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Abstract. Using the background field technique I 
compute A L/A s : e(O.5928(N-1)/2 +O.2044)/(N- 2) in 

agreement with a calculation by Symanzik. Implica- 
tions for Monte Carlo simulations are also discussed. 

I. Introduction 

Monte Carlo (MC) simulations of lattice spin and 
gauge theories try to extract information about  the 
quantum continuum limit. As the same universality 
class allows infinitely many equivalent actions, the 
art would be to use an action which allows MC 
simulations close to the continuum limit. To construct 
such an action, Wilson [1] suggested block spin 
MC renormalization group calculations but statistical 
noice seems to be a severe problem. A decisive 
advantage of Symanik's [2 4] improvement program 
is that perturbative calculations allow an educated 
guess of a good action. Recent MC simulations [5, 6] 
of the 2d 0(3) non-linear a-model have shown that 
the one-loop order improved action (=  improved 
action henceforth) gives a considerably improved 
scaling behaviour. 

Let us consider 2d O(N) non-linear sigma models 
and use the definition of A-scales 

A = a _ l (  2nil ,~1/,N-2) \ ~ / /  "e 2~a/(N-2)(1 + O(g:)). (1) 

where fl -- 1/g 2 is the bare coupling of the correspond- 
ing (lattice) regularization scheme. Our mass gap result 
[5] for the 0(3) improved action now reads 

m ~ 16A[ (L = lattice, I = improved). (2) 

For the standard action our MC data were consistent 
with mass gap estimates of previous literature [7 -9 ]  

m ~ 100A s (S = standard). (3) 

In the continuum limit the ratio of A-scales can 
be calculated by a one-loop computation [10]. For 

the O(N) models the ratio between A s and Apv 
(PV = Pauli-Villars) has been first calculated by Parisi 
[11]: 

Apv/A s -  27.21 (N = 3). (4) 

Using a similar method Symanzik [4] obtains for the 
improved action 

i s AL/A L = 2.219 (N -- 3). (5) 

As the ratio (5) is rather catastrophic for the MC result 
(3)*, an independent calculation of it is desirable. Using 
the background field method [12] I obtain the same 
number. 

The paper is organized as follows: Section II  
contains details of my calculation. This is also a 
pedagogical exercise for the calculation of A-scales by 
means of the background field method. For the 0(3I) 
models the background field method has been used 
previously in [13, 14]. In the final Sect. I I I  some 
consequences of the result (5) for MC simulations are 
discussed. 

II. The Improved Lambda Scale 

Let us consider the improved action [-4] in the notation 
of [5]. The order g2.. coefficients c i ( i = l  . . . . .  6) 
will not contribute to the A-scale. Therefore it is for our 
purposes sufficient to calculate with the action 

Ef{ H S = A .~A .~  + { A . a A . a  - - - a  
u , .  2 

+ c24(AuA.nAuAu~z + AuAuaA u A .a ) l .  (6) 

Here c24 =~44 for the improved action [15, 4, 5] and 
c24 = 0 for the standard action. Further: 

* Assuming (2) to be the more reliable result 
** Order g in the notation of [5] 
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Auf(x) = f ( x  + ~) -- f(x), o" = (1 -- ~2)1/2 

and n = (n 1 . . . . .  nN- 1). 

The Bol tzmann  factor is e -s/g~ and 4) of [5] is of 
course q~ = (n, a). A small  magnet ic  field H has been 
int roduced so tha t  all the integrals encountered in 
per turba t ion  calculations are infrared finite. 

1 now part ly  follow some unpublished notes of  
A. and P. Hasenfra tz  [13]. Let  us write 

n = W +gcr (7) 

Here  W is a smooth ly  varying classical background  
field and ~ parametr izes  the quan tum fluctuations. We 
like to calculate the one- loop renormal izat ion of the 
classical background  field (see e.g. [14]). This means 
we have to calculate the terms of order  W 2, g2  0~2 of 
the action (6). Using the rules 

Au(f.g ) = Auf.Aug + A f . g  + f 'Au9 (8a) 

and 

AuAu(f .g) = AuAuf .AuAug 
+ 2(AuA u f 'Au9 + Auf'AuAug) 
+ A,Auf .  9 + f .AuA 9 +2Auf .Aug , (Sb) 

this is a s t ra ightforward algebraic calculation. Writ ing 

S = S~l + S O + Si. ' (9) 

the classical part  of the act ion becomes 

Sc ,=  Z {�89 + �88 2} 

+ cz4.higher derivatives (10a) 

and the free par t  is 

So = Z + �88 + 

u (10b) 
The  corresponding p ropaga to r  reads 

e i K t x l  + i K 2 x 2  

G(x) 
JK4 -- 2 c o s K l  - 2cosK z + 8c24((1 - c o s K 0  2 

+ (1 - cosK2)  2) 

where 

(11) 
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one has 

W.AuW = ~ - �89  (12a) 
x x 

and 

Z W'AuAuW = Z ( -  AuW'AuW+ AuW'AuAuW)" 
x x 

(lZb) 

Derivatives of  order  like A,W.A ,A ,  W or higher do 
not contribute.  

The quan tpm fluctuations are calculated by con- 
tract ing the cd terms according to 

cd(x + nfi)~b(x) = fi~b G(ni). (13) 

The results are 

g2~'�89 W.A ,W.2  with 
x 

2 = G(1) + 8c24(G(1) - G(2)),G(n): = G(n]) (14a) 

and 
N - 1  

g2�89 with K = ~ - G ( 0 ) .  (14b) 

To  K also �89 contr ibuted via the identity 

G(0) - G(1) + 2cz,(3G(O) - 4G(1) + G(2)) 

= � 8 8  �88 + o(1-15). (15) 

The A-rat io is given by 

A~ =e_(1/#o)(a/0~, 1/O~.s) 
Ai 
= e + ( 2 " / ( u -  2))(2(K s -  K ' ) - ( A  s -  2')) (16) 

gLS/gLI = We have used rio = ( N -  2)/2n [16, 17] and z 2 
s I Zl /Z  1 with Z l = ( - 2 9 2 K  +gZ2). (Z1 as defined 

in [17]). The index S corresponds to the s tandard 
p ropaga to r  GS(x) = G(x) with c24 = 0, and the index I 
corresponds to the improved p ropaga to r  G~(x) = G(x) 
with c24 = z~4 . Numer ica l  integrat ion gives 

2n(2 s - 2 ~) -- - 0.2044 (17a) 

and 

4n(GS(0) - GI(O)) = 0.5928. (17b) 

Thus equat ion (16) yields the result of  the abstract  
(equation (5) of the in t roduct ion for N = 3). 

Note  that 

G(n •) = G(n2) 

2 c o s n K  1 + 2cosnK z 
= i  4 -  2 c o s K  1 - 2 c o s K  2 + 8 c 2 4 ( ( 1 -  c o s K 0  z 

+ (I  - -  COS K 2 )  2) .(12) 

F r o m  the interaction par t  S~n t we have to pick out  
q u a n t u m  fluctuations 1 with coefficients 7 A W A . W  
and �89 W z. Recognize that  after summat ion  over  the 
lattice sites (periodic b o u n d a r y  conditions assumed) 

III. Implications for Monte Carlo Simulations 

In units of  Apv (4) var ious mass  gap estimates are 
summarized  in Table 1. The improved  M C  result [5] 
is even lower than Ltischers estimate [20]. To the 
extent that  the improved  M C  calculation is reliable, 
the scaling curve for the s tandard  act ion has to have 
a shape, which is qualitatively indicated in Fig. 1. 
Politzer [21] seems to like it. It  should be emphasized 
that  no clear scaling window for the s tandard  action 
has been found. The scaling windows of  [8, 9] are on 
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Table 1. Mass gap estimates in units A PV 

m Method 

4.1 +0.2 

4.8 ___ 0.2 
3.5 _ 0.2 
5.74-0.5 

3.4 
3.2 
1.7 
1.3 

MC, standard action, 
block spin renormalization group [7]. 
MC, standard action [8]. 
MC, standard action [9]. 
MC, standard action [18]. 
Strong coupling, Hamiltonian [14]. 
Strong coupling, Euclidean [19]. 
Spin wave (continuum ~ x S 1) [20]. 
MC, improved action [5]. 

m I ~ /  I I I I I I 

~ MC (standard action' 

I I I I I I ~ I 

Fig. 1. 

a very fine scan, and  [18] now claims disagreement 
with scaling. Also there are large discrepancies in the 
final estimates. 

A result of [6] is that the order O 2 coefficients e. 
(i = 1 . . . . .  g) turn out  to be impor tan t  for the improved 
mass gap estimate [5]. In  a MC simulat ion without  
these coefficients (they do not  affect the asymptotic  
scale A[) we obta in  results more close to the s tandard  
action. 

For  the magnetic susceptibility clear scaling devia- 
tions were observed in MC investigations with the 
s tandard  act ion [22-23]* .  Nevertheless an estimate 
of the con t inuum limit was tried [9]:  

c s = 0.008-0.013. (18a) 

The constant  c s, c I are defined by Z = c(2nf l )  - 4 e 4 ~ .  
The improved action exhibits clear scaling properties 
for the magnetic  susceptibility and yields [5] 

c I ,~ 0.3, (18b) 

The discrepancy similar as for the mass gap. 
In  summary  the M C  results [5, 6] for the improved 

0(3) a-model  provide a severe warning against care- 
lessly extracting numbers  from lattice MC calcula- 
tions. The magni tude  of corrections may, however, be 

* In [24] also non-standard actions were considered 
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strongly model  dependent.  For  instance the au thor  
would conjecture s tandard  MC estimates in 0(4) and 
0(5) a-models [9] to be less effected. In  4d S U(2) and 
S U(3) lattice gauge theories scaling properties for the 
string tension [25] and the mass gap [26] are more 
clear than any  "scaling" in the s tandard  0(3) a-model.  
But there is no scaling [27] in lattice MC calculations 
of hadron  masses. For tuna te ly  the computa t ion  of the 
one- loop improved act ion for 4d  S U ( N )  lattice gauge 
theories is on  the way [28]. 

Acknowledoements. I would like to thank K. Symanzik for useful 
discussions and P. Hasenfratz for unpublished notes [13]. 
Note added. After completing this paper I received a preprint by 
M. Falcioni, G. Martinelli, M.L. Paciello, G. Parisi and B. Taglienti 
[29], where the A-ratio (5) is also reported. Further the authors 
perform MC calculations with the tree-level improved action [15]. 
Note added in proof: Y. Iwasaki kindly informed me that the 2-ratio 
(16) was also calculated in [30] 
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