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Using Manton's action we carry out a Monte Carlo variational calculation of the SU(2) 
glueball spectrum. We find a scaling window for the 0 + state, hut no scaling for 1 , 2 +, 2- and 3 
states. The 0 ' result is consistent with universality. 

1. Introduction and results 

In ref. [1] Creutz carried out a lattice Monte  Carlo (MC) calculation and 

established a scaling window for the SU(2) and SU(3) string tension. For  SU(2) and 

SU(3) glueballs 0 ÷ ÷ (mass gap) similar scaling windows (albeit on a finer scan) were 
first found in refs. [2, 3]. With some reservations in mind such scaling windows allow 

predictions about  the cont inuum limit. For  instance a reasonable estimate of  the 
SU(2) string tension (close to that of  refs. [1, 4]) is 

KCK - -K=  ( 7 9 ±  12)A~,  (1) 

and the 0 ÷ SU(2) glueball estimate of ref. [2] is 

mgw _- (170 + 30)A w (2) 
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In eqs. (1), (2) the index W indicates that the calculations were done with the Wilson 
action [5], and the A-scale is defined as usual: 

AL = a-l( ~r2/3 )SWmexp(-- ~rt2/3 )(l + O( fl ) ) . (3 )  

If predictions such as (1), (2) are supposed to represent true continuum physics, the 
question of universality becomes important. This means a wide class of actions has 
to yield the same continuum theory, when the coupling constant approaches the 
scaling critical point. In the present paper we use Manton's action [6] and carry out 
a MC variational (MCV) [2,7,8] calculation of the SU(2) glueball spectrum. 
Manton's action is given by 

sM = ½ E ½ 02, (4) 
P 

where Op is the plaquette angle, related to the plaquette variable Up through 

Up = cos 0p + io" h sin 0p. 

The ratio between the A scales AM and A w has been calculated perturbatively [9, 10]: 

= r =  3 . 0 7 .  (5 )  aw 

If the universal (2-loop) part of the /3 function is already dominant in a MC 
calculation (of the string tension or the mass gap), then the MC calculation would 
give a similar result for r. Lang et al. [9] have calculated the string tension with 
Manton's action. Their result 

gives (combined with (1)) 

= (16.2 _+ 0.6)A~, (6a) 

r ~  = 4.9 + 1.0, (6b) 

and indicates relevant three-loop corrections to (at least one of) the A scales (3). 
Our present mass-gap calculation gives 

Combined with (2) this yields 

mz M _ _ (49 + 6)Ar~ . (7a) 

r,~ = 3.5 + 1.0. (7b) 
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Fig. 1. Wilson loops up to length 6. 

is constructed, such that the signal 

c(t) = (~( t )O(O))  - ( 0 ( 0 ) )  2, (12) 

is maximized for correlations from distance t = 1. By summing each Wilson loop 
over spacelike translations and orientations, momentum p = 0 and angular momen- 
tum 0 ÷ (more precisely Al + [14]) is obtained. 

Our MCV calculation is carried out on a 43. 16 lattice (43 is the space-like box). 
To speed up the calculation we use the 120-element icosahedral subgroup [15] and as 
in ref. [9] a table for Manton's action (4) is used. Metropolis upgrading with 6 trials 
for each matrix is done. One sweep through the lattice is defined by upgrading each 
link matrix precisely once (S-upgrading in the notation of ref. [14]). At each 
considered ,8 value we have first spent 3000 sweeps for equilibrium without measure- 
ments, and then assembled the following statistics: 

25 000 sweeps at/3 = 1.20, 1.30; 
40 000 sweeps at fl = 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70; 
25 000 sweeps at fl = 1.80, 1.90. 

All our error bars are computed with respect to 10 bins. The total calculation took 
76 CYBER 175 hours, this is roughly equivalent to 38 CDC 7600 hours. 





B. Berg et al. / SU(2) glueballstates 

\\,\ 

3 

Fig. 3 

I 

i , I ' I , i 

m = (49- + 6)AL 

x 

~(3l 

, , , , I ,\X, , I 

1.2 1.z. 1.6 i s  zo 13 

Fig. 3..Minimized mass gap m(0 ÷) results. 
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functions. The formula 

m ( t )  = 1, I C(/) t 
- t  m ~ ' (13') 

will still give upper bounds for the glueballs, but eqs. (13) may have problems. In the 
present investigation the oscillations are numerically negligible: we have checked all 
our results with eq. (13') and found the difference similar as for the corresponding 
MC investigation with the Wilson action [2]. Therefore we trust eq. (13), which gives 
better (-- lower) results, but leads to t-times larger error bars than eq. (13'). 

In fig. 2 we give results as obtained from plaquette-plaquette correlations alone. 
Glueball mass definitions for single operators are denoted ~h~(t). They are defined 
by eq. (13) with cj -- 8,j in eq. (11). 

Fig. 3 gives our results after minimization. Minimization lowers considerably the 
results from correlations at distance t = 1. rh(1) is already a good upper bound. The 
final estimate takes rh(2), rh,(2) into account and some results for rh(3), rh,(3) are 
also out of the statistical noise. Similar to ref. [13] a scaling window is found for 

1.4 ~ # < 1.7. (14) 
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TABLE 1 
Comparison of our  results on an 43 • 16 lattice with those 

of ref. [7] on an 8 a lattice (,8 = 1.55) 

43. 16 84 ref. [7] 

eh(t = 1) 2.07 _+ 0.02 % 
fft(t = 2) 1.83 + 0.09 1.85 _+ 0.23 
ff~t(t = 1) 2.47 + 0.02 2.54 _+ 0.06 
ffq(t  = 2) 1.73 +_ 0.12 2.13 +_ 0.46 

Comparison of r~t(2 ) and of ~(2)  shows that these values can hardly be dis- 
tinguished within statistical errors, and within the scaling window these values are 
argued to exhibit the asymptotic behaviour t ---, ~ quite accurately. Putting all our 
information together, we obtain the estimate (7a) of the introduction. 

At/3 = 1.55 we can compare with the results from 9000 sweeps on an 84 lattice as 
given in ref. [7]. This is done in table 1. Within the statistical errors only small 
finite-size effects are indicated. 

Finally we would like to mention that our high-statistics data, show that the 
distance-zero plaquette-plaquette correlation function C]t(0) is a very smooth func- 
tion of/3 (see fig. 4). This may well be in contradiction with the claim made in ref. 
[9] of a break in the slope of the derivative of the average plaquette energy - OE/O/3 
at 13 = 1.6 using the Manton action. Both quantities are defined by eqs. (11), (12) 
with c, = ~,]. For CH(0) one uses space-like plaquettes at time t = 0 (summed over 
space translation and rotations) whereas for - 0 E / a / 3  all the plaquettes of the 
lattice are used. This should not make much difference as far as qualitative 
properties, like the presence of phase transitions, are concerned. 
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Fig. 4. The connected correlation function cll(0) as ft, nction of m. 
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3. Excited states 

As in sect. 2 we consider the spacelike Wilson loops of fig. 1. In ref. [14] we have 
explicitly constructed all irreducible representations of the full cubic group on each 
of these loops. For the convenience of the reader we repeat some of the results. 

In the standard notation for point groups the irreducible representations of the 
full cubic group are A~(ld), T((3d),  Ee(Zd), T2e(3d) and A~(ld) (P  = +pari ty  and 
in brackets the dimension of the representation). In the continuum limit of an MCV 
calculation these representations become respectively related to spins: 0 e, 1 e, 2 p, 2 e 
and 3 p. For SU(2) the representations R(OP) of the full cubic group on the operators 
OP of fig. 1 decompose as follows: 

R(1) = A~ * E +, (15a) 

R(2) = A~" * A~- • 2E + , (15b) 

R(3) = A~- • E+~  T2 + * T l * T z- , (15c) 

R(4) = A~ • T2 + . (15d) 

In sect. 2 we investigated the A~ representation. Now we consider T~-, E ' ,  T2 +, 
T 2- and A~. Our MC statistics is that of sect. 2. 

From our SU(3) experience [14] we expect high-lying excited states (in units of 
m(0*)) and severe problems with scaling. However, for SU(2) with Manton's action 
it was claimed in ref. [7] that (at/3 = 1.55 on an 84 lattice) spin-2 and spin-3 states 
are obtained with masses of the order m(0 ÷) _+ 30%. With our present high-statistics 
analysis such a result can be ruled out. It is consistent to attribute it to statistical 
fluctuations. As for SU(3) [14] we find the lowest mass values for the E + representa- 
tion. Details are, however, quite different. Our present main results for the E* 
representation are summarized in fig. 5. Minimization at distance t = 1 lowers 
significantly the mass values as obtained from the 1-plaquette operator (m~÷(1)) 
alone. For the optimized wave function the signal is supposed to be maximal. We 
have results for mE-(2), which are clearly out of the statistical noise, contrary to the 
results mE'(2) (i = 1 . . . . .  4) for single operators. It is remarkable that the m E. (2) 
results are well consistent with the mE'(1) results. This means we do not expect a 
very drastic lowering for this state by going to larger distances. In fig. 5 we see no 
signal for scaling, albeit the m E~ (2) results do not necessarily exclude scaling. In 
table 2 we have for the considered values of/3 collected the fractions m E'(1)/m A: (1). 
In the scaling window of m A: (1) we find a steady increase. But contrary to SU(3) all 
fractions are below the two-particle 0 ÷ threshold. Therefore our present 2 + data are 
consistent with rather late scaling of the 2 + state and a mass value 1.5 m(0-)  < m(2 ~) 
Unfortunately the lack of scaling prevents any serious prediction of the continuum 
limit. Our results from T2 ~ are consistent with those from E +. 
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Fig. 5. MCV results for m(2 ÷) with the representation E +. 

Finally we have collected in table 3 our results for 1- ,  2 -  and 3 +. As is obvious 
from eqs. (15) each of the results relies on a single operator. The results at distance 
t = 1 are much higher than those for 2 + from single operators. At distance t = 2 only 
noise is obtained. With insufficient statistics, accidentally low-lying results may be 
obtained. For instance roT2-(2) = 1.0 + 0.3 (13 = 1.55) or mat (2)  = 1.1 + 0.5 (/3 = 

1.60). In view of an unstable overall pattern such values have to be discarded. 

TABLE 2 
Mass fractions 0 + / 2 "  from minimized results at distance t = 1 

[3 rnV+(1)/mA( (1) 

1.20 1.27 
1.30 1.31 
1.40 1.45 
1.45 1.52 
1.50 1.58 
1.55 1.63 
1.60 1.68 
1.65 1.75 
1.70 1.70 
1.80 1.46 
1.90 1.36 
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T^atr 3 
Excited glueball states from correlations at distance t = 1 

59 

,8 m(1 ) m(2-)  m(3 +) 

1.20 6.1 + 0.4 5.7 __ 0.7 5.5 + 0.4 
1.30 7.2 + 0.9 5.2 + 0.4 5.3 + 0.4 
1.40 6.3 + 0.6 4.9 -'- 0.2 5.0 +__ 0.2 
1.45 5.8 + 0.4 5.0 -'- 0.3 4.8 +__ 0.2 
1.50 5.8 + 0.3 4.5 ± 0.2 4.8 +__ 0.2 
1.55 5.8 + 0.4 4.6 + 0.1 4.5 + 0.1 
1.60 6.1 __+ 0.4 4.6 + 0.2 4.9 + 0.2 
1.65 5.9 __+ 0.3 4.6 + 0.2 4.4 + 0.1 
1.70 6.1 + 0.4 4.4 + 0.2 4.3 +__ 0.1 
1.80 6.4 + 0.6 4.5 + 0.2 4.3 + 0.2 
1.90 6.2 + 0.4 4.3 + 0.1 4.3 + 0.3 

Conclusions are difficult; at least it is indicated that all these states are much higher 
than 0 ~ and also 2 +. 

4. Summary and conclusions 

Our MCV calculation for SU(2) lattice gauge theory with Manton's action has 
given a scaling window for the m(0 ÷) state. Comparing the continuum estimate (7a) 
with the corresponding one for Wilson's action (2), consistency with universality is 
found. A warning comes, however, from the 2d a-model. In this model mass gap 
results with the l-loop improved action [17] are very different from those with the 
standard action, whereas mass gap results with the tree-level improved action [18] 
are rather close to those with the standard action. 

Our results for 2 ÷ vary between 1 . 2 m ( 0 * ) < m ( 2 * ) <  1.8m(0") (table 2). The 
upper value is much lower than the corresponding one in case of SU(3) [14] with 
Wilson's action. Lack of scaling, however, prevents a continuum estimate. The 
results for 1-,  2-  and 3 ÷ states are again much higher, and we do not have a good 
explanation. A discussion would be similar to that given in ref. [14]. 

The Monte Carlo calculations were carried out at the Leibnitz-Rechenzentrum der 
Bayrischen Akademie der Wissenschaften, Mtinchen. One of the authors (K.K.) 
thanks the CERN theory division for travel support in an early stage of this work. 
B. Berg likes to thank G. Mack for a clarifying discussion about the violation of 
Osterwalder-Schrader positivity. 
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