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The screening of the quark-antiquark potential by dynamical quark-antiquark pairs is 
numerically investigated in SU(2) colour gauge theory with Wilson fermions. The expected 
qualitative behaviour is born out by a high-order hopping-parameter expansion. The screening 
length is about 0.8 fm and the dissociation energy of a heavy quark-antiquark pair is near 600-800 
MeV. 

1. Introduction 

In this paper we report on an attempt to calculate the screening of static colour 
charges by dynamical quarks in the framework of the Monte Carlo evaluation of 
lattice QCD. As it turns out, the statistics of our numerical calculations allows only a 
rough determination of the screening parameters. However, the methodological 
experience and the qualitative insight gained seem worthwhile to be described. 

Monte Carlo simulations of lattice gauge theories (in particular, lattice QCD) 
represent the most successful approach for dealing with the non-perturbative prob- 
lems of hadron dynamics. The first results (relation between string constant and 
A-parameter [1], glueball masses [2, 3] or deconfinement temperature [4-6]) were 
obtained in pure gauge theories. In the next step, namely the tentative calculation of 
the hadron spectrum [7-9], the coupling of fermions to the gauge field had to be 
considered. However, fermion pair creation was neglected ("quenched approxima- 
tion"). The effect of pair creation was included only recently in the effective action 
[10,11], i.e. the so called "fermion determinant" was taken into account, and the 
corresponding corrections were estimated for some quantities where those are small. 

* Supported by Bundesministerium fiir Forschtmg und Teclmologie, Bonn, Germany. 
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With this paper we want to open the discussion of problems for which the "fermion 
determinant" is decisive, because it allows the fragmentation of confined quarks into 
hadrons. 

The screening of static colour sources by dynamical quarks is the simplest of these 
problems. As fragmentation processes in general [12], this is well studied in the 
Schwinger model. There it can be shown explicitly, how the linearly rising potential 
becomes a short range potential [13,14]: if and only if external and fermion charges 
match, the external charges are completely screened by fermion pair creation. In the 
intuitive language of QCD, this phenomenon is described as the breaking of  the 
colour string between the static heavy quark-antiquark pair by the light dynamical 
q~l pairs. By this process the static heavy quarks turn into heavy colourless mesons, 
therefore we may consider the screening mechanism as an adiabatic "fragmentation" 
of heavy quarks into heavy mesons. This can also be studied in the strong-coupling 
limit of lattice QCD [15]. 

The QCD potentials can be described by the expectation values of Wilson loops 
[16]. Screening is indicated by a transition of the area law to a perimeter law for very 
large Wilson loops. In other words, the local string tension expressed by the Creutz 
ratios [1] vanishes for large distances. Therefore, the study of screening in lattice 
QCD requires the calculation of the expectation values of large Wilson loops in the 
presence of the fermion determinant. 

The lattice description of fermions has its own problems. Wilson fermions [17], 
Susskind fermions [18] and Dirac-K~aler fermions [19] represent competing lattice- 
approximation schemes. Because of the different treatment of "species-doubling" 
one would expect that the main differences of these schemes show up in problems 
for which the fermion determinant is decisive. From this point of view it would be 
interesting to treat the screening effect in different schemes. However, as a continua- 
tion of previous numerical calculations [20, 21, 9, 22] the computational work of this 
paper is done for Wilson fermions. Some of our qualitative results might be 
transferred to the other schemes. For the geometric Dirac-K~ihler fermions we plan 
to present it, together with the description of the "geometric hopping-parameter 
expansion", in a future paper. Dealing with the QCD fermion determinant in a 
Monte Carlo calculation is a difficult technical problem. There are, however, several 
possible numerical methods which seem to be promising. The best way is, presum- 
ably, to include the fermion determinant (at least approximately) in the updating. 
This can be achieved by the "pseudofermion method" (see ref. [10] and references 
therein). Estimates can also be obtained by evaluating the theory at negative flavour 
number (in some sense, replacing fermions by bosons [23,11]). Another interesting 
method is based on the stochastic calculation of the fermion determinant [24]. It is 
also possible to directly evaluate the full fermion determinant on a few (limited size) 
lattices [25]. As stated before, here we use the hopping-parameter expansion and 
hope to demonstrate convincingly the feasibility of the description of colour charge 
screening by this method. 
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2. Discussion of the calculations 

The computation of the expectation values of large Wilson loops U(C) = I-ItE~U(I) 
in SU(2) lattice QCD is based on the path integral over gluon configurations U(I), 
U(I) ~ SU(2), { / = (x, #)}: links of the lattice F, and over the anticommuting quark 
fields ~b x, ~y: 

W(e)=½f®vf~f®'rlTrV(e)exp(So[V]+ E ~O~), (1) 
x , y  

z=f vfe  f ffexp(SotVl + E  Qxy'y)" (r) 
x , y  

Explicit "gaussian fermion'integration" leads to 

w(¢)  --- l f®u½TrU(¢)exp(So[Ul  + Sqn[Ul), (2) 

z = f®Uexp(So[ U] + Sqe'[ U ]), (2") 

with the effective action describing virtual qcl pairs: 

Sqff[u]  = lndet Q[U]. (3) 

For the gluon part of the action we assume the standard Wilson form (g - 2 = ¼fl): 

1 
SG[U] = ~ PerE T r ( U ( P ) +  U - I ( P ) - 2 ) ,  (P: plaquettes). (4) 

The quark matrix Q[U] has the general form: 

Qx,~2[Vl=ASx,~ - E U(x,~)B,~xl,x+e.8~,x~. (5) 

A, B~, are 4 x 4 matrices acting on the Dirac components of the Wilson fermions: 
A = 4r + am; B~ = ½(r + ~,~), .f_. = - ~,~,, or 16 X 16 matrices for Dirac-K/ihler com- 
ponents given in ref. [19], respectively. This form of Q[U] admits a hopping-parame- 
ter expansion of the quark part of the effective action v~ef eq. (3). For this we make ~ q  , 

in the fermion integration the substitution ~A --, ~, then Sg ff becomes, up to an 
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additive constant: 

S~n[U] = Trln(1 - KM[U]) 

R=2 ~ E Tr 1-[ M~U(x,g) 

K R ~ KR 
- -  E "~-~L~[U] =-- --~-LRIUI, 

R=2 R=2 
(6) 

with M~ = K -1h- ln t t  (K = (8r + 2am)-1, Mg = r + "Y/t for Wilson fermions with one 
flavour, r -- 1 in our calculation) Ee~ sums over all closed paths C~ of length R with 
initial and end-point x. 

The procedure of the numerical evaluation of eq. (2) with Sqrr[u] according to eq. 
(6) consists of the following steps. 

(i) We consider W(C) and Z as the expectation values of ½Tr U(~)expSqff[U], 
and expSqrr[U] with respect to the probability measure (1/Zo)expSG[U ] of pure 
gluon dynamics. Therefore the first step consists in producing samples of gluon 
configurations in thermal equilibrium by the Metropolis method using the action 
So[U ], eq. (4). Altogether we produced 30 configurations on a 104 lattice with 
periodic boundary conditions, separated by 50 iterations with 3 Metropolis updat- 
ings per link. The value of the coupling constant is/3 = 2.3 which seems to lay in the 
middle of the scaling window. The average values of the Wilson loops Wo(I, J; U) 
for length I, J = 1,... 5 is calculated for all the configurations. 

(ii) The main numerical effort goes into the calculation of Sqer[U] for the different 
configurations. By standard methods [20,21,9,22], we calculate the coefficients 
L~[U] of the local hopping-parameter expansion up to the order R = 32 for a 
number of points x. These are - 300 points per configuration in a sample ~ of 20 
configurations, and - 50 points per configuration in a sample • of 30 configura- 
tions; the points are chosen by random selection. Averaging L~[U] over x leads to 
an approximation of the hopping-parameter coefficients LR[U] of Sqff[U]. 

(iii) In order to improve the convergence of the sum Sqff[U] = 
-F~=2(KR/R)LR[U] for hopping parameters K close to the critical value Kcrit- 
0.16, we transform these power series in Pad6 approximants. These calculations give 
average values ~f~ of Sqef[U] which increase from Sqfr= 144 for K--0.10 up to 
Sq fe --- 1437 for K-- 0.16, (see table 1), the relative variances of the distributions of 
Sqef[U] within the samples t~ and ~ are of order 0.5-1%. Relevant for the 
determination of W(C) are the deviations ZlSqfr[u] of Sqff[U] from the sample 
averages (see eq. (7)). Therefore, we represented ASqff[U] as a function of K for all 
20 configurations U of the sample ~ (fig. 1). Up to K = 0.14 the 16th-order power 
series in K 2 gives usually a good value. In the range K =  0.14-0.16 the Pad6 
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TABLE 1 
values of the quark part of the effective a c t i o n  ~etf, and their approximation by formula Average (1 1) 

K 0.10 0.11 0.12 0.13 0.14 0.15 0.16 

~eff 144 222 339 490 709 1015 1437 
~ff (approximation) 141 216 322 472 681 972 1357 

approx ima t ion  becomes  impor tan t ,  bu t  the central  par t  of  the Pad6 table is always 

stable (the deviat ion f rom the series is in most  cases less than 10-20%). 
(iv) Final ly we calculate W ( G )  as the quot ient  of  weighted sample  averages 

ZV~aor~WO[I ,  J ;  V]expSqf f[v]  XvWo[I,  J; VlexpASqf ' [V]  
W [ / , j ] =  = 

~'u exp Sq" [ V ] Z v  exp A Sq n [ V ] 

(7) 

A ~ Sq 

0 

-5  

-14 

////f 
///// 

I 

' o~o~' o'.,2 :~',~ a I 

, 

Fig. 1. The distribution of the fermion part of effective action S~ ff (the average subtracted: AS,~ rf= Si ft 
_ ~ett) over the 20 configurations of sample ~ as a function of the hopping parameter K. 
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A look at fig. 1 shows that at larger values of K only very few of our configurations 
actually contribute to this weighted average, a fact, which makes our statistics pure 
in this range. This shortcoming of our procedure is of course a consequence of the 
fact that S~ef[U] is not included in the updating procedure of the Metropolis 
method. It can be partly cured with help of the following remark. The lowest 
non-vanishing term, R = 4, in the hopping-parameter expansion eq. (6) (with r = 1, 
we use) has the form 

¼K'~-~L4x[U] "=8K4 E Tr{U(P)+ U-I(P)}, 
x P ~ F  

(8) 

similar to that of the pure gluon action, eq. (4). It can, therefore, be absorbed in 
S~[U] by a shift in the coupling constant fl ---, fl - 32K 4 = 2.3, and thus included in 
the updating procedure. The fluctuations AS~m[U] of the reduced action S~ rfr= 
-E~=6. . .  are smaller on the average by a factor of 2 compared to S~ fr, which 
improves considerably the distributions of weights in eq. (7). The inclusion of the 
6th-order term of eq. (6) in the updating procedure would not be difficult and would 
certainly lead to a further improvement. In this first calculation the results on W(C) 
are represented in fig. 2. This concludes the first cursory description of our 
procedure. Next we shall give a theoretical interpretation, and we shall try a critical 
assessment of the numerical data gained in this way. 

The numerical calculation of the Coefficients LR[U] lead us to the discovery of an 
approximation formula for S~ff[U]. We observed that these are given to a surpris- 
ingly good approximation by 

Ln[U] = WR/2-1LR(1). (9) 

Here LR(1) are the coefficients of the hopping-parameter expansion of the logarithm 
of the free determinant: 

sqefql K ) = -  ~_~ ~-~-~-RL"(1) 
R = 4  

= - 2  E In 1 - 2 K E c o s  ~ + 4 K  s i n ~  , (10) 
kpffi B ,tt 

(p,t~= 1...4, N =  10), for a numerical evaluation see also ref. [26]. W---W(1,1) 
= ½ Tr U(C (1,1)) denotes the value of the smallest Wilson loop (plaquette). Formula 
(9) indicates that a lengthening of the paths C R in (6) by two links corresponds on 
the average to the addition of an uncorrelated plaquette to the area enclosed by C R. 
For most of the LR[U] up to R = 32 eq. (9) is correct within 10-20%. Only a change 
of sign, which for LR[U] happens already for R --- 16 compared to R = 24 for LR(1), 
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Fig. 2. The value of the Wilson loops W(I, I) after taking into account the fermion determinant.  
( W(I, I) o is the value without the fermion determinant at fl = 2.3.) Also shown are the results W(I, l ) j  
of the expansion in eq. (12) fo r j  = 1,2. Full curves indicate a relative error less than 10% (of W/Wo - 1), 

dashed curves have an error 10-20% and dotted ones an error 20-30%. 

[26] induces major deviations from eq. (9) for R -- 14 . . . .  18. Using eq. (9) for all 
orders R allows a summation of the hopping-parameter expansion (6) 

S,~ff ( U, K)  = -~  Sqer (1, ~/-W K ) . (11) 

The quality of this formula when applied to ~ee is shown in table 1. It might be that 
such a formula is only valid for the particular range of coupling constants we 
consider. However, formulas like this, or improvements of it, may be very helpful for 
the calculation of more complicated quark fragmentation processes. It turns out, that 
for the calculation of the screening effects the approximation formula (11) is not 
good enough. We shall discuss another simple application of eq. (11) in sect. 3. 

In order to gain insight into the mechanism of the quark part of the effective 
action, we discuss a sort of perturbation expansion for the expectation values of the 
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Wilson loops, eq. (2), in powers of Sqn[U]: 

w(¢) = Wo(e)  + w i ( c )  + w 2 ( c )  + . . . ,  (12) 

yo( e ) :  (f@UITrU(C)expSc[U])/(f@UexpSG[U]) 

= < I T r  U(¢)> o, (13) 

Wz(e ) : <ITr U(¢)s~ef>o - <lTr U(E)>o<S~n>o, (14) 

w2( e ) :  ½(<½TrU(C)(s~f f )2>o-<ITrU(C)>o<(S~f f )2>o)  

- <S~n>o(<ITr U(~)s~rf>o - <ITr U(¢)>o<S~ff>o). (15) 

In a theory with N F flavours, the W~(C) are the coefficients of an expansion of 
W(G) in powers of N F. This follows immediately from the fact that in such a theory 
the quark part of the effective action is Oq,~afNF = NFS,~ n. In our case the expansion 
(12) seems justified by the relative smallness of S~ ff compared to S~---83000. 
However, the second-order contribution turns out numerically important. This 
indicates a difficulty for the flavour-extrapolation estimates based on calculations at 
N F < 0 [111. 

The correction terms WI(~ ), W2(~ ) ... .  have the form of correlation functions 
between the Wilson loops and the effective action. Writing Sqn[U], according to eq. 
(6), as a sum over localized densities: 

K R  R s£"[u]=E ~e"tH L - ,  , S q r f I U ; x l  = - E - - - ~ - L x [ U I ,  (16) 
x R 

eq. (14) becomes 

Wz(~) = E {(½Tr U(G)Sqtf[u; x]> o - <½Tr U(C)>o(S~u[U; x])  o }. (14') 
X 

This shows how in our formulation the screening appears as a correlation between 
the coefficients LRx[U] calculated from the local paths Cx of the hopping-parameter 
expansion, and Wilson loops of fixed position. It is the finite correlation length 
between this Wilson loop and the local effective action which leads to a result for 
W(C) independent of the size of large lattices. Similarly, the higher terms in 
expansion eq. (12) can be reduced to local higher-order correlations of s~ff[u; x] and 
U(C). The simplest numerical procedure is to average eq, (13)-(15) over position 
and orientation of the Wilson loops C of a given size (I, J).  By this, however, the 
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basic local correlation expressed by eq. (14') gets lost. As a consequence, our result is 
given by a difference of large numbers, i.e. by small fluctuations around large mean 
values. For our choice of the size of the Wilson loops, the size of the C x of the 
hopping-parameter expansion, and the lattice size 10 4 , this problem seems unavoid- 
able. However, for larger lattices one should use the locality of the correlation for an 
effective arrangement of the calculation (e.g. by subdividing the large lattice in 
smaller pieces and proceeding with these smaller ones in the same way as we do here 
with the whole 10 4 lattice). 

Similar to eq. (7), we calculate WI[I, J], W2[I, J] as averages of the samples ~ and 
of configurations. Since W~[I, J] have the form of correlations, the expressions 

become simplified by the subtraction of the sample averages: 

WI[I , J] = ~ AWo(I, J; U)ASqff[u], (17) 
U~A,~ 

W2[I, J ]  = ½ E AWo(I, J; U)(ASqU[U]) 2, (18) 

aw0(z, J; v)  = w0(I, J; v ) -  w0(z, J), 

s;" [ v ]  = sg'  [ v ]  - 

with 

(19) 

As we mentioned above, the mean square average of ASqff[u] is in the order of 
½-1%. Typical mean values and variances of the Wo(I, J) are: W0(2, 2)= 0.1803 + 
0.0043, W0(2, 3) = 0.0886 + 0.0040, W0(3, 3) = 0.0348 _+ 0.0036. The correlation coef- 
ficients between the W0(I, J )  and the hopping-parameter coefficients L R are typi- 
cally 0.5...0.6 in sample ~. 

In fig. 2 we have compared the first- and second-order perturbation calculation to 
the result of the simple averaging according to eq. (7). We shall base our physical 
discussion in sect. 3 essentially on these data. For hopping parameters up to 
K =  0.13 there is reasonable agreement between the different approximations. For 
larger K we represent the accuracy of the different calculations by lines of different 
pattern. This estimate of the accuracy is based on comparing the results on different 
subsamples of configurations. 

For planning future calculations we summarize the sources of errors in our 
procedure: 

(a) the order of the hopping-parameter expansion, or Pad6 approximation, respec- 
tively; 

(b) the number of points we choose for the calculation of Sqff[u] on a given 
configuration; 

(c) the number of configurations considered; 
(d) the order of perturbation theory. 
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In order to illustrate the importance of higher orders in the hopping parameter K 
we give three examples. (a) K =  0,12: terms up to order R -- 6 contribute 50-70%; up 
to R = 12 contribute 95% of Sqff[u]; the deviations between power series and Pad6 
approximants are less than 1%. (b) K = 0.15: the corresponding values are: R --- 10 
for 70%; R = 14-16 for 95%; Pad6 approximations indicate deviations up to 10%. (c) 
K = 0.16: the power series do not show convergence up to order R = 32; qualita- 
tively the Pad6 approximants are more stable. (The 4th-order term is always 
included in So[U ] as described above, eq. (8).) 

The fact that the determination of Sqff[u] is based on a subset of lattice points x 
only, contributes an error to the variance o of the Sqff[U] distribution. Assuming, as 
usual, o = o0~/1 + d / N  x for the distributions of the hopping-parameter coefficients 
LR[U], a comparison of the two samples ~wi th  N~ = 300, and ~ with Nx = 50 allows 
a determination of d. For the sample ~ we get ~/1 + d / N  x = 1.30,1.25,1.09,1.05,1.04 
for R = 6, 8,10,12,14. From this we draw the conclusion that for sample ~ we have 
chosen the minimal acceptable number of points. For higher-order coefficients less 
points are needed, because a large number of long closed curves contribute. This fact 
may be used to save computer time. The number of configurations Nconf in the 
samples ~ and ~ are too small to allow any quantitative statement on the depen- 
dence of the accuracy on Nconf. However, a look at fig. 1 clearly shows that a larger 
number of configurations is necessary for the larger values of K. This becomes 
particularly evident by considering the second-order perturbation contribution, eq. 
(18). On the one hand, according to fig. 2, these contributions are important. On the 
other hand, their dependence on AW(ASqff) 2 makes them very sensitive to bad 
statistics. 

In conclusion, based on this experience in handling the quark part of the effective 
action, we think that one can get reliable results by roughly doubling the computer 
time. The present computation used the equivalent of 250 h of IBM 3081. 

3. First physics results 

Now we want to give a physical interpretation of our numerical results. From the 
limited statistics of the data it is evident that the physical conclusions derived from 
them are mainly qualitative. Quantitative statements should merely illustrate what 
type of results one might get from improved calculations. 

First we may repeat that our calculations show a significant influence of the quark 
part of the effective action Sqff[u] on large Wilson loops, fig. 2. The deviation goes 
in the direction of a screening of the static SU(2) colour charges. This can be seen 
from a comparison of the Creutz ratios 

W(I ,  J ) W ( I -  1, J -  1) 
X(I ,  J ) =  - l n  W ( I -  1, J ) W ( I ,  J -  1) (20) 
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TABLE 2 
Creutz ratios calculated for different hopping parameters K with fermion determinant by sample 

averaging x(L J), first-order perturbation Xl(I, J), and without fermion determinant ~(I, J)  

575 

K 0.10 0.11 0.12 0.13 0.14 0.15 0.16 

/~(K) 2.296 2.295 2.293 2.290 2.287 2.284 2.279 
X (2, 2) 0.317 0.315 0.312 0.309 0.307 0.305 0.304 

+ 0.002 :k 0.002 ___ 0.003 + 0.004 + 0.005 + 0.006 __+ 0.009 

X(2,2)1 0.316 0.314 0.311 0.298 0.285 0.259 0.202 
+ 0.002 ± 0.002 + 0.003 + 0.004 + 0.005 + 0.008 + 0.018 

X(3, 3) 0.216 0.211 0.204 0.195 0.183 0.164 0.146 
+ 0.006 _+ 0.009 + 0.010 + 0.012 + 0.015 + 0.020 + 0.028 

X(3, 3)1 0.215 0.207 0.193 0.170 0.137 0.094 0.030 
+0.006 ±0.009 ±0.011 +0.014 +0.018 ±0.030 +0.030 

~(2, 2) 0.3336 0.3340 0.3366 0.3383 0.3416 0.3441 0.3536 
~(3, 3) 0.2323 0.2330 0.2361 0.2378 0.2422 0.2465 0.2524 

of  different sized Wilson loops, with and without  taking into account  of  Sqff[U]. At  

large hopp ing  pa ramete r s  the Creutz  rat ios of  large loops become  smaller  with 
Sqfr[U], indicat ing that  the potent ia l  becomes  flat ter  at larger distances. (See table 

2.) 
It  is more  daring to construct  f rom our  numerical  results the potent ia l  and derive 

its typical parameters .  Besides the p rob lems  with statistics at large hopp ing  pa rame-  
ters the ma in  difficulty arises f rom the lack of  in format ion  on the Wilson loops 
larger than 3 × 3. (They are very difficult to obta in  even without  fermion determi-  
nant.)  We have to compare  our  screened potent ia l  with the unscreened one at 
distances where the confining potent ia l  itself is not  purely  linear, but  has a 
decreasing slope due, for instance, to the short-dis tance Cou lomb  part .  For  illustra- 
tion, we tried the following paramet r iza t ion  of the screened potent ia l  V(r) :  

V(r)--- V ( r )  - x r +  --x(1 - e-~'r) .  (21) 

Here  V(r )  is the pure  gauge theory confining potent ia l  at fl = 2 . 3 - 3 2 K  4 and xr  is its 
l inear par t  (K = string tension). Th  e exponent ia l  fo rm of  the screened linear potent ia l  
chosen in (21) is suggested by  the calculat ions in the Schwinger model  [13,14]. 

According  to ref. [16] we have at fl = 2.279 (corresponding to K = 0.16) V( r )  - xr 

= a / r  with a = 0.164 + 0.008 (fig. 3). Assuming  that  the Creutz  ratios measure  the 
slope of the potential :  x ( n a n  ) = a ~ d V / d r l r _ a ,  and denot ing the lattice spacing in 
quenched Q C D  (a t /3  = 2.279) by  6 = a/~ ,  f rom the values of  X(2,2) and X(3,3) in 
table 2 and 6zx = 0.19 [16] we obta in  a#  = 0.72 and ~ = 2.4. In  order  to t rans form 
these values to physical  units we need an est imate of  the lattice spacing d. F r o m  the 
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calculation of the hadron masses in quenched SU(2) gauge theory [27, 28] we 
estimate ~ =  1.2 GeV-1. This gives /~-1= 0.8 fm for the screening length and 
limr__,o0V(r)= x//~ = 0.6 GeV for the dissociation energy of the heavy (external) 
quark-antiquark pair. These numbers depend somewhat on the K-value one uses. 
K---0.16 is nearly equal to the critical value of the hopping parameter where the 
pion mass in quenched approximation vanishes. A preliminary estimate of the 
physical K-value, including the effect of the fermion determinant in the meson 
spectrum [28], shows that this remains roughly the correct value corresponding to 
zero quark masses. Besides the above procedure we also tried some other similar 
parametrizations for screening (e.g. by taking the parameters a, • from our own data 
instead of the fit of ref. [16]). The obtained values of/~-1 ranged from/~-1 = 0.6 to 
/~-1 __ 1.0 fm and those of ~//~ from 500 to 1000 MeV. The largest uncertainty was 
in the ratio of the lattice spacings ~ = a/~ changing between 1.1 and 2.4. Thus our 
calculation leads to screening parameters of the expected order of magnitude. A 
better determination of the parameters and a check of validity of the parametri- 
zation (21) would be possible from data at different ,8 values. 

Finally, let us briefly comment on a simple use of the approximation formula (11). 
For free quarks the singularity corresponding to zero quark mass is at K--- (8r)-1. 
In the free theory this is the lowest singularity also in the multi-quark Green 
functions which couple in the interacting theory to the hadronic bound states. The 
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Fig. 3. The qr:l-potential fit i f(r)  of ref. [16] compared to the screened potential eq. (21) with parameter 
values/~-  t = 0.8 fro, K/~ = 0.6 GeV (curve A). The tangents at n = 1, 2, 3 indicate the values X1.2.3 of the 
Creutz ratios, where the parameters are derived from. The dashed curve (B) is the screened potential at 

some other typical parameter values;/~-1 = 0.9 fm, X/it = 0.9 GeV. 
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"cr i t i ca l  h o p p i n g - p a r a m e t e r "  K c in the in terac t ing  theory  is def ined  as the K-value,  

where  the lowest  h a d r o n  (the p ion)  becomes  massless  [29]*. Accord ing  to the 

a p p r o x i m a t i o n  (11) K c in the quenched  app rox ima t ion  is connec ted  to the  f ree-quark  

s ingular i ty  b y  

1 
K c -  8rx/-W " (22) 

This  fo rmula  is well  sat isf ied by  the known  est imates  of  K c in SU(2) [27, 28]. F o r  

instance,  a t  fl = 2.3 (and  r = 1) eq. (22) looks like 0.159 --- 0.161. In  a recent  SU(3) 

ca lcu la t ion  on 16 4 lat t ices [30, 31] we have at  fl = 5 .4 :0 .193  --- 0.182 and a t /3  = 5.7: 

0.169 --- 0.169. 
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