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The vortex free energy was proposed to dlstlngmsh between the confinement and the Hlggs 
phase (in the sense of 't Hooft) in lattice gauge theory, when matter fields are present that 
transform according to an arbitrary representation of the gauge group In ttus paper I consider the 
Z(2) Hlggs model and calculate the vortex free energy in the screemng part of the 
confimng/screemng phase of Fradkm and Shenker The result does not agree with the expected 
behavior that corresponds to the structure of the phase diagram Therefore the vortex free energy is 
no longer a good indicator for confinement when matter fields transform non-tnwally under the 
center of the gauge group (such as Z(2) Hlggs scalars) 

1. Introduction 

The vortex free energy was established as a suitable order parameter for pure 
gauge theories or gauge theories with matter fields that transform trivially under the 
center of the gauge group [1]. It was st'pposed to remain suitable in the case when 
matter fields are present that transform non-trivially under the center, e.g. according 
to the fundamental representatxon of SU(N). In [2] it was shown that it distinguishes 
between ranges of coupling constants in a Z 2 Higgs model where strong-coupling 
(go 2 << 1, K << 1) and low-temperature (go 2 >> 1, x << 1) expansions are applicable. 
go 2 is the gauge, x the matter coupling. The strong-coupling region is assumed to 
belong to the confinement phase; the low-temperature region should show decon- 
f inement--i t  corresponds to the Higgs phase in the sense of 't Hooft [3]. These 
results were in agreement with the expectations from the phase diagram. 

In this paper I investigate the vortex free energy for the Z(2) Higgs model in the 
region of x >> 1 and arbitrary go 2. One calls this region the screening phase, because 
the limit models for large go 2 show the usual Higgs mechanism, i.e. the global 
symmetry is spontaneously broken above some Xc for infinite go 2, and Debye 
screening of charges becomes possible. The screening phase should not be confused 
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d2 

F3g 1. Boundary conditions on a three-damenslonal container A. The actaon of the singular gauge 
transformation for gauge groups wath center Z(2) as given by o(b)--, -~(b)  ff b~ T, o(b)---,o(b) 

otherwise. 

with the Higgs phase in 't Hooft's sense. The different regions of the phase diagram 
are shown in fig. 2. 

We briefly recall the definition of the vortex free energy. One considers a system 
on a finite lattice A. For simplicity we restrict ourselves to three dimensions, the 
four-dimensional case can be treated analogously. A vortex free energy v is the 
difference between the free energies of the container A, when the boundary 
conditions on A are twisted for the gauge field by the action of a singular gauge 
transformation in the center of the gauge group, cf. fig. 1. One is interested in its 
limit per unit length, but in the explicit dependence on the breadth d I and the height 
d 2 of the container, see fig. 1: 

lim 1 v(A b.c.) = lim 1 ,  Z(A, t .b .c . )  (1.1) 
d3--,oo d33 ' d3-~o~ d-33 m Z(A,unt .b .c . )  ' 

(t.b.c.) denote twisted, (unt.b.c.) untwisted boundary conditions. We choose periodic 
boundary conditions (p.b.c.) for the gauge field in directions 1 and 2, and free b.c. in 
direction 3. The action of the singular gauge transformation on the matter fields 
cannot be defined, therefore free b.c. for the matter fields in all directions are 
imposed. 

It will be shown that in the region of large K and arbitrary go 2 the vortex free 
energy approaches a constant value independent of dl and d 2. This behavior 
characterized the Higgs phase in the sense of 't Hooft with no vortex condensation. 
For further discussion of the results see sects. 2, 5. 

2. The model 

We consider a Z(2) gauge theory with Z(2) Higgs scalars (the so called Z(2) Higgs 
model or gauge-invariant Ising model). The variables are string bit variables 
o(b) ~ Z(2)= { + 1 } attached to links b of the lattice, and matter fields T(x )~  Z(2) 
attached to sites x. o(b) ---, o(b)-1 = Ü(b) under reversal of the direction of the links 
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L(a,~)=goZ~,(o(Op)-l}+K ~., z(x)a(b)r(y), (2.1a) 
p b=(xy) 

o(Op)=  l-I o(b) .  (2.1b) 
b~Op 

ap denotes the boundary of the plaquette p. The gauge part has the standard 
Wilson-Wegner form. go 2 and K are the (bare) gauge and matter couplings, respec- 
tively. The sums run over all plaquettes p and links b of the lattice. Plaquettes on 
opposite sides of A are summed only once, if the gauge field variables satisfy p.b.c. 
in the corresponding directions. 

The Haar measures on Z(2) amount to summations over all configurations 
( o ( b ) =  +1)  and ( ' r (x )=  +1}: 

. . . .  f do(b)...=½ E .... 
o(b)= _+I 

fov ... = f xl-x-I (x)..., = 1  E . . . .  (2.2)  
r(x) = 4-1 

For the phase diagram of this model, the rigorous results of Marra and Miracle So16 
are available [4]. They establish analyticity of the free energy in the whole shaded 
region bounded by the dotted lines in fig. 2. The confining/screening region (I, III) 
was already investigated in the work of Osterwalder, Seiler [5], and Fradkin, Shenker 
[6]. Monte Carlo data confirm [7] that the regions (I, III) and (II) are separated by a 
line of phase transitions (full line in fig. 2.). For region (II) we have shown by 
low-temperature expansions [2] that the vortex free energy approaches a constant 
value independent of d 1 and d 2. This behavior corresponds to the definition of the 
Higgs phase in the sense of 't Hooft. High-temperature (i.e. strong-coupling) 

0 go 2 oo 

"K c 

Fig 2. Phase diagram for the Z(2) t-hggs model m three dimensions. 
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expansions in go  2 and in x yielded a qualitatively different behavior of the vortex 
free energy in region (I). It decays exponentially with the perimeter 2.  ( d  1 + d2) [2]. 

Region (I) and (III) is called the confining/screening phase. The name is justified 
by the limit models: K = 0 gives the pure gauge theory where confinement was 
proved for go 2 << 1 [5]. (The vortex free energy decays with the cross section dzd 2 in 
this case.) go 2 = ~ corresponds to the Ising ferromagnet for Z(2), where the global 
symmetry is spontaneously broken for ~ > K c. This half-line go 2 = o0, K > Kc borders 
the region where a Higgs mechanism is said to occur. Since there is no phase 
transition in the whole region (I) and (III), confinement should be compatible with a 
kind of Higgs mechanism [8]. 

The vortex free energy is a non-local quantity. Therefore the absence of a phase 
transition between regions (I) and (III) does not imply the same (dl, d2) dependence 
in these regions. However, if the behavior of the vortex free energy would reflect the 
confinement property throughout the whole region, it should be qualitatively the 
same in regions (I) and (III). It turns out that it behaves otherwise. This is shown by 
the calculation of the vortex free energy for arbitrary go 2 but large x in the following 
sections. 

3. Cluster expansion for the vortex free energy 

Finally we turn to a duster expansion of the quantity defined in (1.1). In order to 
exhibit the dependence on boundary conditions we define 

Z±(A) = Z ( A ,  unt.b.c.) ___ Z ( A ,  t.b.c.). (3.1) 

In the limit of d 3 ~ oO the second term becomes very small compared to the first. 
Therefore in this limit 

Z(A, t.b.c.)/Z(A, unt.b.c.) = l l n (  Z+ (A )/Z_ (A ) } . (3.2) 

First we rewrite Z± as a polymer system with activities ~ ±(pol) defined in such a 
way that 

Z±(A)= 1 + • I--[~±(pol). (3.3) 
Epol_cA pol 

The sum runs over all disjoint unions E pol of polymers. Polymers are certain subsets 
of A. They will be specified in sect. 4. The meaning of "disjoint" will also be 
explained there. The activities ~ ±(pol) can depend on the boundary conditions. They 
are defined such that they are small in the range of coupling constants considered 
here. If they are small enough, the free energy In Z± admits a convergent cluster 
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lnZ±(A)=Y'~a(Q) I-I ~±(pol), 
Q p o l E Q  

Q = (pol~ '~ . . . . .  po l~  }. 

119 

(3.4) 

Here the sum runs over all sets of linked clusters. A linked cluster Q is a non-empty 
collection of not necessarily distinct polymers. It may contain polymers with 
multiplicity n, >/1. It has to be linked in the following sense. Consider the abstract 
graph ~Q whose vertices are the polymers in Q, and whose links are the pairs of 
polymers in Q which are not disjoint. ~Q has to be connected, a(Q) are some 
combinatorial factors. 

4. Peierls expansions 

Large K suggests to look for an expansion of Z± in sets S of negative links 

S = { b =  (xy) ~A/r(x)o(b)r(y)= - 1 } .  (4.1) 

This determines sets P of frustrated plaquettes 

P= {p ~A/o(Sp)= - 1 }  = 05. (4.2) 

P is given by the coboundary 05 of $ because of (2.1b). In terms of $ and 8S Z± is 
reproduced by 

A 
Z + ( A ) =  ~ (+l)n(°~)e-2~lSle -2g°21~1, 

$cA 
(4.3) 

if the sum is restricted to sets g that satisfy the following boundary condition: 0~ is 
penodic in directions 1 and 2. It follows that 

n ( b $ ) :  = I~$ n - l m o d 2 ,  (4.4) 

(with ,~ = (plane x 3 = const)N A) is independent of X 3. ( n ( 0 S ) =  0) corresponds to 
unt. b.c., ( n ( ~ S ) =  1) to t.b.c. It counts the number of vortices that wind once 
(mod 2) through A in direction 3. 

Suppose that a certain configuration S is given and boundary conditions for 0S as 
specified above are fulfilled. Let us verify that to any given S there exists a 
configuration (o, ~') such that the equality (4.1) holds, and the implied b.c. for T and 
o are gauge equivalent to the originally chosen b.c., i.e.p.b.c. (t.b.c.) for the gauge 
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field o in directions 1, 2, free b.c. for o in direction 3, and free b.c. for ~- in all 
directions. S fixes ~$ uniquely. 

Conversely bS fixes the set of links b with o(b)= - 1  up to the action of a local 
gauge transformation on gauge fields. Choose a gauge transformation such that o 
satisfies p.b.c, or t.b.c, in directions 1, 2. This is possible, because n (~$)  is indepen- 
dent of x 3 as a consequence of the periodicity of 05. This still leaves the freedom of 
gauge transformations that satisfy p.b.c. (t.b.c.) in directions 1, 2. Then ~ fixes those 
x for which ~ - ( x ) = - 1 ,  up to the action of a global reflection T ( x ) ~ - ~ - ( x ) .  
Therefore $ fixes the configuration in terms of o and ~- with specified b.c. (periodic, 
twisted or free, respectively) up to a gauge transformation with p.b.c. (t.b.c.) for o, 
and up to the reflection " r (x )~  - r ( x ) .  Since the action is locally gauge invariant 
and the Haar measure on Z(2) was normalized, the summation over gauge equivalent 
configurations yields a factor 1. 

Deftnttton of polymers. Consider the lattice as a cell complex made of sites, links, 
plaquettes and cubes. We associate graphs G to subsets S of links with 5 as in (4.3), 
i.e. 05 satisfies p.b.c, in directions 1,2 (hence n (0S)  is independent of x3). The 
vertices v, of the graphs are the links b e S. Two vertices o 1 and v 2 are connected if 
the coboundaries 0b, (t = 1, 2) of the links b 1 and b E share a common plaquette p 

(0b,  n 0bE) :g ~ .  (4.5) 

For plaquettes p e ( u ,  0b, n OA) note that those on opposite sides in directions 1, 2 
are identified. 

Polymers are those sets S of links whose corresponding graph G(S)  is connected. 
Two polymers pol 1 and po1 E are disjoint if their graphs are not connected. Products 
of winding numbers factorize over disjoint polymers pol 1 and po1 E 

n(0po l  1 0 0po12):= I(0poll  © ~polz) n 2"lmod2 

= I(0pol 1 n 2') 0 (Opol 2 n 2")lmod2 

= In(~pOll) + n(Opol2) lmod2 = n(~pOll)n(~pOlE). 

Then the polymer representation of Z+_(A) reads 

Z + ( A )  = 1 +  E E I-Ig,±(pol~) .  
n>~l  E~n=xpol , l 

(4.6) 

E~=lpol, are unions of n disjoint polymers. An overcounting of polymers in (4.6) is 
excluded, because disjoint unions of polymers are no longer polymers themselves. 

The activities ~ _+(pol,) are defined as 

~b ± (po1) := ( + 1) n(~pol) e_ Eg~ 21bpolle- Z~lpoll. (4.7) 

The cluster expansion is given by (3.4) combined with (4.7). 
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Fig 3 Polymer that makes the leading contnbut~on 
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The leading term. The leading term is made by a polymer pol e such that 0pol~e is 
a vortex that winds once through A in direction 3 (n (0po l e )=  +1). In order to 
minimize the number of negative links, pol e should lie in the boundary of A, cf. fig. 
3. A possible choice of pol e is the set T, the minimal set of links in OA that admits 
the introduction of the twist. There are 2(d 1 + d2) possible positions for pol e on OA. 
Therefore we find 

lnZ+- lnZ_=l (d l  +d2){e-d3~2go2+2~'+O(d3e-2~gU+~')). (4.8) 

Corrections are of order  (d3e-2tgff2+~)), because the minimal decoration to the 
leading term consists of one negative link and one frustrated plaquette in addition. 
Then we get for the vortex free energy per unit length 

lim 1 {lnZ(A,t .b.c .)- lnZ(A p.b.c.)} 
d3 ---~ oo d33 

= - 2 ( g o  2 + + O ( e  2' o 2 + ' , ) ,  (4.9) 

where we have used (3.2) and (4.8). 
In general, the activity of a polymer pol = S is at most of order (e -2~lsl) << I for 

K >> 1 and arbitrary g o  2. F o r  small go 2 the factor e -2g°21bsl is of order 1. However, 
we use an expansion in sets S of negative links instead of sets of vortices 0S. 
Therefore suppression factors from the matter part are always present, the activities 
are small for large ~, and Peierls expansions are justified. Correction terms can be 
treated as in [2]. They sum up to an exponential independent of the cross secUon 
did 2 of the container. 

5. Summary of results 

In table 1 we have summarized the results that were obtained in regions (I), (II), 
and (III) of the phase diagram for different models. Similar results hold m region (I) 
for the Z(2) Higgs, the Z(2) quark, the SU(2) Higgs, and the SU(2) quark model. 
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TABLE 1 
Vortex free energy per umt length for large dl, d 2 

Phases Models hm d3 ~ ~ ( l /d3)  v (A, b c ) 

Hlggs of. e _  a( dl + d2) (I) gff 2 << 1, ~ << 1 Z(2) quark 

(confinement) SU(2) Hlggs 
quark 

(II) gff2 >> 1, ~ << 1 Z(2) I-Iaggs quark c°nstl * 0 

(deconflnement) 

(III) gff 2 arbitrary, • >> 1 Z(2) Higgs const 2 * 0 
(screemng) 

Also in region (II) they are qualitatively the same for Z(2) quarks as for Z(2) Higgs 
fields. From the behavior derived in sect. 4 for region (III) we conclude that the 
vortex free energy is not a good indicator of confinement when Higgs fields are 
present with non-trivial transformation properties under the center of the gauge 
group. Its behavior does not agree with the expectations from the phase diagram. It 
distinguishes between both regions where confinement is expected to occur, but not 
between phases (regions (III) and (II)) that are separated by a line of phase 
transitions. It seems that the vortex free energy tests for confinement only through 
vortex condensation. On the other hand the result is not surprising. In terms of 
gauge invariant variables #(b):= r(x)o(b)r(y) we get an expansion in sets ~:= 
{ b ~ A/O(b) = - 1  } of negative links and sets 3~ of frustrated plaquettes (vortices). 
At least ¼ I~1 negative links are necessary to create a vortex of length 13~1 0n three 
dimensions). Therefore long vortices ~ ~ are suppressed by factors o f order (e -t ~/2)t~l ) 
at least, for large x and arbitrary go 2. 

I would like to thank Prof. G. Mack for valuable discussions. 
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