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Abstract. We report results for the three-jet cross 
section to order ~2 using a jet resolution criterion 
depending on the jet mass and study the sum of three- 
and four-jet cross sections in O(e~ z) as a function of 
the resolution parameters in order to obtain the limit 
of infinite resolution. 

1. Introduction 

We believe that Q C D  can be tested unambiguously 
at short distances, that is on perturbative grounds 
without having to solve the confinement and bound 
state problems, and that e+e - annihilation into 
hadron jets is a unique laboratory for doing so. 

In the past five years many shape variables have 
been suggested to describe the jet structure of the 
final state hadrons. Since in perturbation theory we 
calculate the shape of an e + e -  hadronic event due to 
the production of massless quarks and gluons instead 
of the observed hadrons with finite mass, the jet 
variable should be insensitive to the nonperturbative 
process of hadronization. It is generally accepted that 
this will be the case only at infinite energy, so that 
model calculations are needed to correct for these 
effects at finite energies. But already at the perturbative 
level problems arise. Here the variables must be 
insensitive to the emission of soft and/or collinear 
radiation. Most of the (once) popular  jet variables do 
not satisfy this criterion. This has been emphasized 
repeatedly over the last two years [1], and the large 
O(c~ 2) corrections to the three-jet cross section pro- 
claimed by the Caltech group [2] give evidence for 
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that. To be brief we shall confine our discussion to bare 
thrust [3] 

T = max ~ ]p~n]/~, [pi[ (1) 
n i / 

The conclusions we shall reach are equally valid for 
spherocity, acoplanarity, the Caltech shape variables 
C and D [2] and most other bare shape variables 
though. 

Before we go into calculational details in the next 
sections, let us make a few remarks to explain on a 
more qualitative level what is meant by the notations of 
bare jets and dressed jets [13. 

Consider a 4-parton qqgg final state and let us 
assume, for example, x I = 0.8, x 2 = 0.7, x 3 = 0.4 and 

x 4 =0.1, where x i = 2 E ] x / ~  are the scaled pat ton  
energies for massless partons using the notation of 
ref. 4. For  this event thrust as calculated from (1), may 
take many different values depending on the relative 
angles of the 4 partons. For  example, if the two gluons 
or the soft gluon and the antiquark are close in angle, 
we have T = 0.8, while in case the soft gluon is emitted 
along the direction of the quark, we find T = 0.9. 
These T values computed from (1) on the basis of the 
4-patton momenta  define the so-called bare thrust of 
the event. At this point one can ask whether the 
soft gluon with x 4 = 0.1 has enough energy to be 
considered as a separate jet. If  this is not so, then the 
two cases, the soft gluon being combined either with 
the hard gluon or the antiquark and the soft gluon 
combined with the quark, respectively, cannot be 
distinguished. Therefore we have advocated [4] to 
average over the momentum of the soft, i.e. x 4 < e, 
gluon ~ la Sterman and Weinberg [5]. This leads us 
to fi three-jet event whose "dressed" thrust Xma x is 
Xm, x = 0.84 [4-] in both cases. A similar possibility 
occurs for collinear partons. For  definiteness let us 
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assume that again x~ = 0.8, x 2 = 0.7, but x 3 = 0.25 and 
x 4 = 0.25. For  the two gluons being parallel we have 
T = 0.8. Suppose now the two gluons are emitted at 
a relative angle of say 40 ~ Then we find that the bare 
thrust calculated from (1) can be as large as T = 0.86. 
Introducing, however, an angle resolution parameter 
6 larger than 40 ~ the two gluons are considered as one 
jet, which yields for the "dressed' thrust Xma x = 0.8 and 
this for all cases with relative gluon angle less than 6. 
Thus, as has been emphasized already some time ago 
[6], it is possible that an event can have on the parton 
level, i.e. in a perturbative treatment, rather different 
thrust values depending on which resolution criteria 
are applied, either infinite resolution giving bare thrust 
or finite resolution which gives the dressed thrust 
value. 

These two examples illustrate that integrating the 
soft and collinear parton momenta up to the resolution 
parameters of the jets, which is also necessary to get 
rid of the large logarithms that signal the breakdown 
of finite order perturbation theory, will involve smear- 
ing thrust over a relatively wide range of values. If, 
on the other hand, bare thrust is used as jet measure, 
we are forced to cut off the integrals at rather soft and 
collinear parton momenta, so that we encounter large 
(left-over) logarithmic corrections which lead to un- 
physical cross sections for a specific number of jets. 

In view of this situation, we have chosen to employ 
an explicit jet resolution criterion in calculating the 
O(~ 2) corrections to the three-jet cross section [4]. 
This is the only way to correctly define cross sections 
for a fixed number of jets, i.e. exclusive multi-jet cross 
sections. In our published work we have employed 
e, 6 Sterman-Weinberg type [5] resolution parameters 
and found small radiative corrections for appro- 
priately chosen values of e and 6. This stands in 
contrast to the large O(e~) corrections to the event 
shape distributions of the bare thrust type [-2, 8, 12]. 
These calculations correspond to adding both three- 
and four-jet cross sections and letting g, 6--+ 0. 

The purpose of this work is twofold. First, we 
supplement our earlier calculations [-4] by a cal- 
culation of the three-jet cross section using a jet 
resolution criterion depending on the jet mass. This 
is of interest for comparison with the data in order to 
secure that the final results on coupling constants etc. 
do not depend on how jets are defined. Secondly, we 
want to explicitly demonstrate that the large O(e 2) 
corrections to the bare thrust-like distributions arise 
indeed primarily from rather soft and collinear 
partons. To do so we only have to add three- and 
four-jet cross sections and take the resolution para- 
meters to zero. In this limit we should then recover 
the large radiative corrections of the other groups. 

After having given the three-jet cross sections for 
e, 6 and invariant mass cut-offs in Sect. 2, we shall 
study the limit of small resolution parameters in 
Sect. 3. We finish with some concluding remarks in 
Sect. 4. 

F. Gutbrod et al.: Higher Quark QCD Corrections 

2. Three-Jet Cross Sections to O(e 2) 

Most of the content of this section can be found in 
our earlier publications [4]. We nevertheless consider 
it useful, for later reference and for reasons of com- 
parison, to list both three-jet cross sections for e, 6 [7] 
and invariant mass cut-offs in a coherent fashion and 
briefly discuss its physical impact. After all, these are 
the physically meaningful jet cross sections. 

2.1. e, a-Cut-Off 

In this case we say that two partons are irresolvable 

if either parton has energy less than e x / ~ / 2  or the 
(full) angle between two partons is less than 6. By 
three-jet cross section we then understand the cross 
section for events which have all but a fraction e/2 of 
the total energy distributed within three separated 
cones of opening angle 6. We define the "dressed" jet 
variables xl, x 2 and x 3 to be equal twice the energy 
flowing into the parent quark, antiquark and gluon 
jet cone, respectively, divided by the total energy 
flowing into all three cones (and only the cones). 
Obviously x 1 + x 2 + x 3 = 2. We like to emphasize that 
this definition of jet variables eliminates the ambiguities 
in the treatment of soft final state partons seen by 
Gottschalk [1]. 

The three-jet cross section can be written, in the MS 
renormalization scheme, 

1 d20 - 3-jet(,% 6) O~s(q2) 

a o d x l d x  2 2~ 

.CF{BV(x , ,x2)[  1 % ( q 2 ) , .  "{- ~ -  (J1 q-J2 -1- J3) J 

~s(q z) , ,  , ) q-~-J[X1,X2) ; + O(g, 6), (2) 

where 

B 0(X1, x2) = (3) 
( 1  - x a ) ( 1  - x2) 

and 

J ~ = C  r - 2 1 n - - - 2 1 n ~ - 3  in 
X 1 X 2 2 

+ 4 1 n a l n ( ~ q + x x 2 2 - 1 ) + 2 ( ~ + ~ g g ) l n ( 1 - 2  ~  

+ln2(-XlWx2--l) 
- 3 i n  x 1 - 3 in x 2 - I n  2 ( 1  - xa) 

(XI-~X2-- 1)  7r2 1~-1-5  
- 2L 2 x~x2 - , 

J 2 = N c I ( - 2 1 n x e a  16}-) in (1 -- 2 -~  ) 
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+ 2 1 n e ( l n ( X ~ + X 2 - 1 ) + l n (  x 2 + x 3 - 1  ~ x 3 X 2 X 3 

+�89 xl+x3-1x~x3 +�89 2 /\ x2+x3-1)x2x3 

_�89 + x , -  1 - + 21n2x3 - !~lnx3 
x 1 x2 

+ �89 In  ( t  - In  (1 - - �89 ti1 (1 - 

+ g 2  x ~ x 2  x l x 3  

j X2X 3 - - 0  q 18 2 X 1 q- X 2 

1 ( 1  - X l ) ( 1  - x2) -] 
~ - - - 5  J + 3 x~ + x 2 

26 1 x 2 
J 3 = ~ - [ Z l n ( 1 - - 2 ~  2] 

(4) 

The function f(xt ,  X2) is identical to that in (2.14) 
in [4] (second reference). We have brought (2) into a 
common form with the three-jet cross section for 
invariant mass cut-off here, which we will discuss 
next. 

2.2. Invariant Mass Cut-Off 
In this case we say that two partons are irresolvable 
if sij = (p~ + pj)2 < yq2. By three-jet cross section we 
then understand the cross section for events which 
consist of three clusters, each having an invariant 
mass squared smaller than yq2. We define the dressed 
jet variables x~, x 2 and x 3 to be equal twice the 
energy of parent quark, antiquark and gluon cluster, 
respectively, divided by the total energy (xa + x z + 
x 3 = 2). It may happen that a wee patton, which 
is too soft to be independently resolved, can be 
attached to either two or three of the jets and give an 
invariant jet mass smaller than the resolution limit. 
In this case the energy of the soft parton is given 
randomly to the two or three jets it fits into. 

We obtain the three-jet cross section, in the MS 
scheme, 

1 d2o-3-je~(y) O~s(q 2) 

~o dxadx2 2re 

"Cv{B~(xl, x2)Ii + ~ ( J l  + J2 + J3) 1 

+ f(xz,x 2) + O(y), (5) 

where f(xl ,  x2) is the same as above and 

I I 7~2 
Y 3 1 n y -  1 + - -  J1 = CF -- 2 In 2 1 -- x 3 3 

2y In 
+ 1 - x 3 1 - x 3 

N [ l n  z Y in z Y In 2 Y J2 
k 1 - x 3 1 - x 1 1 - x 2 

1 1  67 ~z 2 Y I n  y2 
g l n y + ~ +  g l _ x 3  l - x 3  

y2 y y2 ] 
Y In + In , 

+ 1 - x a 1 - x 1 1 - x 2 1 - x 2A 
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J3 = ~ [~lny - ~ ]  (6) 

The derivation of (5) and (6) proceeds in an analogous 
fashion to that of (2), (3) and (4) which has discussed 
in detail in [4] (second reference). One starts with the 
individually infrared- and collinear-divergent 3- and 
4-parton cross sections 

d~3-jet(y) = d~ 3-paa~ + d~r4-P"~~ (7) 

where do -3-paa~ sums the O(cq) and O(e~) cross 
sections with 3 partons in the final state (which by 
now has been calculated by three independent groups 
[2, 4, 9] with identical results), and where da 4-p"rt~ 
stands for the cross section for e + e -  ~ q 0 g g  and 
e + e- ~ qglqgl, in which two of the partons are irresolv- 
able, i.e. have an invariant mass squared 
smaller than yq2. The integration over the irresolvable 
patton configurations is similar to the case of the e, 3 
cut-off [4] and will not be reported here. Since the 
boundaries are completely different, the two-cross 
sections can, however, not be obtained from one 
another by a simple substitution. As in our calculation 
in [4], terms of order y cannot be calculated analy- 
tically, but terms ~ y  lny have been included. There- 
fore the cross section formula (5) does not apply for 
too large values of y. In practice terms of O(y) are 
irrelevant for y ~< 0.05. 

Kunszt [8] also has calculated the analogue of the 
Sterman-Weinberg formula for three-jet production 
with invariant mass resolution. We differ from his 
result in the subdominant (constant) terms in J t  and 
J2, while we agree in the leading (for y-~ 0) logarithmic 
terms and, entirely, in J3. 

2. 3. Discussion of Results 
The cross sections (2) and (5) show a great simi- 
larity. A little algebraic calculation furthermore 
shows that the leading logarithmic terms in (2) 
and (5) (being proportional to In eln ((1 - cos 8)/2), 
In a In ((1 - cos 8)/2), In z y and In y) become identical if 
we identify 

y e 2 1 - cos 6 
- - -  - -  i =  1 , 2 , 3 .  ( 8 )  

I - x z 1 - x i 2 ' 
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It should be stressed that (8) connects only the leading 
terms in (2) and (5). The (renormalization group 
improved) running coupling constant e~(q2) in (2) and 
(5) has been evaluated at the overall energy q2, which 
provides the only scale if the resolution parameters 
and the angles between the three jets are all large. This 
changes of course in the limit of small e, 6 and y 
and if we approach the 2-jet limit. The logarithms in 
J 2 ,  J 3  

~-N c In 2 , �89 I In 2 
Y Y 

(9) 

and, in addition, for the e, ~ cut-off 

�89 ~ N f l n x  3 (10) 

give evidence of this change of scales. As can readily 
be seen, (9) and (10) can be absorbed into as by 

~3'~ cut-~ q2 -~ x32 ( 1 - c~ q 2 ' 2  

ycut-off:q2 ~ yq 2, c~s(q 2) ~es(yq 2) (11) 

This is to say, if the renormalization is performed at 
x32((1-cos3)/2)q z and yq2, respectively, the log- 
arithmic terms (9) and (10) are exactly cancelled. One 
should be aware that the A parameter will in practice 
depend on where the renormalization is performed 
(and not only on the renormalization scheme) due  to 
the finite order of calculation. 

It is clear that the three-jet cross sections (2) and 
(5) are applicable only for such e, 6 and y cut-off's, 
which leave the effective expansion parameter 

f l n2  eln 1 - 2 ~  3" l 
as 

( 2 C v + N c ) ~ ) , l n 2 y  J ,~l  (12 t 

If e, 6 and y, respectively, are too small, the three-jet 
cross section may become negative, which signals the 
breakdown of O(~ 2) perturbation theory for a cross 
section with a fixed number of jets. Thus e, 6 and y 
must be chosen in accord with (12). 

But in any case y and e, 6 should not be smaller 
than the nonperturbative jet mass and jet opening 
angle given by the finite transverse momenta of 
the fragmentation process. A measure for the non- 
perturbative jet mass is the slim jet mass, which 
at PETRA energies is roughly 6 GeV [10]. This 
corresponds to y ~_ 0.04, which translates roughly into 
e -~ 0.2, 3 _~ 40 ~ (assuming x 1 2 3 "~ 2 ) .  

In order to give an idea ~ the magnitude of the 
O(e 2) corrections to the three-jet cross sections, we 
have calculated d~3-j~t(e, 6)/dxmax and da3-jet(y)/ 
dxm~ x for some values of e, 6 and y, respectively. In 
Fig. 1 we show d~3-j~t/dx,~ax for ~, 6 = 0.2, 40 ~ and 

1.0 
E 

x 

o0] 
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Fig.  1. Three-jet  cross section for (8, 6 ) =  (0.2,40 ~ and  (e, 6 ) =  
(0.1,30 ~ with the Born  cross section (0(~) )  as a funct ion of Xma x 
for eq = 0.16 

1s 
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X m a x  

Fig. 2. Three-jet  cross section for y = 0.04 and  y = 0.01 with the 
Born  cross section (O(cq)) as a funct ion  of Xm, x for ~s = 0.16 
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e, 6 =0.1, 30 ~ ~= =0.16 and N I = 5 together with the 
O(a) curve. In Fig. 2 da3@t(y)/dxm,x is shown for 
y = 0.04 and y = 0.01 again for ~ = 0.16 together with 
the O(a) curve. We see that for the larger values of 
e,6 and y the O(~ 2) corrections are small, while the 
smaller values lead already to large negative O(~)  
corrections, which indicates that these values are 
outside the perturbative regime. 

The cross sections da3-jet(e,6)/dxma x and da3jet(y)/ 
dxma x have been tested recently by the JADE- 
Collaboration and two of us [11]. In this paper itis also 
described how the e, 6 and y cut-offs are realized 
experimentally. The three-jet cross sections (2) and (5) 
were also used to determine the value of ~ in the MS 
scheme. 

3. Bare Thrust Distribution to O (~2) 

To make contact to the bare thrust distribution now, 
we have to complete our 0 ( ~  2) calculation by adding 
the proper 4-jet cross sections to the three-jet cross 
section daJ@t(e, 6)/dxma x. This means we shall have to 
calculate 

d T  \ dx== x /I 
T = xizaa x 

do 4- J~ 6) 
+ (13) 

d T  

and 
da(y) {da 3-jet (y) '] 

d--T=\ -d x 
m a x  do -4-iet (y) 

4 , (14) 
d T  

where da4-J~(e,6) and da4-J~ are the 4-jet cross 
sections with all jet energies (angles) larger than 

(U2) x/~-(6) and sir > yq2 (as already defined above), 
respectively, and where T = Xma x in case of the three-jet 
distribution. We obtain the bare thrust distribution, 
if we let ~, 6 and y go to zero in (13) and (14), 
respectively. 

Before we present our results, a few comments about 
the numerical calculations are in order. The three-jet 
and four-jet cross sections are individually divergent 
for ~, 6 and y going to zero. While the relevant part 
of the three-jet cross section has been calculated 
analytically, the calculation of the four-jet cross section 
is done with numerical integration methods, what then 
requires high accuracy to successfully cancel the 
divergent contributions. Since the dominant con- 
tribution comes from the rather small region of phase 
space of soft and small angle partons, hardly any 
standard Monte Carlo program will meet this 
requirement. 

We therefore have split the phase space into a 
part, where the differential cross section varies less 
dramatically (in a way defined below), which we call 
the Monte Carlo (MC) region, and a second part 
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(singular region), which contains the collinear maxima 
of the cross section. The integral over the first region 
was performed with the iteratively improving Monte 
Carlo program VEGAS [12], whereas in the singular 
region a five dimensional generalized Gaussian 
technique has been applied, which takes into account 
the form of the nearby singularities of the differential 
cross section. It has been used previously in a QED- 
calculation [13]. 

The above separation of phase space is done with 
respect to angles 6)q between pairs of partons, summed 
over all pairings with singular matrix element for 
tg~s ~ 0. The admissible opening angles of the cones 
produced in this way (they must not overlap) depend 
on T. Inside these cones the differential cross section 
varies like 1/6)q, the lower limit of ~9~. depending on 

J .  
y and the par\on energies. This behavlour is chosen 
as a weight function for the generalized Gaussian 
integration over O~j. After this integration being done, 
the energy (E) integration behaves like ln(E~Ej/E2)/ 
E~, where E o is the minimal energy (again depending 
on y). The integration over the remaining variables is 
smooth and can be done by standard Monte Carlo 
methods. 

In the MC region the cross section still behaves like 
1/E~ due to gluons being soft, but this singularity is 
removed easily by a logarithmic mapping for the gluon 
energies. 

The relative contribution from the singular region 
varied between 10% and 30%, depending on y, and 
has an error less than 1%. The error quoted by VEGAS 
for the MC region was usually slightly less than 1%. 

Since we are interested in the O(~ 2) corrections, it 
is appropriate to write 

1 da a=Ao(T ) + A s ( T  ) . (15) 
a o d T  rc 

We have calculated A I ( T  ) now for various e, 6 and y. 
The result is shown in Figs. 3 and 4, varying e, 6 and 
y from about the border line of the nonperturbative 
regime to the smallest values that are feasible by the 
Monte Carlo method. In case of the ~, 6 cut-off we 
have chosen e = �89 - cos 6) to reduce the plot to one 
parameter. Any other fixed ratio between e and 6 would 
be possible as well. The dependence on T is shown in 
Fig. 5 for the two cases y = 0.04 and y = 0.01 together 
with the lowest order term Ao(T  ). 

We find that A 1 increases drastically as e =  
�89  and y decrease. The increase is most 
prominant for larger T, which fits in with the quali- 
tative arguments in the introduction. We furthermore 
reproduce the bare thrust distribution found by the 
other groups [2, 8, 14]. Numerically we find, however, 
that this limit is not achieved until y =< 10 -4, which 
corresponds to an invariant jet mass of about 1 GeV. 
For  example at T = 0.8 we find that A s changes from 
y = 0.04 to y = 10 -4 roughly by a factor of 2. Given 
A f f A  o ~_ 10 at y = 0.04 from Fig. 5, this has the effect 
that the O(a 2) corrections enhance the thrust distri- 
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Fig. 3. The sum of three-jet (0(cr and four-jet contribution to 
AI(T ) for different thrust bins as a function of 1/8. The dashed lines 
give the asymptotic values obtained in [14] 

10 000 

F. Gutbrod et al.: Higher Quark QCD Corrections 

I I i i i i 

do c~5 T + s 2 ~.-=~-.-Ao( ) ~.-) AI(T) 

y=0.04 
y=0.001 

1000 

AI( T)__r--Jr_f~ 
r -J ,oo _d/-f F 

s  J 
k_.l _._1 

I0 ~ , 

1 0.6 0.7 0.8 0.9 T 

Fig. 5. AI(T ) as a function of thrust T for y = 0.04 and y =0.001 
together with lowest order contribution Ao(T ) 
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Fig. 4. Same as Fig. 3 as a function of 1/y 
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1o~ I/y 

bution by 50% with respect to the lowest order result 
at y = 0.04, and assuming es/~ = 0.05, and by 100% at 
y =  10 -4. For  other thrust values the situation is 
similar, although A1/A o is somewhat different there 
(see Fig. 5). 

Although the four-jet part had an error not larger 
than 1% for the invariant mass cut-off and 1.5% for 
the e, 6 cut-off, the error in AI(T  ) is still large in 
particular for the larger thrust bins. This comes 
from the strong cancellation between a large positive 

contribution from four jets and the correspondingly 
large negative contributions for three jets. This could 
be improved by other numerical methods. We see that 
the increase of A 1 (T) is not very dramatic for T ____ 0.825 
for y values in the physically interesting interval 
0.02 < y < 0.04 and O. 15 < e < 0.2. 

4. Conclusions 

We conclude that the large 0(~ 2) corrections to the 
thrust and thrust-like distributions are due to low- 
mass parton pairs (or equivalently rather soft and 
collinear partons), being much smaller than the non- 
perturbative jet mass. This is what we expected on the 
grounds discussed in the introduction. 

The Sterman-Weinberg type cross sections dis- 
cussed in Sect. 2 are perfectly insensitive to the 
emission of soft and/or collinear radiation but depend 
on a resolution parameter. If this fixed resolution is 
also incorporated into the analysis of the experimental 
data, as has been done for example with the cluster 
algorithm, this does not introduce any ambiguity. One 
may hope that the (theoretical) resolution parameter 
dependence will also be borne out by the high statistics 
data to come. 

Concerning adding hadronization of quarks and 
gluons to the perturbative three- and four-jet cross 
sections, we would argue that the perturbative re- 
solution should not be too much smaller than the 
nonperturbative jet spread. But this should be seen in 
relation to the fragmentation mechanism used and the 
adjustment of fragmentation parameters by the data. 
Certainly in this field further studies are called for. 
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