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The method of paper (I) of this series 15 apphied to the O( ¥ ) non-linear sigma model Duc to
the use of non-mamifestly invanant perturbation theory the improvement part of the action,
computed expheitly to one-loop order, 1s not mamfestly O(N ) invanant It can be brought into
manifestly O( N ) invanant form by use of linear 1dentities among dimension-four operators, which
follow from the field equations of the ummproved action The adequacy of the resulting
two-parameter family of manmfestly O( V) mvariant improved actions 15 verified to one-loop order

1. Introduction

The non-linear sigma model is defined by a linear continuous symmetry, here
O(N), and a non-linear constraint. To apply perturbation theory this constraint
must be resolved: to write the action 1n terms of canonically independent fields. The
linear symmetry hereby turns into a non-linear one which 1s not manifest in the
perturbation expansion. In two dimensions where the O(N) symmetry cannot be
broken [1], perturbation theory leads to IR divergences that cancel only 1n 1nvariant
linear combinations [2] after, to define perturbation theory for the model, e.g. an
external symmetry-breaking field H is introduced and then allowed to approach zero
at the end.

In 2+ ¢ dimensions (Ree > 0), convenient for the improvement technique of
paper (I) of this series [3], perturbation theory does not require an IR regulator but
leads into the phase of broken symmetry due to spontaneous magnetization at low
temperature. The subtractions described 1n sect. 4 of (I) lead to the action 4, + A4,
+ a’4, where AA, and a’4, contain not-manifestly-O(N ) invariant terms. In A A4,
the non-symmetry is related to renormalization of the coupling constant [4] which
occurs 1n perturbation theory in a non-symmetric way, and the analog of the
transformation described in subsect. 3.3 of (I) removes AA4,. The remaining 1m-
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206 K Symanzik / Improved action in lattice theories (IT)

provement part a’4; (cf. subsect. 4.2 of (I)) 1s still not manifestly symmetric though
of the form found by Brézin, Zinn-Justin, and Le Guillou [4] to be compatible with
the O(N) Ward 1dentities. The non-symmetric form here reflects merely the freedom
of choice concerning that part, due to several identities among dimension-4 opera-
tors derivable from the field equations of 4, analogous to the identities i ¢* theory
described in subsect. 5.2 of (I). By use of these identities, a?4;| can be brought mnto
manifestly symmetric form, with still two parameters free due to two identities
among manifestly invariant dimension-4 operators.

In sect. 2 we construct the subtracted action perturbatively to one-loop order. It 1s
to this order related to the local effective action (LEL) 1n 2 + ¢ dimensions merely by
change of sign. The dim2 + ¢ and dim4 + ¢ terms we find are indeed the ones
allowed by the Ward identities [4]. Their coefficients to this order are computed 1n
appendix A and B. In sect. 3, identities among dim-4 operators are derived. We also
show that the self-contractions that make the difference between normal and
ordmary operator products affect only the next loop-order, with some algebra
relegated to appendix C. The two-parameter family of improved and manifestly
O(N) wmvanant actions, with coefficients as follow from sects. 2 and 3, 1s 1n sect. 4
directly derived by requiring the improvement of Green functions to one-loop order
and extended to all orders. Sect. 5 contains concluding remarks.

2. Perturbatively subtracted lattice action

21 STRATEGY

We apply the prescriptions of sect. 4 of (I). Since the field has dimension zero, or 3¢
in 2 + ¢ dimensions, we need to subtract all VFs four times. This 1s best done as
follows. For the action subtracted up to £— 1 loop order, one constructs the effective
action 1n the sense of Coleman and Weinberg [5] up to 4th order in momenta, with
Ree > 2L ! for the 4th-order term, to £-loop order (the (£ — 1)-loop orders vanish
by construction). This effective action, rewritten for the lattice and with the
“classical field” replaced by the lattice field operator, 1s with change of sign the
£-loop-order subtraction. In the present model, however, 1t 1s advisable to perform
the reparametrization described 1n subsect. 4.2 of (I) and a further transformation
described here in subsect. 4.3 in each loop order separately before proceeding to the
next loop order.

22 GENERAL FORM OF THE MOMENTUM-EXPANDED EFFECTIVE ACTION

We use the functional method [6]. The generating functional I'(7) of the VFs (1n
our case, 7 has N — 1 components) can, upon Taylor-expanding all VFs to 4th order
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1n momenta at all momenta zero, be written 1n the continuum

(m)o,m

v

I'(m)= —fdx[V('ﬂ)—i-%E)F'rrZ#
+%3#8V7r 8K7TS#,, )+ %8”8,,77 4, 0,7 T, ol7)
+49,0mdmdnU,, , \(7)

+348,md,mdmam W, ,  \(7)+0(mom’)]. (2.1)

In the presence of hypercubic lattice symmetry (called military symmetry by R.
Jost), Z 1s proportional to §,,, S =0, and T, U, W consist of terms proportional to

the tensors 8,,8,,, 8,.6,,, 8,,8,., and §,,8,.8,

(L2 CER TP N T v pK A
For the action

Ao=Y [~ inK7 + S(7)]a®** — measure term (7), (2.2)

the functions in (2.1) are obtained [6] by momentum-expanding one-particle-irre-
ducible lattice graphs made of propagators [K — S (7)] ! and vertices that are third
and higher derivatives of S(), with # space-“time” independent throughout the
graph. Uncontracted #-indices at vertices are external arguments, at which infinitesi-
mal momenta, to first or higher powers, enter these graphs. Thus, mn (2.1) the
coefficient functions are obtained by momentum-expanding graphs as just described
with the indicated number (up to four) of external arguments.

23 SECOND ORDER IN MOMENTA
For our model, (2.2) 15

A0=a2+e Z [_%'"n'(kﬂ)n_%gilon(ka)n_aiz‘glnapz]* (23)

nez?"*

where = (7, 1=1...N—1), 0 =(1 — gn?)"/? and (see subsect. 4.1 of (1))
[-9,0;+ba%(3,9; )] (2.4)

A constant magnetic field H would play the role of Am3 in the ¢* model of (I), and a
source term o would also bring in VFs with composite-operator arguments to which
the subtraction technique extends in an obvious way. (In contrast to Ami i (2.5) of
(I), a non-constant source term /4 appears also at non-zero momentum 1.e. differenti-
ated.) For simplicity, we omut such terms in this section. (See, however, subsect. 3.1
below).
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Comparing (2.3) with (2.2) we have
S;(m)=—go~ 'n'K(o 7r)+o‘1[8u+go'2w,7rj]f{o, (2.5)

whereof the last term vanishes for # space-*“time” independent. The propagator 1s,
therefore,

(k=5 =K "[8, - gnm]. (2.6)
In
()= —1Trin[ K — §”(7)] — measure term () (2.7)

the last term already effects the subtraction at zero momenta [7].

Differentiating (2.7) twice leads to the one-loop contributions to Z and 7 1
(2.1). The vertices follow from (2.5), and we obtain the graphs shown in fig. 1.
Hereby, a broken line denotes K of (2.4) and a dashed solid line the propagator
(2.6). The number of derivatives of o is indicated by strokes, and the two lettered
arguments are the external ones carrying infinitesimal external momentum, to
second order yielding Z, to 4th order T in (2.1). Dots indicate dummy arguments
contracted by the propagator (2.6).

Diagrams A and B of fig. 1 contribute to both Z and T in (2.1) and can, using
o/ = —go 'm, be combined:

—gKo 'n, K" '(8,,—gmm)o ' K=0%K. (2.8)

6/7&0/
-1 0”/

. éz"-"‘_ﬂg’%w s

A LN
/ AN
/ N D

Fig 1 One-loop diagrams contrnibuting to Z,, and 7, in (2 1)
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Furthermore, noting that (2.6) contains the inverse of the matrix structure of

6 = —ga"(8u+go’27r,7rj), (2.9)

L

we have
0%0,/(8,,— gmm)of) = (8, + go *m,). (2.10)
such that the (A + B) contribution to (2.1) to 2nd order in momenta
=—igx( dm-d,m+g" laﬂoauo) X ( p? coefficient of fig. 2a).  (2.11)
n
(A solid hne denotes the bare improved propagator K~ '). Due to K 'K=1,
diagrams C and D contribute from K to second order only in momenta since the
triangle reduces to a tadpole, and gives
(C + D) contribution to (2.1) = ¢~ 'Ag - (diagram fig. 2b), (2.12)
where A 1s the laplacian Diagram E contributes only to 7 in (2.1). Diagram F, again
due to K~'K =1, 15 momenta independent and gives zero. Finally, upon simple
algebra,
(G + H) contribution to (2.1) = —4(N + 1)6~ 'Ac - (diagram fig. 2b). (2.13)

Collecting, we have

01 (7) + I'1e°P(7) to second order in momenta

- _%fdx(ap'"' aﬁq+g"8ﬂoauo)[l +g-(p? term of fig, 2a)]

—4(N=1)[dxo ' 40-fig. 2b. (2.14)

The two coefficients are evaluated in appendix A, (A.2) and (A.4). They have
first-order poles at e =0

Fig 2 Graphs needed for one-loop renormalization coefficients
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It 1s now seen that the terms obtained are, as they must be, the two terms that
were found by Brézin, Zinn-Justin, and Le Guillou [4] to be compatible with the
O(N) Ward identities. Noting that

8/8g{—%g*‘faAo}=£g‘2 ¢ '4As, (2.15)

we can rewrite RHS of (2.14)

= —%f(a,;n-apﬂ+g-’aﬁaaﬁa)z3, (2.16a)
g=g+(N-1)g’a - (Ad)+ - =gZ,Z7",
6=(1-gn2)", (2.16b)
Zy=1+ga - (A2)+---. (2.16¢)

Our subtraction prescription requires us to subtract the lattice forms (where —A
becomes K) of the 1-loop terms i (2.14) from A,; however, the analog of the
transformation in subsect. 4.2 of (I) brings them with opposite sign to the LEL side
again, such that (2.16) is, to one-loop order and, by the arguments of ref. [4], to all
orders the form of L] of eq. (4.4) of (I).

The fimte parts of the one-loop terms in the coefficients in (2.16) differ from
the ones obtained with the unimproved propagator. This difference determines the
“A-ratio” A /A, that shows up when comparing computer results for the
improved action with the corresponding ones for the umimproved (standard) action,
at the same value of g. This ratio is given in (A.7).

24 FOURTH ORDER IN MOMENTA

Diagrams A and B (which combine as before) contribute to 7 in (2.1) by
expanding fig. 2a to fourth order i1n momentum. Diagram E contributes to T with
fig. 3a taken at zero momentum. We shall not write out in full all the diagrams
contributing to U and W i (2.1). It may immediately be seen, however, that as far
as momentum structure is concerned, i addition to figs. 2a and 3a, only the
expansion of the diagram fig. 3b (cf. figs. 1C, D) to second order in momenta, and of
the diagram fig. 3c (cf. figs. 1B, F) to fourth order in momenta are needed; whereby
only the terms linear 1n p and g, respectively linear 1n p, ¢, r, and s are relevant since
each of these momenta should appear to first order at least. The calculation 1s given
in appendix B.
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Performing the trivial but lengthy O(N) algebra (which can be streamlined using
the method of Brown and Duff [6]) and collecting all results, we find

I'''°%"( 7 ) to 4th order in momenta

= az'sf dx [—- %Scl(e)gZ(ai'n- dm+ g’laﬁoajo)
In

+ e, (e) gy, ( om-dm+g” '8“08,,0)2

uy

2
- jgc?_(e)gz[z ( dm-dm+g '8u08“o)

n

2
+Ees(e)g?) ( dm-d,m+g” '8#03‘10)
m

+ %q(e)gZ(aﬂﬂ- dm+ g‘lauoaﬂa)o’le

I

+H(V = Deg(e)(o ' 20)?). (2.17)

The coefficients c(¢) are defined in (B.1)-(B.5). Again one notes that precisely the
same dim-4 terms compatible with the Ward identities found by Brézin, Zinn-Justin,
and Le Guillou [4] appear, considering that under lattice symmetry also the
structures of the first and fourth term in (2.17) are allowed. In one-loop order, the
term Am- Aw+ g~ ' Ao Ac of ref. [4] has zero coefficient.

The terms 1n (2.17), rewritten as lattice terms and with opposite sign, yield the
improvement part a4 in (4.4) of (I) to one-loop order. When transferring (2.17)
onto the lattice, its terms should, by virtue of the derivation of (2.17), be interpreted
as normal products in the sense of Zimmermann [8]. While massless self-contractions

kepeger

k kep+q

Fig 3 Graphs needed for one-loop improvement coefficients (besides fig 2a)
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are zero in dimensional integration, they are not zero on the lattice and ought to be
put in. We shall show in subsect. 3.3, however, that these extra terms are two-loop
ones and thus outside the one-loop approximation. Therefore we can ignore them.

Choosing the lattice terms invariant under the lattice symmetry operations (d,—
— 8:, and 3 rotations) the simplest transcription yields at this stage the one-loop
improved lattice action

AP = g7t e} { —1¢-Kdé—a * ‘lno
+a2-f[z'gc,(e)g28ﬂa;¢-a,ta;ep
p
— ey (e)g? Y (18, + 37 (0,+ 3;)0)
"
+ &y ()82 (- Ko)' — fes()82 L (68,07 0)’
p

+3c,(e)gd- (Kd)o 'Ko— (N - 1)65(6)(0_1K0)2]}.

(2.18)

Hereby, we wrote ¢ = (m, g~ '/%0) and used the fact that in the improvement parts in
the square bracket, the unimproved lattice laplacian 1n (2.2) of (I) could be used to
sufficient accuracy such that in (2.18), at most, the next-nearest-neighbor couplings
appear. Lattice symmetry invariance could also have been achieved in ways other
than 1n (2.18), however, the difference to (2.18) would have consisted of a*~¢ terms
that would have an effect on improvement coefficients only in two-loop order when
they themselves appear in loops. The c¢(¢e) are meromorphic, and regular at ¢ = 0.
The ¢(0) are listed in (B.6).

Rather than calculating two-loop graphs with the one-loop-improved action
(2.18), as would be the analog of the procedure 1 sect. 4 of (I), we shall first
transform (2.18) into manifestly O(N ) mvariant form by the tools of the following
section, and take up the question of higher-loop orders only 1n subsect. 4.3.

3. Operator identities and normal products

31 NOT-MANIFESTLY-INVARIANT OPERATOR IDENTITIES

The action (2.3) amended by source terms a**¢¥, (J,-m, + g~ '/?h,0,) leads to the
field equation

~Ka+o ‘aKo+J—g'?ho 'n+a > "go 2n=0. (3.1)
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It is convenient to interpret m as a >~ d/dJ acting on the functional integral with
sources, whereupon (3.1) becomes the Schwinger-Dyson equation. Multiplying (3.1)
from the left by gm and rearranging yields

o (Ko—g"?h)—g(n-Kn+g 'oKo)
+g(J-m+g ho)+a " go *+(N—-2)a *"g=0, (32)

which is the “counting 1dentity” [9] of the model.
From (2.3) with source terms included follows

3/(9g)( A, + source terms) = 1g %a***Y [0~ (Ko — g'/%h) +a > "o gn?]
(3.3)

If we had included the 4 source term 1n the subtraction steps in subsects. 2.3 and 2.4,
6~ 'Ao 1 (2.12) would have been replaced, as expected from ref. [4], by the negative
of the first term 1 (3.2) remembering that, on the a° level, K 1s the required
transcription of —A onto the lattice. This confirms that m and g~ '/*¢ would be
renormahzed to one-loop order, and by the argument of ref. [4] to all orders. 1n the
same way. (In this respect, g~ '/?ho is not analogous to — ¥Amj¢® of the ¢* theory.
since ¢” there requires an independent renormalization factor as does m — (m*) mn
the present model [4,10].) The two last terms 1n (3.2) and the last one 1n (3.3) are
two-loop ones: multiplying (3.2) by o~ ¢, which 1s dimensionally 1ts factor as
integrand 1 (2.14), allows us to wnte e.g. the last term as a * “(ga ")+
a 2 “(ga *}o >—1), showing 1t to be a two-loop term i comparison with
—a ? *Ino 1n (2.3) which is a one-loop one.
Multiplying (3.2) from the left by g(w- Km + g~ '0Ko) yields

g(w-Kn+g 'oKo)o '(Ko—g'/%h)
—g(w-Ku+ g"cf(o)2 +gX(J-m+g Yho)
X (m-Kw+g '0Ko)+2-loop terms = 0. (3.4)
Among the two-loop terms herein is also the commutator
[g(ﬂ-f(-rr+ g 'oKo), gJ-'n] =a 2 g} m-Kn+g 'oKo)—a ? ‘g0 'Ko.

(35)

Namely, multiplying the RHS by ¢? "¢, dimensionally 1n (2.17) the coefficient of the
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first term 1n (3.4), yields
(ga~*)n-km+g 'oRo] ~(ga ")[a~o Kol

idenuifying these as a®level two-loop terms since the square brackets herein are zero
and one-loop terms, respectively.

Multiplying (3.2) from the left by the same expressions with all signs except that
of the first term reversed yields

[ail(f(o—gl/zh)]z—gz('rr-1~(1'r+g“101~(0)2—-gz;(J-'rr+g7]/2ho)2;
+2g*(J-m+g "?ho)(m-Kn+ g '¢Ko) + 2-loop terms = 0.
(3.6)

Here the semicolon sign means ordering J to the left of # and 0. The difference
relative to the ordinary square, with the factor a?~¢ included, 1s

—az_fgz[(J-'rH- g“l/zho), J-]-rr
= —(ga™Y[J-a+g " "ho] + (ga=*)’[g~ho™ ],
(3.7)

where the two last square brackets are a’-level zero-loop terms. Also all other
commutators arising in the step from (3.2) to (3.5) are two-loop terms as seen
already from the “loop counting” factors ga~* Eqs. (3.4) and (3.6) will be used in
subsect. 4.1.

32 MANIFESTLY INVARIANT OPERATOR IDENTITIES

Multiplying (3.1) from the left by J and rearranging yields
- (J-I~('rr+g"/2h1~(o)+(J2+h2)+(J-ﬂ+g‘]/2ho)o’1(1~(o—g‘/zh)
+a 2 g(J - w+g ?he)o P —a "¢ *ho" = 0. (3.8)

Multiplying (3.2) from the left by J-m + g /?ho and subtracting the result from
(3.8) gives, with the use of (3.7), in the notation introduced 1n (2.18)

—J Ko+ +gl 9o Ko—gi(J-¢)i—a " (N-1)gf-$=0, (39)

with J = (J, #) and the semicolon sign as i (3.6). It will 1n subsect. 4.3 turn out to
be significant that in this invariant identity also the “ higher-loop” term 1s so.
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Multiplying (3.1) from the left by K« gives
—(Km) +m- Kno '(Ko—g'?h+a ? ga ')
+J - Ka+3Q2+e)(N—1)a *r, (3.10)

where (2.4) has been used. Multiplying (3.2) from the left by «- Km+g '6Ko and
subtracting the result from (3.10) yields, using (3.5)

—(Ko)' +g(¢ Ko)' —g(J ¢)(o-Ko)
+J-Ko—a 2 5(N-1)gd-Ko
F3(2+e)(N—T)a * =0, (3.11)

again an entirely invanant identity. If in (3.10) and (3.11) the unimproved laplacian
K 1nstead of K had been used, in the last terms the factor 3 would have been

replaced by 2.
33 NORMAL PRODUCTS

The terms in the one-loop improvement part (2.18) are designed to implement
certain subtractions for Re € > 2, and corresponding substitutions for —2 < Ree <2
by analytic continuation, as described 1n subsect. 2.1. The way the coefficients were
determined in subsect. 2.4 implies that those terms in (2 18) should be mterpreted as
normal products in the sense of Zimmermann {8]. However, the difference between
ordinary and normal products in (2.18) contributes only 1n the two-loop order and
can thus be disregarded in (2.18). Namely, in contractions two # operators are
replaced by const @~ ¢, which combines to a “loop-counting” factor ga™ ¢ with the
factor g that had to be present for dimensional balance relative to an operator
product with two « operators less. Depending on the number of derivatives on the 7
operators, the contraction will be a two-loop order a” or a? part. The contractions of
mterest 1 (2.18) are worked out mn appendix C, and the formulae (C.6) and
(C.8)—(C.11) show the described effect

For example, the difference on the LHS of (C.6) would be relevant in the normal
ordering of (2.18) (at £ = 0) muluplied by g’a®, whereupon the first term on the
RHS of (C.6) becomes (comparing with (2.1)) a two-loop a” term and the second
and third terms become (comparing with (2.18)) two-loop a? terms. One notes that
on the lattice, contractions of “rotationally invariant” terms contain also “rota-
tionally non-invariant” ones.

The only term which requires attention 1s the last one 1n (2.18) since, to lowest
order,

¢ 'Ko= ~g'rr-K'n+%g(8#-rr-8,;rr+ 3;41-8;'11).
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The contraction of the square hereof contains (=, ) of (C.4) with the factor
gZ(K'rr,)(erj). Such a term cannot be disregarded since 1t has no ¢ — 0 lmit.
However, 1n subsect. 4.1 we shall replace the normal-ordered first term 1n (3.6) by
the negative of the normal-ordered other terms, and the third term in (3.6) then
contains a contraction gz.I,Jj<7rlvrj) that, to lowest order, balances the contraction of
the first term of (3.6) to lowest order due to the lowest-order form K7, = J, of (3.1).
Thus, the IR problem is deferred and will be taken up 1n subsect. 4.3.

4. Manifestly O(/V) invariant improved action
41 TRANSFORMATION OF (2 18) INTO INVARIANT FORM

Since the improvement terms mn (2.18) are one-loop ones, the generating func-
tional of one-loop improved GFs 1s

1mp imp

G! loop<J>= constf@vr(l + Alloop _ 4 o)exP[A0+ a2+‘Zj-¢] . (4.1)

Here the identities (3.4) and (3.6) can be used to replace the two last terms of (2.18)
by nvariant ones, with the result to one-loop accuracy

GliooP(Jy = const [Dg [T8(¢* g ')

xexp{a®* Y (—16-Ko+J-¢)+a4 5P}, (4.2a)
with

A%i::s"—a“fzafg{r;cl(s)§a#a:¢-a#a;¢
—5c2<e>g§[:(au+a;)¢-(a,+a:)¢]2
+ [drea(e) + ey (&) = 5(N = Des(e)] g(0- K o)
—.6c3(s)g2(¢ 3,0:9)
+[—hea(e) + 3(N = Des(e)] g/ 06 Ko

—HV = Des(egi(T0) ). (4:20)
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Hereby, according to subsect. 3.3 and noting (C.8), all terms may be interpreted as
either normal or ordinary products, with the exception of the last term which should
be read as a normal product, 1.e. with 1ts contraction subtracted to avoid perturba-
uve IR difficulties. In (4.2b), K could be used mstead of K since the difference
amounts to O(a*) terms that have O(a°) and O(a?) effects only 1n two-loop order.

The mvariant identities (3.9) and (3.11) show that the one-loop improved action 1s
not unique, but that we can obtain a two-parameter family of such actions This
leads us to write down the ansatz

A] mv az+£Z{j'[Elg¢¢ ) K¢ + EZK(I)] + EBg(‘i ¢)2: + E4j2 + ES(K¢)2

+2,Y.(8,070) +5,8(6-Ko) +cegY (60,07 0)
n ;L

+eg Y [4(0,+0)0-(0, + a:>¢]2} (4.32)
ny
with
&=¢(ga " N,e)= Y ¢.(e, N)(ga )" (4.3b)
£=1

Our result so far (4.2b) yields a two-parameter set of meromorphic coefficients
¢,,(&, N) regular at e = 0. We shall discuss (4.3) after venfying the correctness of
these coefficients directly.

42 CHECK OF THE INVARIANT ANSATZ TO ONE-LOOP ORDER

We compute from (4.3a) upon functional differentiation w.r.t. J and # GFs and
then VFs to one-loop order, write them in momentum space and expand them at
fixed momenta w.r.t. small-a behaviour. There are a° and a ¢ parts, which are
“continuum” ones and ignored. (Compare the formulae (C.5) and (2.3) of (I).) Due
to the use of the improved laplacian K of (2.4) in A4,,, there 1s no a? part, but an a? ",
a®, a*”* etc. part. Setting the a * part zero gives constraints on the ¢, (e, N).
solvable by functions that are finite at e = 0 (cf. end of subsect. 4.2 of (I)).

The calculation leads to the same graphs figs. 1-3 that were discussed 1n subsect.
2.4 and an additional one, and we list only the constraints obtained from the GFs
(1.e. corresponding VFs) given by

(m(x)7,(x)): o1~ anci(e) =0,

Gy + Ty +85=0, (4.4a)
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g Ka(x)a(y)): Ey+ 8+ i(N—1)cs(e)=0, (4.4b)
g"(w,(x)qg(y)a(z)o(u)): ¢+ 6y — 3(N—1Des(e) + 5¢4(e) =0, (4.4c)
<7f,(x)771()’)77k(z)"7/(”)>: s+ 1ec3(e) =0,

Cq) T ﬁcz(e)=0,
65\+E7,—ﬁcz(s)—%c4(£)+},(N— l)c5(£)=0. (4~4d)

Hereby, for (4.4¢c) the graph fig. 4 had to be evaluated at zero momentum, where 1t
reduces to fig. 3a. In (4c, d) are listed only those constraints that are not already so.
The c,(e) are the ones n (B.1)-(B.5). Further functions, e.g. g~ "/*(m,(x)7 (y)o(z)),
(mmmmo), (armram ) give no additional constraints, and functions (ogo ), (oooo)
etc. need no improvement. In fact, no further function gives additional constraints,
for the following reason. Improvement of the (momentum)*-term 1s needed for
graphs of type fig. 3c, of the (momentum)®-term for graphs of type fig. 3b, and of
the (momentum)’-term for graphs of type fig. 3a, whereby the general type 1s
obtaned from the prototype figs. 3a—c by 1nsertion of elements shown n figs. Sa, b,
etc. (E.g., inserting fig. Sa into fig. 3a yields fig. 4.) Since infimtesimal momenta can
enter nto the figs. 3¢, b, a type graphs at most at four, respectively two, respectively
zero corners, all other corners carrying zero momenta, due to KK~ ' =1 no coeffi-
cient functions other than those calculated for figs 3c, b, a themselves occur. A
functional algorithm simular to the one used in subsect. 2.3 then shows that no other
constraints on the ¢, than those in (4.4) arise.
The identities (3.9) and (3.11) give the two invariances

Az, = —AC, = —A¢,, = A%, = x, (4.52)

AZ,, = —AG, = A, = —Ac,, =y, (4.5b)

Fig 5 Insertionsinto graphs of fig 3
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where x and y are arbitrary. These are indeed invariances of the egs. (4.4). Upon
comparing (4.2b) with (4.3a) it 1s found that the coefficients in (4.2b) obey the
constraints (4.4). (The improved action of ref. [11] has at e = 0 1n (4.3a) &5 = z58¢,(0),
¢s = — 48¢5(0), the other coefficients zero. Hereby the invariant one-loop two-point
function 1s improved, not, however, e.g. the invariant one-loop four-point function.)

43 GENERALITY OF THE ANSATZ (43)

Eq (4.3a) comprises in the curly bracket all (lattice) local terms of (engineering)
dimension 4 + ¢ that can be formed polynomially from ¢ and J, with factors g, 1n an
O(N) invariant way. That (4.3a) with suitable coefficients of the form (4.3b) will
improve all VFs to arbitranily high-loop order is shown by the following recursive
argument. We have already shown improvement for £ = 1. VFs computed with the
£ =1 improved action of form (4.3a) to two-loop order have a®, a™¢, and a~?* terms,
the last ones in non-O(N )-invanant form as in subsect. 2.3. As there, we can
transform them by ¢ and g redefinition into O(XN) invariant form. There remain,
according to sect. 4 of (I), in the small-a expansion local polynomial terms with
factors a~ 2¢, the polynomuals being the ones appearing 1n (2.17) , also including the
term (Aw)? + g~ '(Ao)? accidentally missing there, since these are all local solutions
of the relevant Ward identities [4]. The corresponding lattice terms with opposite
sign are then, with the help of the identities (3.4) and (3.6), brought into manifestly
O(N) invariant form to yield the £ = 2 terms in (4.3b). Hereby the terms that would
appear 1n addition 1n (3.4) and (3.6), due to use of the action A, + a’4''%P rather
than 4, are O(a*) ones and negligible in the two-loop order under consideration,
but they contribute to O(a®) and O(a?) terms 1n three-loop order. The O(a®) terms
in that order are again transformed into O(N) mvanant form, and the new q?~ 3¢
terms treated as before etc.

In each loop-order the freedom of choosing coefficients according to the invari-
ances (4.5) arises anew such that mn (4.3a) e.g. one pair (¢, ¢,) from the following
pairs of coefficient functions can be made zero to all orders: one member from
¢, ¢,, €y, &,, one member from ¢, ¢,, &, ¢;, except for the pair (¢, ¢,). That the
identities (3.9) and (3.11) are nvariant also in the “higher”-loop terms prevents
inconsistencies.

Finally, we consider the normal product 1n the ¢; term n (4.3a), which differs, by
perturbative derivation in one-loop order as discussed in subsect. 3.3, from the
ordinary product by the perturbative contraction. In two dimensions in the absence
of a symmetry-breaking external field (e.g. jNEh = const) only O(N) mvanant
Iinear combinations of GFs are perturbatively IR finite [2], and this only if the
action 1tself 1s O(N) invariant. This would be violated unless 1n the lattice action, to
be used in two dimensions, all components of ¢ =(m, g~ /%) are treated (e.g.
contracted) symmetrically. The perturbation theoretical contraction yields

(J-9) —:(J-¢)*: =g 2 + higher orders — (gN )~ 'J? + higher orders,
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upon symmetrization. The higher-order terms must again be local ones, and can thus
be absorbed 1n the higher-£ terms in (4.3) if they could affect GFs to the O(a?)
accuracy of interest. Thus, the form (4.3a) is sufficiently general even without the
double dots 1n the ¢, term, 1f 1n two dimensions we consider only O(N) mvariant
GFs. Outside of perturbation theory, there are for N > 3 no IR problems due to a
spontaneous mass gap. (See also the 1 /N expansion analysis in the following paper
[12] of this series.) Perturbation theory 1s unsatisfactory for N = 2, and unavailable
for N=1.

5. Concluding remarks
51 EXTENSION OF PROCEDURE

The improvement detailed in sects. 2 and 4 can be extended to include O(a*)
terms, O(a®) terms etc. as described in subsect. 5.1 of (I). Perturbation theory would
yield (after transforming terms of lower loop-order and lower a’-order into mam-
festly O(N) invariant form) as improvement terms higher-dimensional operators
that correspond to local solutions of Ward 1dentities [4]. The general form of their
solutions was determined by Heidenreich and Kluberg-Stern [13]. The corresponding
higher-dimensional operators are in general not manifestly O(N ) invariant but can
be replaced by invariant ones with the help of identities analogous to (3.4) and (3.6)
derivable from (3.1). The result is that the improved action, analogous to (5.1) of (I),
can be chosen to have only manifestly O(N) invariant terms, with remaining
arbitrariness due to the existence of O(N) invaniant identities as discussed in
subsect. 4.3 for O(a?) order.

52 NON-PERTURBATIVE DETERMINATION OF IMPROVEMENT COEFFICIENTS

Improvement 1n the sense of sect. 1 of (I) requires us to determine the coefficients
in (4.3a) to all loop-orders “exactly”. As for the ¢* model (subsect. 5.2 of (I)), this is
possible only by Monte Carlo checks of improvement itself, of the simplest quanti-
ties on the fimite lattice. These are, as in ¢* theory, “generalized susceptibilities”, i e.
Green functions with all momenta zero, or some momenta at the lowest discrete
values available on the finite lattice with periodic boundary conditions. These would,
if made normalization independent, have to obey eq. (1.1) of (I) with decreased
RHS. That even one-loop-order improvement terms give improved scaling behavior
is shown in refs. [14]. (In not unlimited space-““time”, perturbative calculations for
vanishing IR regularizing field require care, since the limits g \, 0, 1.e. weak-coupling
expansion, and H \, 0 are in general not interchangeable there, not even for O(N)
invariant quantities [15]. Available then is the “gauge choice” of David [16] and an
entirely O(N) invariant but only implicit method of Luscher [17].)

53 OTHER MODELS, AND LIMITATIONS OF IMPROVEMENT

In order to obtain a workable improved action for the model of this paper, 1t was
essential to exploit the availability of alternative improved actions since an action of
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e.g. the direct perturbative form (2.18) 1s unsuitable for Monte Carlo simulation
since ¢ can vanish. The present technique would be applicable to a large class of
models with a global symmetry and a non-linear constraint, e.g. to the CPY~! model
that has instantons for all N and “confinement” as non-perturbative effects. Such
effects, leading to corrections to scaling, are expected also for the non-linear sigma
model (e.g. refs. [18]). If such corrections, quantitatively not yet well understood,
would not disappear faster than proportional to a?, they could not be removed by
use of an action with local improvement terms only.

The author 1s indebted to M. Luscher for numerous discussions and communica-
tions on the non-linear sigma model, and to 1. Montvay for evaluating the numerical
integrals 1n appendices A and B on the DESY IBM 3081 computer.

Appendix A

CALCULATION OF RENORMALIZATION COEFFICIENTS

The graph fig. 2a gives

/kN(k)"N(kw)z G(p)=a > *+a d,(e)p*+a>dy(e) ¥ pt + O( p°),

(A.1)
where
[= 2]if(zqr)“/”/“ dk
K op=1 g "
and (see (2 4) and formula (4.1) of (I))

2+e
N(k)= Y a’2[2(1 —cosk,a)+4(1— coskua)z].
u=1

Thus,
d,(e)= %aej;(N(k)— 'N(k,)=(2me) "' —0.0971525 + O(¢).  (A.2)

The graph fig. 2b has the value

/I(N(k)*‘sa*e(e), (A.3)
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with
e(e)=d,(e) + %af/kN(k)*‘(l —cosk,a)’ = (2me) ' +0.0731455 + O(e).
(A.4)
With an unimproved propagator, we obtain instead
d(e) > d, (€)= (2me) " +(@7) (—¢(1)+3In2—In7)— i + O(e)
= (2me) "' —0.129685 + O(¢), (A.5)

e() = €yan(e) = d) an(e) + 12 +6) . (A.6)

The “A-rati0” [19], which 1s up to a relative error of O(g) the ratio of the correlation
lengths at the same value of g, 1s [20]

Almp/AslaI\:exp <_27T(N-2)_][(N_ 1)(e(8)_estan(£)) _dl(s)

+d, qun(8)]}],_, =221923,if N =3. (A7)

Appendix B

CALCULATION OF IMPROVEMENT COEFFICIENTS

The graph fig. 2a gives, from (A.1), to fourth order
42(0) = 3 [N() N (k) = (o), (8.1

regular for Ree > —2. The graph fig. 3a is, according to subsect. 4.2 of (I), to be
computed for Re £ > 2 and analytically continued to £ = 0. In analogy to (4.5) of (I)
we have, for —2 <Ree<?2

a~?7¢-(fig. 3a) = a'z“f[N(kf2 - (kz)_2] - [%'n*“(w +2) +O(s)] =cq(e).
k
(B.2)
The graph fig. 3b has the value a™ ‘e(¢) of (A.3) at p = 0 and at ¢ = 0, such that

a~2*- (fig. 3b) = a”%e(e) + f() pg + O(a?),
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with f(&) easiest by setting p = —gq, such that for —~2 <Ree <2
F(e) = =ta > [[N(K) N (k) = 2(k7) 7]

+ [%7774(77' +2)+0(e)] = — Ley(e). (B.3)
The graph fig. 3¢ reduces to fig. 2a upon setting p, ¢, r, or s = —p — g — r zero. Thus
(fig.3¢)=a 27"+ G(p+r)+a* *F(pgrs)+0(a* ),

with G( ) defined in (A.1) and F(pgrs) linear 1n all four momenta, such that 1t has
the form
2+
F(pqrs) =aqpgrsta,prgs+ta;psqr+ o, Z PudulySe-
n=1
Setting p + g =0 yields «, + a; = 0 and integrals for a, + «, and a, Setting p=1—
g=—r, with ¢, ~9,, g,~8, allows us to solate easily a,=ta,. Using this

3 [P
expansion of the graph fig. 3¢ in sect. 2 4 leads us to define, for —2 < Ree <2

e(e)=a 2+e/k[1v(k)*2zv~(kl)N"(kz) —4(k?)] ~[tr 4 (r +2) + O(e)]

(B.4)
and for Ree> —2
o(e) = a‘z”/AN(k)_z[N”(kl)z — N"(k,)N"(k})] . (B.5)
At £ = 0, the numerical values are
¢,(0) = -0.29702, c,(0)= —0.23324,
c;(0) = 0.13998, c,(0) = —0 069230,
¢s(0)=4.7976 - 10 3. (B.6)

Appendix C
EVALUATION OF CONTRACTIONS

The contractions needed 1n subsect. 3.3 are 2-point Green functions with comncid-
g arguments. In two dimensions, these are IR finite 1f at least one argument is
(lattice) differentiated. Since in subsect. 3 3 1t 1s argued that we can 1gnore contrac-
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tions (with one exception, mentioned there), we will for simplicity take as a Green
function the free « ne with an unimproved laplacian:

G(an0) = 2a'2(297)_2‘€21ilj (fdkn)exp(—zan-k)ris(l —cosk,a) -
p= p=1
(C.1)
With use of
3,~ 0 =ad, (C.2a)
GMBI(AB) =A44,0,B+ B3, d;A+3,40,B+ 3;’A3:B, (C.2b)
A3,B=—BJ A +9,[B(1-ad})4], (C2¢)

(for notation see (2.2) of (I), we do not use a summation convention) the following
evaluations at coinciding arguments are straightforward (in (C.3b), u = »):

(3,md,my=(d,md,m)=—(md, o m)

w %y [

=(2+¢) (mKm)=(2+e) a7, (C.3a)

(8,md,my={0;md;m)=—(d,md;m)

—(3:77,8 7y = %aw,ﬁ,a,a:w)

v

—4a(l+ 8)—l<a#7T,K7Tj> - Ja(l + 8)_](8#77,%8:77])
=1(1+e) 'a 7 (1-r(e))s,, p=v, (C.3b)

(3,;#,8;'”]) =(d,md,m)— a<8“77,8“8:77j>

=a e [(2+e) " ~r(e)]8,, (C.3c)
<Wlau’n}> = _<7Tla:77j> = %a<wlau8:%}>
= —%(2+e)_la_'_e8,j, (C.3d)

where r(e)=27""' + O(e) from (C.1). The ¢ = 0 singularity of the contraction (see
(A.6))

(mmy=[(2me) '+ @m) " (=¢ (1) +3In2—In7)+0(e)]8,.  (C4)
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1s the famuliar perturbative IR one of non-O(N )-invariant expectations [2] and
would be avoided by use of an external field as intermediate IR regulator [4].
From (C.2b) we obtain with ¢ = (1 — gm*)'/? in lowest order

ﬂ-Kq'r+g’loKo=%(8“'rr-8#-rr+ a;«r-a;n). (C.5)

Using this and repeatedly (C.2a) and (C.3a-c) yields the contractions to lowest
order, at ¢ =0,

(n-K'n'+g_'oKo)2— :('rr-K'rr+g’loKo)2:
=a > (N+1—-4a ") (7w - Kn+g '0Ko)

+(-1+37")Y(8,8;m-3,0;m +g7'9,0, 69,0, o)
n
+3(1-27"")(Kn-Kn+g 'KoKo), (C.6)

up to a c-number. In (C.6), the double dots have their usual meaning with respect to
the # field as canonical one. The notation introduced in (2.18) mught suggest
different “contractions”:

(¢-Ko) —:(¢-Ko): =Y [($,9,)Kd,Kd, + 2($,Kd, b, K,
y

+2(¢,K¢,)¢ Ko, + <K¢,K¢j>¢,¢1] + c-number

=(gN) '(K¢)’

+2(1+ N ')¢o-Ké)d- K¢ + c-number,  (C.7)

using that, due to symmetry restoration in two dimensions,

(.6, =(gN) '8, and (¢,Ke,) « 3,,.

(C.7) differs from (C.6), the latter being the correct one in perturbation theory. (In
ref. [14], contractions of the type (C.7) instead of the, 1n restriction to one-loop order
ignorable, type (C.6) ones were used; the difference in the coefficients is small,
however, and without consequences for the conclusions of ref. [14] since the
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improvement coefficients should really be optimized rather than taken from one-loop
perturbation theory.)

Other lowest-order contractions at ¢ = 0, evaluated with (C 3a-d) and expressed in
the notation introduced 1n (2.18), are the following ones:

12 [(9,+ 3 )6 (8,+ 3} )] — :same expression:
py
=(1-27"")YN+2)|a % -Ko-1423,3,¢-3,0,¢
i

Y(¢-9, 8;¢)2 — :same expression:

"

=(N+1-47""Ya % Ko+ ) 3,0;¢-3,0, ¢,
13

(¢-Kd)o 'Ko — :same expression:
— (3 -d4n")a 5o Ko

+g(—1+377"))0,0,¢-9,0,¢

U
+g(3 —7"")K¢-K¢—(2N=3)a %0 'Ko,

J-$¢- K¢ — :same expression. = +J- Ko + 1g"%hé - K¢. (C.8)
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