( k o -  gl/Zh )]2 - gZ( ~r. X~r + g - l o X o  )2 - gZ; ( J.~r + g ' /2h0)2; 

+ 2 g z( j . , n  + g - ' / : h  o )( ~r. [£'n + g 'o[£o ) + Z-loop terms = 0. 

(3.6) 

Here the senncolon sign means ordering J to the left of vr and o. The &fference 
relative to the ordinary square, with the factor a 2-~ included, is 

- - a Z - e g Z [ ( s ' ~ q -  g - l / Z h o ) ,  J ']IT 

= - ( ga-e)2[ J .  ,~ q- g I/Zho ] + ( ga e)2[g I/Zho--I],  

(3.7) 

where the two last square brackets are a°-level zero-loop terms. Also all other 
commutators arising in the step from (3.2) to (3.5) are two-loop terms as seen 
already from the " loop counting" factors ga-q  Eqs. (3.4) and (3.6) will be used in 
subsect. 4.1. 

3 2 MANIFESTLY INVARIANT OPERATOR IDENTITIES 

Multiplying (3.1) from the left by J and rearranging yields 

-- ( j . K ~ + g - I / Z h I ( o ) +  ( J Z + h Z ) q -  ( J . ~ + g - I / Z h o ) o  l ( K o - g l / Z h )  

+ a -  2-eg( J .  ~r + g - I / 2 h o ) o - 2  - a -  2-egl/Zho - I  = 0. (3.8) 

Multiplying (3.2) from the left by J .  ~r + g -  J/Zho and subtracting the result from 
(3.8) gxves, with the use of (3.7), in the notation introduced m (2.18) 

- ) . K d ~ + Y Z  +gJ.cbcb-K, c b - g ; ( Y . c b ) 2 ; - a - 2 - ~ ( N  - 1 ) g J - ~ = 0 ,  (3 9) 

with 3 -  (J ,  h) and the sermcolon sign as m (3.6). It will m subsect. 4.3 turn out to 
be s~gnlficant that in th~s invariant ~dent~ty also the "hxgher-loop" term ~s so. 



K Symanztk / Improved a¢tton m lam~e theortes (II) 

Multiplying (3.1) from the left by/~'a gives 
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- ( k , ~ ) 2 + , ~ . R ' ~ o  ' ( K o - g ' / 2 h + a  -2 ~go ') 

+ J . k ' ~ + ~ ( 2 + e ) ( N - 1 ) a  4 e ( 3 . 1 o )  

where (2.4) has been used. Multiplying (3.2) from the left by ~r. k~r + g loko and 

subtracting the result from (3.10) yields, using (3.5) 

_ k,)2_g(3.,)(, k,) 

+ J . K , - a  2 * ( N -  1)g , t , .R¢ 

+ ~ ( 2 + e ) ( N -  1)a 4 F = 0  ' (3.11) 

again an entirely invarlant identity. If in (3.10) and (3.1 1) the unimproved laplaclan 
K instead of ~2 had been used, in the last terms the factor ~ would have been 

replaced by 2. 

3 3 NORMAL PRODUCTS 

The terms in the one-loop improvement part (2.18) are designed to implement 

certain subtractions for Re e > 2, and corresponding substitutions for - 2 < Re e < 2 

by analytic continuation, as described in subsect. 2.1. The way the coefficients were 

determined in subsect. 2.4 implies that those terms in (2 18) should be interpreted as 

normal products in the sense of Zimmermann [8]. However, the difference between 
ordinary and normal products In (2.18) contributes only in the two-loop order and 

can thus be disregarded in (2.18). Namely, in contractions two ~r operators are 
replaced by const a -~, which combines to a "loop-counting" factor ga ~ with the 

factor g that had to be present for dimensional balance relative to an operator 

product with two ~r operators less. Depending on the number of derivatives on the 7r 
operators, the contraction will be a two-loop order a ° or a 2 part. The contractions of 

interest in (2.18) are worked out m appendix C, and the formulae (C.6) and 

(C.8) (C.1 1) show the described effect 

For example, the difference on the LHS of (C.6) would be relevant in the normal 
ordering of (2.18) (at e = 0) multiplied by g2a2, whereupon the first term on the 

RHS of (C.6) becomes (comparing with (2.1)) a two-loop a ° term and the second 
and third terms become (comparing with (2.18)) two-loop a 2 terms. One notes that 

on the lattice, contractions of "rotatlonally lnvarlant" terms contain also "rota- 
tionally non-invariant" ones. 

The only term which requires attention is the last one In (2.18) since, to lowest 
order, 
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The contraction of the square hereof contains (%Trs) of (C.4) with the factor 
g2(KN)(K~). Such a term cannot be disregarded since it has no e ~ 0  limit. 
However, m subsect. 4.1 we shall replace the normal-ordered first term in (3.6) by 
the negative of the normal-ordered other terms, and the third term In (3.6) then 
contains a contraction g2j, jj (Tr, 7rj) that, to lowest order, balances the contraction of 
the first term of (3.6) to lowest order due to the lowest-order form K% = J, of (3.1). 
Thus, the IR problem is deferred and will be taken up in subsect. 4.3. 

4. Manifestly O(N) invariant improved action 

4 I T R A N S F O R M A T I O N  O F  ( 2  1 8 )  I N T O  I N V A R I A N T  F O R M  

Since the improvement terms m (2.18) are one-loop ones, the generating func- 
tional of one-loop improved GFs is 

G"°°P4.?•=constf®•(l+,a"°°P-Ao)exp[Ao+a2+•.,3.,] (4 .1 )  i m p  t - -  J - -  i m p  " 

Here the identities (3.4) and (3.6) can be used to replace the two last terms of (2.18) 
by lnvariant ones, with the result to one-loop accuracy 

G: 'm°p°P(3) = cons t f@¢  1-I 6('1,2 - g ') 

..2 ,tl loop~ (4.2a) × exp(a2+~Y', ( - 1 , "  R*  + J" 0 ) +  u ~,  my ], 

with 

[ 
AI loop 2 + e ~  e J 1 [ "X'~ "~ + + 

= a z , a  g ~ , t * ~ z . ,  l * l  i nv  
g 

+ + 2 
,~c2(e)gE[¼(0~ + 0 . ) ¢ . ( 0 ~  + O. )¢]  

+ [ ~ c 2 ( e ) +  ¼c4(e ) -  t4(N- 1)cs(e)] g(gP" K~)  2 

- 0,,a,, ¢,) 
p. 

+ [ -  ¼c4(e ) + I ( N -  1)Cs(e)]gJ- ~ b .  K~ 

-¼( N-1)cs(e)g:( J.#?)2:). (4.2b) 
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Hereby, according to subsect. 3.3 and noting (C.8), all terms may be interpreted as 
either normal or ordinary products, with the exception of the last term which should 
be read as a normal product, i.e. with its contraction subtracted to avoid perturba- 

tlve IR difficulties. In (4.2b), K could be used mstead of / (  since the difference 
amounts t o  O(a 4) terms that have O(a °) and O(a 2) effects only in two-loop order. 

The lnvariant identmes (3.9) and (3.1 1) show that the one-loop improved action is 
not umque, but that we can obtain a two-parameter family of such actions This 
leads us to write down the ansatz 

A, mv = aZ+~Y'~ { j ' [ g l g * * "  K ,  + g z K , ]  + 03g: ( J . , ) 2 :  + 04)2 + 0 5 ( K , ) 2  

+ 2 
- - ~ - 0 6 E ( 0 ~ 0 / ~ , )  -}- cTg( , .  g ,  )2 ..t- o8gE  ( , • opop.+ 4 )2 

kt /L 

w l t h  

+ 0 9 g E [ ~ ( 0 ,  + O ~ ) , . ( 0 ~  + 0~ + ) , ] 2 }  (4.3a) 
txv 

0, =- O,(ga ~, N, e) = ~ O,c(e, N)(ga ~)~. 
ff=l 

(4.3b) 

Our result so far (4.2b) yields a two-parameter set of meromorphlc coeffioents 
a,l(e, N)  regular at e = 0. We shall discuss (4.3) after verifying the correctness of 
these coefficients directly. 

4 2 CHECK OF THE INVARIANT ANSATZ TO ONE-LOOP ORDER 

We compute from (4.3a) upon funcnonal differentiation w.r.t. J and h GFs  and 
then VFs to one-loop order, write them in momentum space and expand them at 
fixed momenta  w.r.t, small-a behavlour. There are a ° and a ~ parts, which are 
"cont inuum" ones and ignored. (Compare the formulae (C.5) and (2.3) of (I).) Due 
to the use of the improved laplaclan k of (2.4) in A0, there is no a 2 part, but a n  a 2 e 

a 4, a 4 - e  etc. part. Setting the a 2 ~ part zero gives constraints on the g,l(e, N), 
solvable by functions that are finite at e = 0 (cf. end of subsect. 4.2 of (I)). 

The calculation leads to the same graphs figs. 1-3 that were discussed in subsect. 
2.4 and an addmonal  one, and we list only the constraints obtained from the GFs 
(1.e. corresponding VFs) given by 

061 -- 2 8 C 1 ( ~ ) = 0 ,  

021 7t-C41 2r- 051 = 0 ,  (4.4a) 
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g - I < O ( X ) ( J ( Y ) )  : C31 "~- C41 -t- ¼(N - 1)cs(e  ) = 0,  ( 4 . 4 b )  

g-'<Tr,(x)rs(y)o(z)o(u)>: ell+(2,--½(N--1)Cs(e)+lc4(e)=O, (4.4C) 

- I (%(x)rs(y)~rk(z)%(u)): cs, + ~6c3(e ) = 0 ,  

e~, + llC:(~)= o, 

651 + gT~ - 2 s c 2 ( e ) -  l c4 (e )  + ¼ ( N -  l ) c s ( e  ) = 0.  (4.4d) 

Hereby,  for  (4.4c) the graph fig. 4 had to be evaluated at zero momentum,  where it 
reduces to fig. 3a. In (4c, d) are listed only those constraints that are not already so. 
The c,(e) are the ones in (B.1)-(B.5). Fur ther  functions, e.g. g-1/2{~(x)%(y)o(z)), 
( ~', ~rj "rrk~" / o ), ( ~'~'rr'n'~'rr ) give no additional constraints, and functions ( o a o ) ,  ( oo  o o  ) 
etc. need no improvement .  In fact, no further function gives additional constraints, 
for the following reason. Improvement  of the (momentum)4-term Js needed for 
graphs of type fig. 3c, of the (momentum)2-term for graphs of type fig. 3b, and of 
the (momentum)°- term for graphs of type fig. 3a, whereby the general type is 
obtained from the proto type  figs. 3a - c  by insertion of elements shown in figs. 5a, b, 
etc. (E.g., inserting fig. 5a into fig. 3a yields fig. 4.) Since infinitestmal momenta  can 
enter  into the figs. 3c, b, a type graphs at most at four, respectively two, respectively 
zero corners, all o ther  corners carrying zero momenta ,  due to K/~ r- 1 = 1 no coeffi- 
cient functions other  than those calculated for figs 3c, b, a themselves occur. A 
functional algori thm similar to the one used in subsect. 2.3 then shows that no other  
constraints on the ~,~ than those In (4.4) arise. 

The identities (3.9) and (3.11) give the two lnvarlances 

A g l l  = - -  A(721 = - -  AC31 = A ( ' 4 1  = x ,  

A C l l  = - - / 1 7 2 1  = AC51  = - - / ~ C 7 1  = Y '  

k 

k 

Fig 4 Graph needed m eq (4 4c) 

(4.5a) 

(4.5b) 

F~g 5 

a 

b 

Insertions into graphs of fig 3 
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where x and y are arbitrary. These are mdeed lnvarlances of the eqs. (4.4). Upon 
comparing (4.2b) with (4.3a) it is found that the coefficients in (4.2b) obey the 
constraints (4.4). (The improved action of ref. [11] has at e = 0 in (4.3a) c6 = 4~sgct(0), 
~5 = - ¼gcs(0), the other coefficients zero. Hereby the mvariant  one-loop two-point 
funcnon is improved, not, however, e.g. the invanant  one-loop four-point funcnon.) 

4 3 GENERALITY OF THE ANSATZ (4 3) 

Eq (4.3a) comprises in the curly bracket all (lattice) local terms of (engineermg) 

dimension 4 + e that can be formed polynomlally from ff and J, with factors g, in an 
O ( N )  lnvariant way. That (4.3a) with suitable coefficients of the form (4.3b) will 
improve all VFs to arbitrarily high-loop order is shown by the followmg recursive 
argument. We have already shown improvement for E = 1. VFs computed w~th the 

= 1 improved action of form (4.3a) to two-loop order have a °, a -~, and a -2~ terms, 
the last ones m non-O(N)- invanant  form as in subsect. 2.3. As there, we can 
transform them by ~ and g redefininon mto O(N)  invariant form. There remain, 
accordmg to sect. 4 of (I), in the small-a expansion local polynomml terms with 
factors a 2 2~, the polynomials being the ones appearing m (2.17), also including the 
term (A~r) 2 + g l(Ao)2 accidentally missing there, since these are all local solutions 

of the relevant Ward identities [4]. The corresponding lattice terms with opposite 
sign are then, with the help of the identities (3.4) and (3.6), brought into manifestly 
O ( N )  invariant form to yield the E = 2 terms in (4.3b). Hereby the terms that would 
appear  in addinon in (3.4) and (3.6), due to use of the acnon A o + a2Al~ l~p rather 
than A 0, a r e  O(a 4) ones and negligible in the two-loop order under consideration, 
but they contribute to O(a °) and O(a 2) terms in three-loop order. The O(a °) terms 
m that order are again transformed into O ( N )  lnvarlant form, and the new a 2 3~ 

terms treated as before etc. 
In each loop-order the freedom of choosing coefficients according to the invarl- 

ances (4.5) arises anew such that in (4.3a) e.g. one pair (~,, ?j) from the following 

pairs of coefficient functions can be made zero to all orders: one member from 

~'1, C2, C3, ~'4~ one member  from ~1, ~2, ~5, c7, except for the pair ( ~ ,  72)- That the 
identities (3.9) and (3.11) are mvariant  also in the "hlgher"-loop terms prevents 
inconsistencies. 

Finally, we consider the normal product in the c3 term in (4.3a), which differs, by 
perturbative derivation in one-loop order as discussed in subsect. 3.3, from the 
ordinary product by the perturbative contraction. In two dimensions in the absence 
of a symmetry-breaking external field (e.g. Ju = h = const) only O ( N )  lnvarlant 
linear combinations of GFs  are perturbatlvely IR finite [2], and this only if the 
action ~tself is O ( N )  invariant. This would be violated unless in the lattice action, to 
be used in two dimensions, all components of ~-= (~, g 1/2o) are treated (e.g. 
contracted) symmetrically. The perturbation theoretical contracnon yields 

( j .  q')2 _ . ( a~. #)2" = g_ 1)2 + higher orders ---, ( g N  ) - , j 2  + higher orders, 



220 K Svmanzlk / Improved a~ tton m latttce theories ( I I )  

upon symmetrization. The higher-order terms must again be local ones, and can thus 
be absorbed in the hlgher-E terms in (4.3) if they could affect GFs  to the O(a 2) 
accuracy of interest. Thus, the form (4.3a) is sufficiently general even without the 
double dots in the ~3 term, if m two dimensions we consider only O ( N )  lnvarlant 
GFs. Outside of perturbation theory, there are for N > 3 no IR problems due to a 

spontaneous mass gap. (See also the 1/N expansion analys~s in the following paper 
[12] of this series.) Perturbation theory IS unsatisfactory for N = 2, and unavailable 
f o r N =  1. 

5. Concluding remarks 

5 1 EXTENSION OF PROCEDURE 

The improvement detailed in sects. 2 and 4 can be extended to include O(a 4) 
terms, O(a 6) terms etc. as described in subsect. 5.1 of (I). Perturbation theory would 
yield (after transforming terms of lower loop-order and lower a : -order  into mam- 
festly O ( N )  lnvarlant form) as improvement terms higher-dimensional operators 
that correspond to local solutions of Ward identities [4]. The general form of their 
solutions was determined by Heldenrelch and Kluberg-Stern [13]. The corresponding 
higher-dimensional operators are in general not manifestly O ( N )  lnvarlant but can 
be replaced by invarlant ones with the help of identmes analogous to (3.4) and (3.6) 
derivable from (3.1). The result is that the improved action, analogous to (5.1) of (I), 
can be chosen to have only manifestly O ( N )  invariant terms, with remaining 

arbitrariness due to the existence of O ( N )  invarlant identities as discussed in 
subsect. 4.3 for O(a 2) order. 

5 2 NON-PERTURBATIVE DETERMINATION OF IMPROVEMENT COEFFICIENTS 

Improvement  in the sense of sect. 1 of (I) requires us to deternune the coefficients 
in (4.3a) to all loop-orders "exactly". As for the 0 4 model (subsect. 5.2 of (I)), this is 
possible only by Monte Carlo checks of improvement itself, of the simplest quanti- 
ties on the finite lattice. These are, as in ~4 theory, "generalized susceptibihtles", i e. 
Green functions with all momenta  zero, or some momenta  at the lowest discrete 
values available on the finite lattice with periodic boundary conditions. These would, 
if made normalization independent, have to obey eq. (1.1) of (I) with decreased 
RHS. That even one-loop-order improvement terms give improved scahng behavior 
is shown in refs. [14]. (In not unllnuted space-"t~me", perturbatlve calculations for 
vanishing IR regularizing field require care, since the limits g ",~ 0, i.e. weak-coupling 
expansion, and H "x 0 are in general not interchangeable there, not even for O ( N )  
mvarlant  quantities [15]. Available then is the "gauge choice" of David [16] and an 
entirely O ( N )  lnvariant but only implicit method of Luscher [17].) 

5 3 OTHER MODELS, AND LIMITATIONS OF IMPROVEMENT 

In order to obtain a workable improved action for the model of this paper, ~t was 
essential to exploit the availability of alternative improved actions since an action of 
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e.g. the direct perturbanve form (2.18) is unsuitable for Monte Carlo simulation 

since o can vanish. The present technique would be applicable to a large class of 
models with a global symmetry and a non-linear constraint, e.g. to the C P  N ! model 
that has mstantons for all N and "confinement" as non-perturbatlve effects. Such 
effects, leading to corrections to scaling, are expected also for the non-linear sigma 
model (e.g. refs. [18]). If  such corrections, quantitatively not yet well understood, 
would not disappear faster than proportional t o  a 2, they could not be removed by 
use of an action with local improvement terms only. 

The author is indebted to M. Luscher for numerous discussions and communica- 
tions on the non-linear sigma model, and to I. Montvay for evaluating the numerical 
integrals m appendices A and B on the DESY IBM 3081 computer. 

Appendix A 

CALCULATION OF RENORMALIZATION COEFFICIENTS 

The graph fig. 2a gwes 

f k N ( k ) - l N ( k  + p ) = - G ( p ) = a  2 ~ +a ~dl(e)p2 +a 2 ~d2(e)~_,p4 +O(p6) ,  

(A.1) 

where 

2+e 

f--  I- i  ( 2 - ) - ' U  ° 

and (see (2 4) and formula (4.1) of (I)) 

2+~ 

E a 2[2(1-cosl,, ,at+'(m-cosk,,at2]. 
/~=1 

Thus, 

d,(e) = ½a~fkN(k)- 'N"(k , )= (27re)- '  - 0.0971525 + O(e) .  (A.2) 

The graph fig. 2b has the value 

fkN(k)  1 = a ~e(e), (A.3) 
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with 

e ( e ) = d l ( e  ) + 2 a t f k N ( k  ) l ( 1 - c o s k l a )  2=(27 re )  l q . _0 .0731455+O(e ) .  

(A.4) 

W~th an ummproved  propagator ,  we obtain instead 

d,(e)---*dlstan(e ) = (27re) ' +(4~r)  l ( - ~ p ( 1 ) + 3 1 n 2 - 1 n T r ) -  ¼ + O ( e )  

= (2vre) - '  - 0.129685 + O ( e ) ,  

e ( e )  --* estan(8) = d 1 stan(E) q- ½(2 + e) 1. 

(A.5) 

(A.6) 

The  "A-ra t io"  [19], which is up to a relative error of O(g )  the ratio of the correlation 
lengths at the same value of g, xs [20] 

Aamp/Astan = exp ( - 2 r r (N  - 2 ) - '  [ ( N  - 1 ) ( e ( e )  - e~tan(e)) - d,(e) 

q- dl Man(~)]) e=0 = 2.21923, if N =  3. (A.7) 

Appendix B 

CALCULATION OF IMPROVEMENT COEFFICIENTS 

The  graph f i g .  2a gxves, from (A. 1), to fourth order 

d2(~ ) = 2~4fkN(k)-'N'"'(k,)- ~c,(e), (B.1) 

regular for Re e > - 2 .  The graph fig. 3a is, according to subsect. 4.2 of (I), to be 
computed  for Re e > 2 and analyucally cont inued to ~ = 0. In analogy to (4.5) of (I) 
we have, for - 2 < R e e < 2  

a-2+~.(flg. 3a)=a-2+~fk[N(k ) 2--  ( k 2 ) - 2 ]  - [~qT-4(,/yq-- 2)+O(e)]- cs(e ). 

(B.2) 

The  graph fig. 3b has the value a ~e(e) of (A.3) at p = 0 and at q = 0, such that 

a -2+~- (fig. 3b) = a-Ze(e) +f(e)pq + O ( a 2 ) ,  
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with f ( e )  easiest  by  set t ing p = - q, such that  for - 2 < Re e < 2 

/(e) = - / a - 2 + ~ f [ N ( k ) - S N " ( k l ) -  2(k 2) x] 

+ [ ~  4(~. + 2) + O(e)] -= - 1c4(17 ) . 
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The  graph fig. 3c reduces to fig. 2a upon  s e t t m g p ,  q, r,  or s = - p  - q - r zero. Thus  

(fig. 3c) = a 2-~ + G (  p + r )  + aZ-~F(  pqrs  ) + O ( a  4 ~), 

wi th  G( ) def ined  in (A.1) and  F ( p q r s )  hnear  m all four  momenta ,  such that  it has 
the form 

2+e  

F ( p q r s )  = a 1 p qr s + a z p  rq s + a3p  sq r + a o ~ p~q~r~s~. 
/~=l 

Set t ing p + q = 0 yields o~ 2 --]- o~ 3 : 0 and  integrals  for a 0 + al  and  o~ I Set t ing p = t - 

q = - r ,  with t ~ - 8 , , ,  q , - 6 ~ 2  allows us to isolate  easily o~ 2 : l a ¿ .  Using this 

expans ion  of  the g raph  fig. 3c in sect. 2 4 leads us to define, for - 2 < Re e < 2 

= .  U ( k  ) 2 N " ( k , ) N " ( k : ) -  4 ( k 2 )  :1 -[½7r-4(Tr + 2 ) +  O ( e ) ] ,  

and  for R e e >  - 2  

At  e = 0, the numer ica l  values are  

C I ( 0  ) : - 0 . 2 9 7 0 2 ,  

c3(0 ) = 0.13998,  

c 2 ( 0 ) =  - 0 . 2 3 3 2 4 ,  

c4(0 ) = - 0  069230, 

c 5(0) = 4.7976- 10 3. 

Appendix C 

E V A L U A T I O N  OF C O N T R A C T I O N S  

The con t rac t ions  needed  m subsect.  3.3 are 2-poin t  G r e e n  funct ions  with coincid-  

ing arguments .  In  two d imensions ,  these are I R  f imte ff at least  one a rgument  is 

( l amce)  d l f fe renna ted .  Since in subsect.  3 3 it Is argued that  we can ignore contrac-  

(B.4) 

(B.5) 

(B.6) 

(B.3) 
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tions (with one exception, mentioned there), we will for simplicity take as a Green 
function the free,  tie with an unimproved laplacian: 

G ( a n O ) = 2 a - 2 ( 2 ~ r ) - 2 - ~ I - I ( f d k ~ , ) e x p ( - - l a n . k  ) ~ ( 1 - c o s k ~ , a  
~=1 ~=1 

With use of 

(C.l) 

0~,- O; = aO~,O; , (C.2a) 

O~,O~,(AB)=AO~,O~,B+BO~,O~,A+O~,AO~,B+ + + + + + 0, A 0, B,  (C.2b) 

AO.B= -BO;A + 0.[B(1- aOi)A ] , (C.2c) 

(for notation see (2.2) of (I), we do not use a summanon  convention) the following 
evaluanons at coinciding arguments are straightforward (in (C.3b), ~ * ~,): 

< 0 7 ,  o . , .A = < o ; ,~ , o 2 ,, ~ > = _ < , ~  o . o 2 ,~ > 

= (2 + e)-l(~r, K s )  = (2 + e)- 'a-2-~6, j ,  (C.3a) 

< o.,~,o;~> = < o;,~,o;,,~> = - < oT,  o:,,~> 

= _ < o i ~ , 0 . ~  > = l a < O . ~ , o . o ; 5 >  

- I  = - ' a ( 1  + d  <OT, K~> - "~( l  + ~ ) - ' < a 7 , o . o 1 5  > 

= ½(1 + e) ' a - = - ' ( 1  - r(e))6, j ,  I~ = , ,  (C.3b) 

( O.~r, 01 ~ry > = < O.~r, 0Try > - a < O.Tr, O. 01 ~ry > 

= a - 2 - ' [ ( 2  + e ) - ' -  r (e) ]  8,;, (C.3c) 

<~, 07. > = _ < ~ , 0 2 ~  > = ½a<~ ,a .a i~ .>  

= - ½(2 + e) -  ' a -  ' - ' 6 , , ,  (C.3d) 

where r(e) = 2~r ~ + O(e) from (C.1). The e ~ 0 singularity of the contraction (see 
(A.6)) 

(~r,~rj> = [(21re)- '  + (4~r)- l ( -  q~ (1) + 3 ln2 - In 7r) + O(e)]  8,y, (C.4) 
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~s the familiar perturbatwe IR one of non-O(N)-mvariant  expectations [2] and 
would be avoided by use of an external field as interme&ate IR regulator [4]. 

From (C.2b) we obtain with o = (1 - g'IT2) 1/2 m lowest order 

,,. K,, + g- 'oKo= ~( oix~. a ~  + a;~.  a;~) .  (c .5)  

Using this and repeatedly (C.2a) and (C.3a-c) yields the contractions to lowest 

order, at e = 0, 

(,, .  K,, + g- 'oKo )2 - :  ( ,,. K~, + g 'oK, )2  

= a - 2 ( N  + l -a,~-])( ,~.  K,~ + g- 'oKo) 

+ - 1 + + 0 )  + ( - l + 3 7 r - , ) E ( o , a , ~ . o i x a ~ , ~ + g  a~o~ooixa, 
Ix 

+ ½(1 - 2w-~)(K'~ • K'~ + g- lKoKo) ,  (C.6) 

up to a c-number. In (C.6), the double dots have their usual meaning with respect to 
the ~ field as canonical one. The notaUon introduced in (2.18) rmght suggest 

different "contractions": 

(¢-I<,) - :  = E + > , / %  

+ 2(ep, Kepj)epjKep, + ( Kq),Kepj)q~,epj] + c-number 

= ( g N )  I(Kdp)2 

+2(1 + N-l)(ep- Ke~)~b. Kcb + c-number, (C.7) 

using that, due to symmetry restoration in two dimensions, 

(epepj) = (gN)-l~, j  and (th, K(hj) cx ~jj. 

(C.7) differs from (C.6), the latter being the correct one in perturbation theory. (In 
ref. [14], contractions of the type (C.7) instead of the, in restriction to one-loop order 
ignorable, type (C.6) ones were used; the difference in the coefficients is small, 
however, and without consequences for the conclusions of ref. [14] since the 
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improvement coefficients should really be optimized rather than taken from one- loop  
perturbaUon theory.)  

Other lowest-order contract ions  at e = 0, evaluated with (C 3 a - d )  and expressed in 
the notat ion  introduced m (2.18), are the fo l lowing ones: 

¼ E [( 0~ q- O; )q~" ( 0 v + O + )q~ ]2__ :same expression: 
,av 

+ +] = (1 - 2 , , - I ) ( N +  2 a - % .  K ,  - ~ 0 ~ 0 , , . 0 ~ 0 , ,  , 

E ( *  + 2 0. 0. q)) - : same expression: 

= ( N  + 1 - 47r- l )a-2q~ • Kq~ + E O , O ~ , .  0~ ,O; , ,  

( ¢b " Kep )o IKo - :same expression: 

= ( ~ -  47r I)a-2gq~'K¢~ 

+ g ( - l + 3 ~  ' ) E 0 . 0 ~ . 0 . 0 . + *  

+g(~ - 7r-1)Kqb • Kq~- ( 2 N -  3)a-2o 'Ko,  

J" qb0" Kqb - :same expression. = ~J .  Kep + ¼g'/2hep. Kep. (C.8) 
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