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We present explicit, approximate, remarkably precise results for the Kazama-Yang monopole- 
fermion binding energies and wave functions. The results are valid for the states of lowest angular 
momentum and for the binding energy M - E  << M. They agree very well with the numerically 
calculated values. 

1. Introduction 

The interaction of magnetic monopoles with fermions has been studied in consider- 
able detail by Kazama, Yang and Goldhaber [1], who discussed scattering cross 
sections, and by Kazama and Yang [2] who showed that a fermion anomalous 
magnetic moment leads to the existence of bound states. 

The bound-state spectrum is somewhat unfamiliar compared to ordinary atomic 
systems, in that there exist states of exactly zero total energy, i.e. with binding 
energy, EB, equal to the fermion mass, M. The appearance of such states seems to 
be a rather general feature of topological objects. However,  in this case of massive 
fermions, their presence is not dictated by the Atiyah-Singer index theorem [3]. 

Kazama and Yang [2] found that, provided that the anomalous magnetic moment,  
K, is positive, a zero energy state exists for the lowest allowed angular momentum, 

J=lq]-½,  (1.1) 

where 

q =-- Zeg = 1Zn,  (1.2) 

with Ze  and g the electric and magnetic charges of the fermion and the monopole, 
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respectively, and n an integer i> 1. Furthermore,  for the higher angular momenta, 

j~>lq]+½, (1.3) 

such zero-energy states were found to exist [2] for any K ~ 0 (positive or negative). 
In addition, they found that, for j = Iql-1, there is an infinite sequence of excited 

bound states, provided 

Klql>¼. (1.4) 

These additional states are for moderate values of Klql very loosely bound. For 
example, for K Iql = 2, the three lowest-lying states have binding energies [2] E B / M  ~- 
5 × 10 -3, 5 × 10 -5, and 4 × 10 -7. 

Later,  Yang [4] showed that such additional, loosely bound states exist for the 
higher angular momenta, j/> Iql +½, provided the anomalous magnetic moment is 
large enough, 

I~ql > ( J + ½ ) 2 - q 2 - 1 4  • (1.5) 

Comparing this restriction with eq. (1.1), one finds that, for fixed K and q, only a 
limited number, N, of the higher angular momenta can exhibit excited bound states. 
This number, N, is the largest integer which satisfies the inequality 

(]K]- 2N)lq] t> N 2 - 4  ~ , (1.6) 

and the highest angular momentum for which excited bound states exist is 

]'max = Iq l - l+N.  (1.7) 

A problem of great current interest is the possible binding of nucleons or nuclei 
to the monopoles of grand unification. Since K = 1.79 for the proton, and since 
SU(5) monopoles are only likely to be found with g = 1/2e [5, 6], eq. (1.6) implies 
that the proton-monopole system can form loosely bound states of the lowest angular 
momentum only, j = 0. This is rather convenient from a theoretical point of view, 

since the bound state equations are simpler in this case. 
The hamiltonian studied in refs. [1, 2, 4] corresponds to a Dirac monopole and 

a point-like fermion, 

H = or. ( p - Z e A )  + t i M -  Kq~( t r .  r ) / ( 2 M r 3 ) .  (1.8) 

While the monopoles of grand unification also have an SU(3) colour magnetic 
charge [5], this is believed to be screened by the vacuum. For the considerations 
of bound states we shall therefore assume that (1.8) leads to an approximate 
description of the spectrum. 

There are two reasons why the above hamiltonian will only give an approximate 
spectrum. First, nucleons and nuclei have finite extensions. At short distances the 
anomalous magnetic moment should be described by a finite distribution, thus taking 
into account the granular structure and the magnetic polarizability. Second, since 
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grand unification monopoles carry a colour magnetic charge, there will at short 
distances (inside the presumed screening radius) also be strong interactions present. 
However,  hadrons are colour singlets, and these strong interactions would be entirely 
absent were the hadrons pointlike. Again, it is the finite extension which leads to 
a correction to the hamiltonian (1.8), related now to a hadronic colour charge 

distribution. 
We assume that these finite-size effects yield corrections to the hamiltonian that 

fall off at large distances much faster than r -2. Thus, the states having large radii 

will be very little affected. 
For the lowest angular momentum state, there is only one possible eigensection 

[7] of angular momentum [1, 2]. With 

O(r) = [ f(r) njjz (r) ] (1.9) 
Lg(r)n.~(~)J ' 

the eigensection ~Tj~z satisfies 

J2nj j z  j(j+l)'qyj~ 2 1 = = (q -z)Tqjj z , (1.10a) 

J?JJz = jzr/,~, (1.10b) 

with 

J = L + l o  • , (1.11a) 

L =  r× ( p -  ZeA)  - q r /  r. (1.1 lb)  

Using concepts from the mathematics of fiber bundles, Wu and Yang [7] showed 
that the eigenfunctions of the angular momentum operator  are free of discontinuities 
or cusps if thought of as "sections". As sections ~Tj~z must be specified in different 
gauges in different regions of space, and will thus be defined by a different function 
in each region. However,  using eqs. (1.10) and (1.11), this non-single-valuedness 
completely factors out from the eigenvalue problem 

HO = EO, (1.12) 

which for ] = Iql-½ may be reduced to a set of coupled radial equations [2],  

dG ( A _ B _ ~ 7 ) F ,  (1.13a) V-- 

dF ( A + B _ ~ 7 )  G,  (1.13b) 
dp 

where 
2 

p = - ~ r M ,  (1.14a) 

1 E 
A = ½Klql, B = ~ K l q l ~ ,  (1.14b) 
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f=l-,K---~q,F, g=-i-G. (1.14c) 
r IKql r 

For the zero-energy state, E = 0  (or EB = M),  the solutions to (1.13) are [2] 

G ( p )  = - F ( p )  = const × exp [ - A p -  1 / p ] .  (1.15) 

For the other states, however,  the eigenvalues and the radial wave functions are 
so far known only numerically [2]. 

In the present paper  we give approximate,  analytic expressions for the remaining 
states of the lowest angular momentum,  valid in the limit of weak binding. These 
solutions may be of practical value, e.g. for the evaluation of capture cross sections 
[8], 

monopole + nucleon (free) + monopole  + nucleon (bound) + pho ton ,  

and offer new insight into the physics of these states. 
Also, it has just been shown [9] that the zero-energy bound states are absent for 

SU(5) monopoles. The lowest of the weakly bound states discussed here may then 
for SU(5) monopoles be the ground state of the monopole-fermion system. 

where 

2. The radial equations 

We rewrite the radial equations (1.13) as 

- - = a  
dr/ F, 

- - =  

dr/ a 

(2.1) 

e = ( M - E ) / M  =- E B / M  (2.2) 

is the fractional binding energy, i.e. our eigenvalue parameter.  The quantities 

a = [ A 2 e ( 2 - e ) ]  1/4 , 

(2.3) 
.i1 = ap  = a M r /  A , 

have been introduced for later convenience. 
A local analysis of (2.1) shows that the equation has two irregular singular points; 

one at r / = 0 ,  where the solutions behave like exp [ + a / r l ] ,  and one at rl =oo, where 
the solutions behave like exp [+at/].  

It is possible to re-express (2.1) as a second-order equation for a single function 
without introducing additional singular points*. In terms of the combination 

N = ( F -  G)  exp ( a / r l )  (2.4) 

* W e  a re  g ra t e fu l  to  Prof .  T.T.  W u  fo r  d e m o n s t r a t i n g  to  us h o w  this can  be  d o n e .  
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this becomes 

2 

dN+?!dN_ a2_2A N=(,. 

dv2 r1* dq [ 1 T2 (2.5) 
But equations with two irregular singular points cannot generally be solved in 

terms of the known special functions. Thus, the prospects for solving (2.1) or (2.5) 

exactly are not very promising. However, eq. (2.1) has an inversion symmetry which 

we have found useful for constructing good approximate solutions. 

3. Inversion symmetry 

From equation (2.1) it follows that if a solution {F(n), G( 7)) is known, then the 

pair {([2-~]/~)~‘~G(l/n), (~/[2-~])““F(l/n)} is also a solution. This may be 

written as a transformation, 

(3.1) 

which maps solutions F(n), G(n) of (2.1) into (possibly new) solutions 6(n), 6( 7). 

Here 

2-E ‘14 

0 - 

s= 
( > & 

i 1 & 

H 

t/4 

) 

0 
2--E 

and I is the inversion operator, 

IF(q)=F ; . 0 

(3.2) 

(3.3) 

We can easily see that a solution which is decaying both when n + O+ and when 

n + CO will be transformed into a solution with the same property. Thus, the 

bound-state wave functions are eigenstates of SI also. Since obviously S* = I* = 1, 

the corresponding eigenvalues for SI must be +l. We shall denote them 6r. 

The transformation SI is slightly peculiar in that it depends explicitly upon the 

binding energy E. In this respect it resembles the “accidental” O(4) symmetry of 

the hydrogen atom. 

It is convenient to define a new basis H and K, 

(3.4) 
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which diagonalizes the matrix S, 

I2I(,)] [H(~)~ [H(~)~ 
K(~7)J=-SI~K(~?)]:(Io -01) I~K(~7)]"  (3.5) 

This implies that the bound-state wave functions, being eigenfunctions of SI also, 
must satisfy the boundary conditions, 

H ( 1 ) = O ,  for 8 i = - 1 ,  
(3.6) 

K ( 1 ) = 0 ,  for 8 1 = + 1 .  

From the inversion symmetry, it is clear that we only need to solve the equations 
for ~ > 1, imposing the boundary conditions (3.6). This is useful because a weakly 
bound fermion will behave non-relativistically in this region, and can be treated by 
a non-relativistic approximation. 

4. A p p r o x i m a t e  so lut ions  for small  e 

In the limit of weak binding, e << 1, it is possible to solve the eigenvalue problem 
approximately. For cases of practical interest, the solutions turn out to be highly 
accurate. 

We first eliminate G from eq. (2.1) and write the equation for F in the suggestive 
form 

[ d 2 a z + 2 A ]  2 1 dF  a 2 
- ~---~F. (4.1)  

L~-5 2 -  - ~ _ ] F  4 ( 2 - e ) / e  r / z -1  7/d~7 r/ 

An a priori estimate indicates that the right-hand side is of relative order ~/e or 
smaller when ~//> 1. Thus it can be set to zero in this region when e -~ 0. Note that 
this approximation is not valid for small values of r/. This is why the symmetry (3.1) 
becomes helpful. It makes it possible to find the wave function for T/< 1, by the 
inversion principle (3.1), when it is known for r /> 1. 

With the right-hand side of (4.1) set to zero, the solution with the proper 
exponentially damped behaviour as ~7 ~ oe is given by a Macdonald-Bessel function 
of imaginary order, Ki~(a~7), 

where 

F(rt) =~/-~Kit3(arl), rt >1 1, 

= _ ~/~--~ ~r Im Iit3(art), 
sinh (7r/3) 

(4.2) 

/3 = ~/2--~- ¼. (4.3) 
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It is perhaps not obvious at this point that /3 has to be real, i.e. that we must 
require A > ~. However,  further analysis shows this to be the case, the reason being 
that we must require F ( ~ )  to have some oscillatory behaviour when ~ is of order  
1. This does not occur when //3 is real. 

It is now trivial to find G from eq. (2.1). To the same accuracy as above we find 

G(r/)  = [ a ~  . (4.4) Ki~( arl ) d 

And, still to the same accuracy, 

{H(r l ) '~=[{_i}+(2@e) ' /4d(d  )],f-~a~K,~(a'o). (4.5) 
g ( ~ ) J  

Now we find [10] that for small values of a~7, 

K ~  ) (a~7) = C sin [/3 In (½at/) - 6 ] ,  (4.6) 

where 

4,(/3) = arg F(1 + i/3), (4.7) 

and C = C(/3) is a normalization constant, independent of r/. Inserting (4.6) into 
(4.5) we find the zeroth-order  result 

{H(°)(r~)'[=C~/-a-~{[{_i}+cos(o)l ] sin [/3 In (½a~7)- &] 
K(°)(~)J  

+sin ( 0 ) 1  cos [/3 In (½a~)-  & ] } , (4.8) 

where 

0 = arccos 8A" (4.9) 

In deriving (4.8) from (4.5) and (4.6), we have made the approximation ~/1 - ~ e  = 1, 
which to this order is consistent. 

Applying the quantization conditions (3.6) we find the bound-state spectrum to 
be, to lowest order in e, 

} e n A a e x p  [nTr + q , -  2&(/3)] , (4.10) 

n = l , 2  . . . . .  

with the inversion "par i ty"  of the eigenstates being 

61(n)=(-1) "+1 . (4.11) 
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In the limit A ~ ~ we find that 

qJ(/3) - 24~(/3) - 2/3 -2 /3  In/3,  

13 - ~/2-A. (4.12) 

Inserted into (4.10) (for consistency we must then let n ~ o0 with n/~/-A>> 1) we 
find that 

( _  2~n'~ (4.13) en -~ 32 e -4 exp \ ~/~-~] , 

in this limit. 
The obtained spectrum (4.10) is analogous to the non-relativistic spectrum for 

an attractive 1/r 2 potential, which is what eq. (4.1) corresponds to in the present 
approximation. As shown by Case [11], for an attractive 1/r e potential,  the eigen- 
values and the wave functions are only determined up to one parameter ,  which may 
be taken as a phase. In the notation of Case, the eigenvalues and the eigenfunctions 

are given by 

rl, = exp [(B - (n + ½)7r)/A ' ] ,  (4.14) 

u - - x l / 2 c o s ( A ' l n x + B ) ,  a s x ~ 0 ,  x=r / ro ,  (4.15) 

where A' is related to the strength of the potential, and B is the undetermined phase. 
For the present case, the inversion symmetry has made it possible to determine 

that parameter.  Thus, we have obtained absolute values for the binding energies, 

not just their ratios. 
In the limit of weak binding, the ratios between binding energies were given also 

by Kazama and Yang [2]. Eq. (4.10) is seen to be consistent with the asymptotic 

expressions (a) and (d) given in sect. 7 of their paper. 
The absolute values of the binding energies, (4.10), are very close to those 

determined numerically from the exact equations, as will be shown in sect. 6. An 
additional benefit of our method is, of course, that we also get approximate results 
for the eigenfunctions. 

One may wonder why we have used eq. (4.1) as a starting point for our approxima- 
tion, instead of eq. (2.5), which looks neater. It turns out that (4.1) leads to a bet ter  
approximation for the wave functions, with the corrections being of order ~/~, while 
(2.5) leads to correction terms of order e 1/4. 

5. Normalized eigensections 

Within the approximation introduced in sect. 4, the radial wave functions for the 
weakly bound states are given by eqs. (4.2) and (4.4) in the "external"  region rl > 1. 

Thus, for 
1 

P > p o - = -  = [ACe(2 - E ) ]  - 1 / 4  , (5.1) 
a 
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eex t (p )  = Npo' p'/2Ki~(p/p~) , 
(5.2) 

575 

Gext (P  ) 1 1 1/2 1/2 ..~ 2 ~o2 K ~/3 = ~N(~e) PoP [KiI3(P/P 2 ) (p/p2)] 

where the binding energies e, = (M-En) /M are given by eq. (4.10), 

p = r(2M/IKql), 

fl = ( 2 A - ~ )  1/2 A=IKIql 

and the normalization constant N is given by eq. (5.9) below. 
As discussed in sects. 3 and 4, the solution in the internal region p < p0 can be 

obtained by the use of the inversion symmetry (cf. eqs. (3.1) and (4.11)), 

F ( p ) = ( - l ) n + ' ( ~ )  '/4G(p2/p) , 

1/4 (5.3) 

Since S a=  1, the relative normalization follows from the inversion symmetry,  eq. 
(3.1), up to a sign factor. That sign factor is determined by the inversion "par i ty"  
of each particular state. 

From eqs. (5.2) and (5.3) we thus find 

f i n t ( P )  = ( - 1 ) n + I l N ( 1 E ) I / 4 p l / 2 [ K i ~ ( 1 / p )  +2K~ ( I / p ) ] ,  
P 

Gint(p) = (-1)n+'N(½e)l/4p-'/2Ki~(1/p) ; n = 1, 2 . . . . .  (5.4) 

As noted in sect. 4, and shown in detail in sect. 7, the correction terms to these 
wave functions are of relative order x/~-. The matching of the solutions at p = P0 is 
therefore slightly violated - to the same order x/e. This matching can be checked 
explicitly. Using_the small-argument expression (4.6) for Kils, which neglects terms 
of order  a2~/e,  we find 

Fext(P0) (-1)n+12x/2A 

Fi,t(P0) 1 +2/3 cot [/3 In (1 /2po) -~b( /3) ] '  (5.5) 

which is unity, when Po is expressed in terms of the eigenvalue en of eq. (4.10). 
The normalization condition, which for the original function~ reads 

0°r  dr {If(r)[ 2 + [g(r)[ 2} = 1,  (5.6) 

will in terms of F(p) and G(p) become 

af dp { f2 (p )  + G2( p)} = 1. (5.7) M0 
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This integral may be divided into internal (0 < p < po) and external (po < p < oo) 
parts. Using the inversion symmetry (5.3) and changing the variable for the internal 
part, we may then express the normalization integral as 

fpX~ fp)oF( E "~1/2 (2~..E) 1 / 2 lpp___~ ~ M 
[F2(p)+G2(p)]dP + Lk2_--~/ F 2 ( p )  + G 2 ( p )  d p = ~  - , 

o o 
(5.8) 

where the second integral is the contribution from the internal region. We note 

that G2(p)= O(e~/2)F2(p) for p >  Po, and that the second integral is of relative 
order ~/e compared to the first one. 

Since the corrections to the wave functions (5.2) are also of order ~/7, we are 
then, to lowest order, left with 

f io M 2 ~rfl A Fext (p)  d p = N 2 p 2  xK2(x) dx l ~ . r 2  2 
- - =  =~1~ P0 sinh (~'fl) " o 

In the last step, the lower limit a = 1/po-- (2A2e) ~/4 has been replaced by zero, to 
the same accuracy as above. We thus find the normalization constant to be 

[ N = ( - 1 )  n 2 M ~ / 2 7  sIn 13) , (5 .9 )  

where the sign factor has been introduced in order to adopt the convention of ref. [2]. 
To summarize, we have for the weakly bound states (1.9) of lowest angular 

momentum,  j = [ql-I, the following eigensections [2], 

~O(r) = [ f ( r )  r&(~)1 
Lg(r) vjjz ( ~) J (5.10) 

where the radial functions are given in terms of our solutions (5.2) and (5.4) by 
eqs. (1.14), 

f(r) =1_ Kq V(r), g(r) =- i  G(r), (5.11) 
r ]Kql r 

and the angular eigensections ~jj, are given in refs. [1, 7]. For q = Zeg = ½, one has 
simply 

, / 1 ( -  Y1/2,1/2,-1/2~ (5.12) 
V ° ° = V  2 \  Y1/2,1/2.1/2 ,]' 

where Yqtm are the monopole  harmonics introduced in ref. [7]. 
These are "sections", defined by different functions in two overlapping regions 

Ra and Rb,  R a containing the positive z-axis, and R b containing the negative z-axis. 
In the overlap region Y%~,, and v(b) --qlm are connected by the gauge transformation 

y(b)  -- e 2~+ v(a)  qlm (0, ~)) -- (0, ~)) (5.13) lqlm 
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Explicitly, in region R(a): 

Y]a/)2'I/2"-I/2 ( O' O ) = ( I + cos O) 

y(la/),l/2a/2 ( O, O ) =-eia' (1-c°s  O) 1/2 
4~" (5.14) 

However,  we can do without the explicit forms in many practical calculations, and 
only rely on the general group-theoretic properties of these objects. 

Plots of some of our approximate radial density distributions and comparisons 
with the corresponding numerically determined ones are given in sect. 6. 

6. Numerical results 

In order to check the accuracy of formula (4.10) for the binding energies, one 
needs the exact values. These we determine following Kazama and Yang [2]. The 
values thus obtained are however a little different from theirs, so we present a brief 
discussion of how they are determined. 

Kazama and Yang define an angle 0 ( P )  through the equations 

F(p) = R(p) cos [ - ~ "  +½0( P)], (6.1) 

G(p)  = R(p)  sin [ -  ~47r +½0(p)]. (6.2) 

The differential equations obeyed by F ( p )  and G ( p )  may then be transformed into 
the following equations for 0 ( p )  and R(p), 

d 0 ( p )  
2 B + 2  ( A - ~ - 5 ) s i n  0 ( P ) ,  (6.3) 

do 

A 1 cos d x ] .  R ( p ) = e x p [ - f P (  - -~ )  O(I) (6.4) 

An analysis of the right-hand side of eq. (6.3) shows that dO(p)/dp is negative 
in the p - 0  plane (p 1> 0, 0 ~< 0) except for an infinite number of disconnected regions 
[2]. Half of these are band-like, starting at p = ( A - B )  ~/2 and extending out to 
infinity. They represent traps for the solutions 6 ( p ) ,  since immediately above each 
band (i.e. for larger values of 0) ,  d&(p)/dp <0 .  

Once a solution 0 ( P )  has entered one of these bands, it can never escape, and 
the corresponding values of O(P),  

O(P) , ( ~ -  y)-2nTr, (6.5) 
p ~  

7 = arcsin (B/A) , (6.6) 

are such that dR( p)/dp becomes positive. As p -~ oo, the traps thus lead to exponen- 
tially large values for R(p ) .  The eigenvalues, Bn, on the other hand, correspond to 
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solutions &(p) that for large p lie immediately below the traps (for details see ref. 
[2]), 

& ( p )  ~ &n =- y -  2nrr .  (6.7) 

To determine a certain energy level B,, or, equivalently 

e.  = 1 - B , / A  = 1 - E n / M ,  (6.8) 

we thus pick a trial value B and integrate eq. (6.3) numerically from some small 
value p = p~ out to some large value p where either 

d~b(p) 
(i) - - > 0  ( a t r ap ) ,  then B < B n .  

dp 

or  

(ii) 4 '(p) < ~b,, then B >  B , .  

Thus Bn can be bounded from below and from above to an arbitrary precision. 
Initial values may be obtained from the following asymptotic expansion for ~ (p) ,  

valid for small p: 

& ( p )  = - B p  2 + B p  3 - B ( A  + 32)p4+ 3 B ( A  + 1)p5 + . . .  (6.9) 

This procedure requires some care. The asymptotic expansion (6.9) is only valid 
for very small values p~<pc<< 1. Further,  because of the singular behaviour of 
d ~ b ( p ) / d p  for small p, the step length Ap  used in the numerical integration has to 
be chosen such that Ap<< p. Our results appear stable for pc~<0.3 and (initially) 
Ap<~ 0.02p¢. (A variable step length is employed.) For A =0.4475 (this value 
corresponds to the proton anomalous magnetic moment,  K = 1.79, and ]ql = ~) a 
plot of 4~(p) versus log p is given in fig. 1. The facts that (i) there are regions where 
4~(p) falls rapidly, and (ii) it has to be integrated out to quite large values of p for 
the weakly bound states, are indicative of the numerical problems involved. 

Exact binding energies are given for a few values of A in table 1, for n = 1, 2, 
and 3. The values obtained by Kazama and Yang [2] are also quoted. They differ 
some~vhat from ours for the most weakly bound states. Presumably, this deviation 
is related to numerical problems of the kind mentioned previously. 

Table 1 also contains the approximate values for e,, determined from eq. (4.10). 
These are seen to agree very well with those determined numerically. As expected, 
the agreement improves as the binding gets weaker. 

In figs. 2-4 we present plots of IF(p)[ 2 and ]G(p)] 2 for the lowest monopole-proton 
states. The numerically determined eigenfunctions (from eqs. (6.1)-(6.4)) are on 
these plots not distinguishable from the approximate ones, given by eqs. (5.2) and 
(5.4). With both scales logarithmic, the inversion symmetry is evident: apart from 
a shift along the vertical axis, IG(p)l  2 is seen to be the mirror image of IF(p)l 2. 
The shift is given by I Oiot(Po) 12/lEe×t(po) ] 2 = x~2e. 



K. Olaussen et al. / Monopole-fermion bound states 579 

- 5  

-10 

-15 

-20 

- -  . ~ j l %  i i I I l 

\ 

. . . . . . . . . .  n=l  
I 
I 

I 

I 
I 
I 
I 
I 

I 
t 

' . . . . . . . . . . . . .  n = 2  

n=3 

I i I i I J 

1 lO z 10 ~ lo 6 
P 

Fig. 1. The angle ~ as defined by eqs. (6.1), (6.2) versus p. Three different levels are considered for the 
monopole-proton state, n = 1, 2, and 3. Note that the p-scale is logarithmic. At small p the three curves 
practically overlap since B is close to A (compare eq. (6.9)). Each "step" corresponds to a zero in F(p). 

A s  m e n t i o n e d  in sect. 5, t he re  is a small  d i scont inu i ty  at  the  invers ion  point ,  

expec t ed  to be of re la t ive  o r d e r  x/e. This  turns  out  to be  an overes t ima te .  F o r  

example ,  for  the  s ta tes  with n = 1, f rom tab le  1 we d e t e r m i n e  the  values  of x/e  to  

be 7 .4% and 15 .4%,  for  A = 1.0 and 2.0, respect ively .  The  ac tua l  d iscont inui t ies  

c o r r e spond ing  to these  two s ta tes  a re  only  1 .7% and 6 .2%,  respect ive ly ,  much 

smal le r  than  the naive expec ta t ion .  

Asympto t i c a l l y ,  the  wave  funct ions  behave  l ike exp [-~/~eAp], so the  radi i  roughly  

increase  with n l ike 

1 
(p)n x/~-~ e x p [ 2 n ~ r / ~ / 8 - A - 1 ] .  (6.10) 

F o r  example ,  for  A -- 1, successive energy  levels differ  by roughly  a fac tor  10 -2 (see 

tab le  1), and  the radi i  of successive s ta tes  will increase  by roughly  a fac tor  10. 

T h e  qual i ty  of the  a p p r o x i m a t i o n  to the  wave  funct ions  will in gene ra l  d e p e n d  

on what  the  wave funct ions  a re  to  be used for. In o r d e r  to s tudy a s imple  example ,  

and  also for  the  pu rpose  of checking  the qua l i ta t ive  s t a t emen t  (6.10) ,  we have  

eva lua t ed  the  r.m.s, radi i  of the  s ta tes  cons ide red  in t ab le  1. The  resul ts  a re  given 
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TABLE 1 

Binding energies e, in units of the fermion mass, M 

A ~  1 2 3 
e (approx.) e (approx.) 
e (num.) e (num.) 
e (ref. [2]) e (ref. ['2]) 

0.4475 2 .810 .10  -4 1.125 " 1 0  - 7  

(p)  2.808'  10 4 1.125" 10 7 

5.519" 10 3 4.776- 10 -5 
1.0 5 .488 .10  -3 4 .776 .10  -5 

5.75 • 10 -3 5.12 • 10 -5 

1.403 • 10 -2 3.173 • 10 -4 
1.5 1.391 • 10 -2 3.171 ' 1 0  - 4  

1.41 - 10 -2 3.28 ' 10 -4 

2.383- 10 -2 9.290'  10 4 
2.0 2.361 • 10 -2 9.281 ' 10 4 

2.35 ' 1 0  2 9.45 "10 -4 

3.393 " 10 -2 1.899" 10 -3 
2.5 3.361 ' 10 -2 1.896" 10 3 

3.37 ' 1 0  2 1.92 ' 1 0  3 

e (approx.) 
e (num.) 
e (ref. [2]) 

4.501 - 10 - l l  
4.501 - 10 11 

4 . 1 3 4  1 0  - 7  

4 . 1 3 4  1 0  - 7  

4.47 1 0  - 7  

7.176 10 -0 
7.176- 1 0  - 6  

7.53 • 1 0  - 6  

3.622 10 -5 
3.621 10 -5 
3.74 10 5 

1.063 10 4 
1.063 10 -4 
1.08 10  - 4  

The parameter A is essentially the anomalous magnetic moment K, A = 
½1qlK, with q = eg the Dirac quantum number. The value A = 0.4475 corres- 
ponds to a proton-monopole system, for q = ½. For each A, the upper entries 
are obtained from the explicit formula, eq. (4.10), the middle ones are the 
numerically determined exact values, whereas the lower ones are from ref. [2]. 

in t a b l e  2 f o r  t h e  e x a c t  w a v e  f u n c t i o n s  as  w e l l  a s  f o r  t h e  a p p r o x i m a t e  o n e s .  T h e  

a g r e e m e n t  is a g a i n  v e r y  g o o d .  A l s o ,  t h e  q u a l i t a t i v e  s t a t e m e n t  ( 6 . 1 0 )  is c o n f i r m e d ,  

t h e  w e a k l y  b o u n d  s t a t e s  h a v e  v e r y  l a r g e  r ad i i .  

7. Systematic corrections 

U s i n g  t h e  f i r s t - o r d e r  b i n d i n g  e n e r g y  ( 4 . 1 0 )  as  a f o r m a l  e x p a n s i o n  p a r a m e t e r ,  w e  

m a y  p r o c e e d  t o  c o m p u t e  s y s t e m a t i c  c o r r e c t i o n s  t o  t h e  p r e v i o u s  r e s u l t s .  

W i t h  t h e  d e p e n d e n c e  u p o n  t h e  e i g e n v a l u e  p a r a m e t e r  e w r i t t e n  e x p l i c i t l y ,  t h e  

e x a c t  q u a n t i z a t i o n  c o n d i t i o n s  ( 3 . 6 )  a r e  

H ( 1 ;  e n ) = 0 ,  r e s p e c t i v e l y  K ( 1 ;  e n ) - - 0 .  ( 7 . 1 )  

W e  m a y  c o n s t r u c t  a s y s t e m a t i c  e x p a n s i o n  f o r  H a n d  K ,  

H ( 1 ;  e ) = H ~ ° ) ( 1 ;  e ) + H ~ l ) ( 1 ;  e ) +  - ' ' ,  ( 7 . 2 )  

a n d  f o r  t h e  s o l u t i o n s ,  en, o f  ( 7 . 1 ) ,  

e ,  = e ~  ) + e ~  ) + ' - -  ( 7 . 3 )  
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TABLE 2 

Root-mean-square radii in units of the Compton wave length of the fermion, 
1/M 

A ~  1 2 3 

0.4475 
(p) 

1.0 

1.5 

2.0 

2.5 

r~.~Ss? x 
r~.~ms. 

4.42 101 
4.42 101 

1.29 101 
1.29 101 

9.50 
9.42 

8.25 
8.12 

7.65 
7.50 

raPdS ° x  r~.~. ° x  

r~.~mms, r~.~ms. 

2.20" 103 1.10" 105 
2.20" 103 1.10'  105 

1.38 • 102 1.49" 103 
1.39" 102 1.49" 103 

6.27" 101 4.17" 102 
6.27" 101 4.17" 102 

4.13" 101 2.09" 102 
4.13" 101 2.09" 102 

3.18'  101 1.34" 102 
3.18'  101 1.34" 102 

The states are the same as those considered in table 1. The upper entries 
are obtained from the approximate wave functions, the lower ones are based 
on the numerically determined wave functions. 
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Consider for a moment the first of eqs. (7.1). Working to first order  in the small 
quantity e(, 1), and using the fact that H(°)(1; e~  )) = 0, we find 

] e~ 1) -=-H(1)(1; e~ )) H(°)(1; e) ~= ~',"> (7.4) 

H (1) receives contributions from many sources. One of them is the first (small 
argument) correction to the approximation (4.6) for Kit3(arl).  This correction is of 
order (a~7) 2 relative to the leading term (which is itself of order x/a). There are 
other corrections to H (~) of the same order, but none larger. Thus, remembering 
that a = O(el/4),  we expect 

H(1)(1; e) = O(e5/8) . (7.5) 

Likewise, from (4.8) it follows that 

~-~e H(°)(1 ; e) = O(E -7/8) . (7.6) 

Inserting these estimates into (7.4) we find e~ ~)= O(e3/2), i.e. 

e, = e ? ) [ l + c , x / e ?  ) + . . . ] .  (7.7) 

Thus, from these order-of-magnitude estimates it appears that the relative correc- 
tions to the results (4.10) should be rather large. This is a bit surprising in view of 
the excellent agreement between (4.10) and the numerical results. In order to shed 
light on this question we shall proceed to compute the coefficient Cl in eq. (7.7). 
Indeed, it will turn out to be zero. 

First, we find the O((a~)  2) correction to the approximation (4.6) for Kit3, 

C x  2 
K(I) • (/3 in ½x_ ~b)_/3 cos (/3 in i x _  ~b)] (7.8) i~ ( x )  = 4  + 4f l2[s ln  

where x = aT. Inserting this into (4.5), we find 

H(la)(1; e~  )) = (1 +3  cos 0 + 6  cos 2 0)ZH,  
(7.9) 

K(~a)(1; e~ °)) = ( 1 - 3  cos 0 + 6 c o s  2 0)ZK, 
where 

1 1 - cosq, ( 2 A 2  (o)~5/8 " (7.10) {ZH, ZK} = +C{sin ~0, cos ~0} 1 + 3 COS 2 I~t x - - -  /Zn ] 

The sign factor is for ZK given by (-1)("+1)/2(n odd), and for ZH by (--1)  (n+2)/2 (n  

even). 

We must also improve on eq. (4.4), relating G to F for fixed F. To the next 
order,  we find from eqs. (2.1) and (4.4) that 

a (1 b) (T]) ---~ lIE 1--2 d(drl) [~-~a~ K~) (arl)] • (7.11) 
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This leads to corrections 

H(lb)(1; e~ °~) = --(4 COS q,+ 12 cos 30 )ZH,  
(7.12) 

K(lb)(1; e~ °)) = (4 COS 0 +  12 COS 3 q')ZK. 

Finally, we must solve equation (4.1) to order , /e.  This leads to a correction 
F(IC)(Tt) = el(a,I), where f(x) is a solution (exponentially small as x ~co )  of the 
inhomogeneous equation, 

d 2A]  [2A  d 2 A 2 1 c  -- 

By systematic search we find 

Ill ,/-xx g,o ( x ) 
~ x 2 -  1 + - ~  - d 1 

t~J 

l.'I ~ 0 1 - 

and 

(7.13) 

(7.14) 

A[ " 
f(C)(x)=3+8A ( 3 + 2 a ) x 0 - - x -  

f(d)(x) = 3+A---8A(3+2A)~xKie, (7.17) 

#°~(x) = C ~ x K , ~ ,  

with C re) an arbitrary constant. This last term, f~e~, reflects the fact that we may 
freely add solutions of the homogeneous equation. A unique value for C t~) will 
emerge from the normalization requirement. However,  it will not influence the 
determination of the binding energies to the order we are considering, and shall be 
ignored in the following. 

where 

l + --ff  J -# -ff-# 4 x K, .  ( x ) = 

This is sufficient to construct solutions of eq. (7.13). The most general solution, 
obeying the boundary condition at x = o o ,  is 

f(x) = f~C)(x) +f~d)(x) + f~e)(x), (7.16) 
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Only the term f~c~ contributes to the coefficient cl in eq. (7.7). The term f~d~ leads 
to a correction A e , / e ~  ) of order e~ ) In e~ ). However,  since Cl turns out to be zero, 
this correction actually is the dominating one. We shall return to it shortly, but first 
proceed to calculate the O(e ~/8) contributions to H and K from )ac). It involves 
straightforward, but lengthy algebra to obtain these terms by inserting eq. (7.17) 
into eq. (4.5). We find 

H~C~(1 ; e~  ~) = ( -1  +cos ¢ - 6  cos 2 ¢ +  12 cos 3 t#)Zu, 
(7.18) 

K~lc)(1; e~  )) = - ( 1  +cos q~+ 6 cos 2 ~0+ 12 cos 3 qJ)ZK • 

Adding the contributions from (7.9), (7.12) and (7.18) we find the promised 
results, 

H~la) + H(~b) + H (~c) = 0 ,  
(7.19) 

K Oa) + K  (lb) + K  tic) = 0 .  

Even in retrospect, we have not found any convincing arguments for why this 
cancellation should take place. 

Thus, H (1) and K (1) actually are of order  e 9/8 In e, with the sole contributions 
coming from the term f~d) in equation (7.16). We work these out to be 

{ H('d)(1;e~))I=+cfCOS½qJ l 1 l+12cos2~J(2A2e) , /Selne ,  
K(ld)(1; e~) )J  [sin ½~0J 16 sin (20) 1 + 3  cos2 0 

(7.20) 

where we have kept the logarithmic terms only. Similarly, we find from eq. (4.8) 

~ g ( O ) ( 1 ;  I.sin ½qJJ 4 tg ~ b ( 2 A 2 e ) l / S e  - 1  . (7.21) 
E) 

Inserted into (6.4) this gives 

e(1) 1 ( l + 1 2 c o s  zqj)~0)e~)2 In 6 7  ) (7.22) 
" = 8 sin 2 (~0)(1 + 3 cos 2 

We note that this correction is negative, in agreement with table 1. However,  for 
the most strongly bound state that we have considered (A = 2.5, n - -1 ) ,  it over- 
estimates the actual correction by approximately a factor of two. Thus, the correction 
to A e . / e ~  ~ of O(e) (which we have not evaluated) is in this range of parameters 
comparable to the one given above. 

8. Concluding remarks 

For the weakly bound monopole-fermion states of lowest angular momentum, 
we have found excellent analytic approximations to the binding energies and to the 
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wave functions. With e the binding energy in units of the fermion mass, the 
corrections to our results for the binding energies and the wave functions are of 
relative order e log e and x/e, respectively. These wave functions are useful for 
estimating proton-monopole  capture cross sections [8]. 

Makino, Maruyama and Miyamura [12] have recently studied the proton- 
monopole  bound states using a non-relativistic effective hamiltonian. They found 
the lowest level* to be at 190keV,  with a linear dimension, r . . . . . .  =11  fm. In 
comparison, we find for the corresponding level a binding energy of 2.808 • 10 -4 M -  
263 keV, and a radius, rr ..... = 4 4 . 2 / M  = 9.3 fm. 

Sivers [13] and, more recently, Bracci and Fiorentini [14] have used a somewhat 
different approach to the fermion-monopole  problem. They consider a Schr6dinger 
equation with a magnetic moment  interaction. As a short-distance regulator, a 
repulsive core is introduced, with a radius comparable  to that of the nucleon or 
nucleus. The imposed boundary condition leading to quantization is that the wave 
function vanishes at the surface of that core. 

Bracci and Fiorentini [14] thus find that the ratio between successive energy levels 
for the proton-monopole  system is 4 . 1 0  4, in agreement  with the present analysis 
(see table 1). However,  the scale is very different. For the lowest level they find 
[14] a binding energy of 15.1 keV, and a radius, ( r )=  32 fm. Sivers [13], on the 
other hand, has a value of 320 keV, in rough agreement  with ours. 

If the zero-energy state is absent for the monopole-proton system, as suggested 
by the analysis of ref. [9], then the lowest state would be the one at a binding energy 
of 263 keV. We note that its radius is fairly large compared with the size of the 
proton. Thus, strong-interaction effects are expected to be small, unless the 
monopole  colour-screening radius is comparable with this radius, i.e. of the order 
of 10 fm. Even in that case, strong-interaction effects might well be small. Since 
the proton is a colour singlet, interactions with the monopole colour field would be 
due to variations in this field over distances comparable with the proton radius. 

Also, we expect effects due to the proton electromagnetic structure to be small. 
Such effects were incorporated in the work of ref. [12], and a binding energy quite 
different from ours was obtained. However,  they used a non-relativistic t reatment  
from the outset. From a direct analysis of their final hamiltonian this appears to be 
internally consistent. However ,  we suspect their t reatment  of the form factors to 
be inconsistent, thereby leading to an incorrect non-relativistic approximation. A 
consistent, presumably better  t reatment  would be to set F~ = 1 and for F2 use their 
eqs. (5), (6). A simple argument  why proton structure effects ought to be small is 
that the binding energy for the n = 1 state is some three orders of magnitude smaller 
than the natural excitation energy of the proton, characterized by AocD or the pion 
mass. 

* T h e  (relat ivis t ic)  z e r o - e n e r g y  level is a b s e n t  in the i r  t r e a t m e n t .  
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I t  is a p l e a s u r e  to  t h a n k  T .F .  W a l s h  and  T .T .  W u  for  m a n y  use fu l  discussions.  

A l s o ,  K . O .  is g r a t e fu l  to  t h e  f o r m e r  fo r  t h e  hosp i t a l i t y  e x t e n d e d  to  h im d u r i n g  a 

visi t  to  D E S Y ,  d u r i n g  w h i c h  par t s  of  this  w o r k  w e r e  c o m p l e t e d .  F ina l ly ,  this  w o r k  

has  b e e n  s u p p o r t e d  in pa r t  by  N o r g e s  A l m e n v i t e n s k a p e l i g e  F o r s k n i n g s r ~ d .  
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