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Dielectric lattice gauge theory models are introduced They revolve variables ~ ( b ) c  .G that 
are attached to the hnks b = (x + e~,, x)  of the lattice and take their values m the hnear space t~ 
whach consists of real hncar combinations of matrices m the gauge group G The polar decomposi- 
tion • (b)  = U(b)%(x) speofies an ordinary lattice gauge field U(b) and a Iond of &electric field 
r,j tx o, oj*8,j A gauge mvanant pos~ttve sem~defimte kmeuc term for the ~-field is found, and it is 
shown how to incorporate Wdson fermtons m a way whtch preserves Osterwalder-Schrader 
pos~tlvlty Theories with G = SU(2) and without matter fields are stu&ed m some detail It is 
proved that confinement holds, m the sense that Wdson-loop expectation values show an area law 
decay, if the euchdean action has certain quahtatlve features wluch tmply that • = 0 0 e d~electnc 
field ~ 0) is the umque maximum of the actmn 

1. Introduction 

The dielectric theory of quark confinement [1] is very appealing because it offers a 
physical picture which is easy to understand and predictive to some extent (fig. 1). It 
is therefore a challenging task to derive this theory from QCD and to develop it into 
a full theory from which one can compute "everyttung". This should also shed light 
on the dynamics of gauge theories in general. Some work in this direction was begun 
by Nielsen and Patkos [2]. 

In (classical) electrodynam~cs of polarizable media, the dielectric constant embod- 
ies sufficient information about the polarizable medium if attention is restricted to 
static, spatially homogeneous situations. In an effective dielectric theory based on 
QCD one restncts attention to long-distance properties only. The role of the 
"polarizable medium" is played by the high-frequency parts of the gauge fields (and 
possibly of the matter fields, when they are treated as dynamical fields), and 
information about it is embodied in a slowly varying dielectric field e(x), or related 
fields o(x). One seeks to describe the long-distance behavior of QCD by an effective 
(euclidean) action L which incorporates an ultraxaolet (UV) cutoff M and depends 
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Fig 1 The dielectnc theory of confinement [1] 

on the variables o(x) in addition* to the gauge fields (and matter fields) that were 
present in the original QCD action. 

It is expected that the effective action L will have a unique maximum at e = 0 (i,e. 
o (x)  - 0) when the UV-cutoff M is low enough (of the order of the ultimate physical 
mass scale). This is the basic hypothesis of the dielectric theory of confinement, and 
confinement is supposed to follow from it (see fig. 1). Coloured sources are the 
source of an electric induction ® which is related to the colour electric field E by a 
dielectric constant (or rather field) e, ®---eE. Therefore ® can only be non-zero 
where e * 0. If e = 0 is the unique classical vacuum then e ~: 0 costs energy and this 
prevents the °~-field from spreading. If the sources transform non-trivially under the 
center F of the gauge group then Gauss' law for the abelian group F forces the 
6)-field to extend to infinity or to another source, because the gauge field carries no 
F-charge itself [3]. As a result, a string will form whose energy is proportional to its 
length (fig. la). If the sources transform trivially under the center of the gauge 
group, the string can break and the source gets screened by the gauge field (fig. lb). 

Following Nielsen and Patkos one may imagine that block spins in a (pure) gauge 
theory are defined as superpositions of parallel transporters U(o~) along paths with 
fixed end points 

E (1.1) 
x - " y  

Here, x and y are centers of neighbouring block cells of side length M-  t, w : x ~ y 
are paths from x to y on the original lattice (or continuum) and p(w) is a 

* This is m contrast with Adler 's approach where the chelecmc field ts a funcuon of the electromagneuc 
field strength [2] 
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Fig 2 The potentml ~ of eq (2.16) 

non-negative real weight function. For instance one might choose 

, ( y ,  x )  = ar O---7(-av+~2 ) +(y,x), ~=O(M),  r = d - 2 ,  (1.2) 

in d dimensions, z~ v is the covariant laplacian in the fundamental representation. 
Eq. (1.1) is obtained by a random walk expansion of the propagator in (1.2). On a 
lattice it gives 

p ( ~ )  = a2 (2d+  p,2a2) -I~'1-1 ' a = lattice spacing, 

if the path w consists of I~1 links h i . . .  bl,oj of the original lattice. The parallel 
transporter is U ( ~ ) =  U(bl,ol)...U(ba). [Such random walk representations were 
studied by Brydges and Federbush, Frohlich and Durhuus, Aizenmann, and Brydges, 
FrOhlich and Spencer, following the pioneering work of Symanzik [4-6]. Similar 
expansions will be used extensively in the present paper.] 

Evidently, ~(b)  will take their values in the linear space ~ which consists of real 
linear combinations of matrices in the gauge group G. Following Drouffe [7], one 
may write down a polar decomposition of ~(b),  this defines the variables o~(x) and 
an ordinary lattice gauge field on the block lattice. 

In the present paper I introduce models of effective actions L(q~). This seems 
worthwhile since it will permit us to study the dielectric confinement mechanism in 
some detail. The models are local. A gauge invariant positive semidefinite kinetic 
term of the ~-field is found. As a byproduct, a "natural" definition of field strengths 
in lattice gauge theory emerges. It is shown how to incorporate dynamical Wilson 
fermions in a way which preserves Osterwalder-Schrader positlvity. Theories with 
G -- SU(2) and without matter fields are studied in some detail. It is proved that 
confinement holds, in the sense that Wilson loop expectation values show an area 
law decay, if the action L(q~) has certain qualitative features which imply that q~ = 0 
is the unique maximum of the action (theorem 1). 

The models are described in sect. 2. The Wilson loop criterion for confinement [8] 
is also discussed there, theorem 1 is stated, and some qualitative expectations 
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concerning the dependence of effective actions on the cutoff are formulated. Gauss' 
law and the hamiltonian limit are discussed in sect. 3. Sect. 4 spells out the 
dependence of the action on variables attached to links of a particular direction. In 
sect. 5 random walk representations of generalized covariant propagators are derived 
and estimated. In sect. 6, theorem 1 is proven, using the material of sects. 4, 5. Sect. 7 
contains the proof of Osterwalder-Schrader positivity in the presence of fermions [9]. 
It is self-contained and does not use the material of sects. 3-6. 

2. The models 

The models live on hypercubic lattices A in d dimensions with sites x, links b, 
plaquettes p, etc. Unless indicated otherwise, the lattice spacing in all directions is 
the same and shall be set equal to 1. e~ is the lattice vector in the /t-direction, 
e_~ = - e  w If b = (x + e~, x)  then - b  -- (x, x + e~) is the same link with reversed 
direction. We shall use a symmetric summation convention v~w~, =- ~E~. z i + ave% • 

The models shall possess local gauge invariance under a gauge group G, for 
instance G = SU(N)  or U(N) .  

Let ~ be the linear space of all matrices • that admit a representation of the form 
¢ = Er, U,, with /3, ~ G, r, real. According to Drouffe [7], ~ consists of all complex 
N × N matrices if G = SU(N)  or U ( N )  with N>~ 3, while it consists of all real 
multiples of elements of G if G = SU(2) or U(2). 

The variables O(b)  - O~(x) ~ .~ of dielectric lattice gauge theory are attached to 
the finks b = (x + e~, x) of the lattice. They take their values in the linear space .~, 
and 

O ( - b ) = O ( b ) * ,  i.e. O u ( x ) * = O  u ( x + e u ) .  (2.o) 

They will be integrated over using the Lebesgue measure dO on 9. They transform 
under gauge transformations in the standard way 

o . ( x )  V(x + e . ) O . ( x ) V ( x )  -1 , v ( . )  G.  (2.1a) 

They admit a polar decomposition [7] 

O~,(x) = U ( x  + e~,, x )o~ , (x ) ,  with U(b)  ~ G ,  (2.2a) 

ou(x)  >1 O, real, if G = SU(2) or U(2) ,  

o~,(x) = a positive hermitean N × N matrix for U ( N ) ,  N >/3, 

% ( x )  = e '°.  (positive hermitean N × N matrix) for S U ( N ) ,  N >/3, (2.2b) 

The lattice gauge field U(b) transforms under gauge transformations in the same 
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way (2.1a) as ~b(b). o~(x) is gauge invariant if G = SU(2) or U(2), and transforms 
covariantly according to 

o~,(x) ~ V(x )o~ , (x )V(x )  -~ , (2.1b) 

m general. It is convenient to define generalized parallel transporters. If the path C 
consists of links b~... b, we set 

q~(C) = ~ ( b , ) . . . ~ ( b , ) .  (2.4) 

Note that ~ ( - b ) ~  ~b(b) -~ in general; therefore the parallel transporter along a 
path - C .  C which runs back and forth is not unity, and spikes in a path C effect 
~(C). 

Given ~, we define a kind of covariant derivative O~, which acts on ~-valued 
functions on links according to 

O~'t',(x) = ~t',(x + e , ) ~ u ( x )  - ~ ( x  + e , )q ' , (x )  

=- ~I'(x + e~ + e,, x + e ~ ) ~ ( x  + e~, x )  

- ~ ( x  + e, + e~, x + e , ) ' t ' (x  + e,, x ) .  (2.5) 

Under gauge transformations, D~,ff'~ does not transform like ~, itself, but rather 

D~,ff',(x) ~ V(x  + e~, + e , )D~,~, (x)V(x)  -1 

Evidently, in the special case '/, = cb we have antisymmetry 

~ , (  x )  - O,~,(  x )  = - O , ~ (  x ) .  

(2.1c) 

~,, is the difference of the parallel transporters along the two paths from x to 
x + e~ + e, shown in fig. 3: ~t is a generalized field strength. As a consequence of its 
definition ~t satisfies a Bianchi-identity (2nd Maxwell equation). Extend the defini- 
tion (2.5) of O~ to 

O~I',~ , , ( x )  = "I',, ,~(x + e ~ ) ¢ ~ ( x ) -  q~(x + e,, + . . .  + e,,)ff',, 

Then the Bianchi identity reads 

Ox~ , + O,~x~ , + O~,x = 0. 

Square integrable functions q',~ 

,,(x). 

(2.5') 

(2.7) 

~ form a Hilbert space ~ k ,  and covariant differ- 

(2.6) 
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X - - x ÷ e v  

Fig 3 Field strength (see text) 

entiation D specifies a map ~k --" ~k+l" Its adjoint D*: ~ k ÷ l  --" ~ k  takes ~ ,, 
into D~*~/'~ ~,. Explicit computation shows that 

o: -- (2.5") 

These formulae can also be used for standard lattice gauge theory where ~ ( b ) =  
U ( b ) ~ G .  In particular, definition (2.6) of ~ is a natural definition of a field 
strength on a lattice, in sp~te of the unusual transformations law (2.1c). In the limit 
of zero lattice spacing, e~ ~ 0, and the standard transformation law in the con- 
tinuum is recovered. The hermitean conjugate of ~ ,  is 

~ * ( x )  = ~_¢ ._ , (x  + e~ + e~). (2.9) 

We shall use a norm II" II of N x N matrices A which is defined by 

IIAll 2 = ~ t r A  A. (2.10) 

Now we are ready to write down candidates for the dielectnc lattice gauge theory 
actions. As a kinetic term for the dielectric gauge field ¢ we take* 

- h E  E tt%,(x)tt 2. (2.11) 
x V.,v--  + 1 : d  

Evidently, Lhn(ff 0 ~< 0. The absolute maximum L~,n(q~ ) = 0 is assumed at q~ = 0, but 

* One may consider adding a term 

d 

Lto~g - - {y~-~ ~ [qO-~,ff~,(x)[[ 2 

In parucular,  mclumon of the term vath ~ =  - v  m the sum (2 11) would amount  to that The 
degeneracy (2 12b) would be removed by such a term However, such a term wrecks the proof of 
Osterwalder-Schrader posltavlty (for reflecuons m planes with sttes) because tt is basically a next-to- 
nearest-nelghbour interaction. 
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also for some more general field configurations: 
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Lk~(q~ ) = 0 if U(b) = pure gauge, and 

either o~(x) = 0 except possibly for a single value of  # ,  

or %(x) depends only on x u. 

(2.12a) 

(2.128) 

This degeneracy is removed when mass terms are added. In the special case when q~ 

is a constant multiple of a standard lattice gauge field, ~ ( b ) =  fl~/4U(b) with 
U ( b ) ~ G ,  the standard Wilson form of the lattice gauge theory action [8] is 

recovered 

L~(B'/4U) = 2-~ Etr[V( Op) -]] .  
P 

(2.13a) 

As usual U(Op) = U(b4). . .  U(b~) where b~...b 4 are the four links in the boundary 
of the oriented plaquette p. 

L k ~ ( ~  ) is invariant under gauge transformations in G. In the case that G = 
SU(N) ,  N >/3, its actual gauge symmetry is larger, U ( N )  rather than SU(N)  (but 

not* G L ( N , C ) ,  since q > ( - b ) = q ~ ( b ) * ~  q~(b)-a). It could be broken down to 
S U ( N )  by adding terms involving d e t ~ ( b )  to the action. If N > 4 they have 
dimension > 4 and the question arises whether such terms are irrelevant and 

whether this could lead to spontaneous creation of a U ( N  ) symmetry**.  
L~n is a sum of products of four ~ ' s .  We call it biquadratw because at lS only 

quadratic in the fields ~ ,  that are attached to links of a particular direction /~. 
(~" ~ *  involves two factors ~ ,  and two factors ~,).  This biquadratic character will 
be crucial in the proof of theorem 1. 

We may add mass terms to the action. They can be either quadratic or biquadratic 

mass terms = - E (~ m2 E II~,(x)l l  2 
x p-- :1:_ 1 _+_d 

"t"11¢2 2 I[~(X)II2[It~j,(X)[I2 / • (2.11b) 

If  m 2 >  0 then the action Lkm + mass terms has ~ = 0 as its unique maximum. 

* Th,s is m contrast with Sharatchandras work [24] 
"* One speaks of spontaneous symmetry generation if the long-distance behavior of a theory shows a 

larger symmetry than its action. A celebrated example due to Frohhch and Spencer [10] is 
the s,ne-Gordon representauon of a 2-d~mens~onal Coulomb gas m ~ts low-temperature (Kosterhtz- 
Thouless, or d~pole) phase Its symmetry at long distances ~s R rather than l 
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Finally we may add further local interactions, for instance 

- - E %(%(x)), 

E (2.Uc) 

o are determined by • through the polar decomposition (2.2). These expressions are 
automatically gauge invariant ~f G = SU(2) or U(2). If G = SU(N)  or U ( N )  with 
N >t 3 we require that %~t and %~ depend only on the eigenvalues of the matrices 
o(x). 

One may wish to consider anisotropic lattices or anisotropic actions. In this case 
one may admit real functions c'~l~, %~.~ which depend on directions/t,  v in place of 
~'~q, %~, and similarly for the mass parameters rn 2, x. 

Adding the terms (2.11a-c) one obtains an action 

L(,i~) = L~,( ' /~) + mass terms - Va(~/, ) - 1/2((/) ) . (2.14) 

Partition functions and expectation values in the pure dielectric lattice gauge theory 
model with action (2.14) are defined as usual 

z = f H  

(0) = z-'  f H d4,( b )O( (2.15) 

d ~  is Lebesgue measure on the real-linear space ~, it is invariant under gauge 
transformations (2.1a). We assume that the potentials V are bounded below, so that 
the integrals are absolutely convergent (on a finite lattice). We adopt free boundary 
conditions unless otherwise indicated. 

An interesting 2-parameter family of models of this kind is obtained by putting 

m 2 _ _  ~ : 2  = 0, '~ = 0, 

Fig. 2 demonstrates the expression (2.16) for G = SU(2): 

(a)  X = 0.1 < Xc, (b)  X = O.25 = Xc, (c) X = O.5 > Xc. 

dU is the Haar measure on G. cV 1 depends on ~ ~ .~ only through the factor o, in its 
polar decomposition (2.2), because of invariance of the Haar measure dU. If X ---, 0, 
~ tends to a 8-function concentrated on [3t/4G. As a result, one obtains the 
standard lattice gauge theory with the Wilson action (2.13a) as a limiting case. By 
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computing the second derivative at ~, = 0 one sees that %~ has the qualitative shape 
shown in fig. 2a if ~, < ?~c, or fig. 2b if ~, = ?,c, and of fig. 2c if 2~ > 3,~. ~.c = ¼ if 
G = SU(2). The main result of this paper, theorem 1 below, implies that static 
quarks are confined in these models, for G = SU(2), if )~ > ;k c, I.e. if the potential c-~.~ 
has the qualitative shape of fig. 2c. (A quadratic mass term can be extracted from 
such a potential w~thout affecting the validity of the hypotheses of theorem 1.) 

Imagine now that the renormahzation group transformations [11] map the two- 
parameter family of models with action (2.16) into itself, for a suitable choice of 
blockspins, and in such a way that an initial point h = 0, ,8 arbitrary, moves along a 
trajectory wtuch reaches ;~ > ~ eventually. Then we could conclude that the stan- 
dard lattice gauge theory model with Wilson action (=  our model with ~ = 0) shows 
confinement of static quarks for arbitrary ,8. Of course such a scenario is unrealisti- 
cally simple (it could at the very best be approximately true) but it dlustrates the 
general idea. Dielectric lattice gauge theory models are candidates for effectwe 
actions for Yang-Mills theory, and it is hoped that renormalization group transfor- 
mations produce such an effective action with a single non-degenerate maximum at 

= 0 when the UV-cutoff is brought down far enough (to the order of the ultimate 
physical mass), in 4 or fewer dimensions, when asymptotic freedom is true in 
perturbation theory. 

In contrast, in 5 or more dimensions, the model (2.16) is expected to undergo a 
deconfinmg phase transition as ?, is lowered, if fl is large enough. 

Theorem 1 is for local actions. The exact effective action will be non-local but it 
ought to be possible to write it as a sum of a local action plus irrelevant terms which 
can hopefully be (neglected or) treated as a perturbation. The method of sects. 4 -6  
appears capable of generalization to include non-local terms, provided they are small 
and decay fast with distance. In place of the gaussian integration which leads to eq. 
(4.12) one would have to use cluster expansions as in refs. [12]. 

I will now state some general properUes of the models with action (2.14). The 
models satisfy reflection positivity for reflections ~9 in lattice planes through sites, 
assuming the boundary conditions are O-invariant (compare with sect. 7). As a 
result, the models admit a quantum mechanical interpretation. The Hilbert space ".~ 
of physical states consists of gauge invariant square integrable wave functions 
xIt({ (l~(b))bEZ) which depend on variables q~(b)~ ~ attached to links b m the time 
x a = 0 hyperplane Z. The scalar product is defined by integration with the Lebesgue 
measure l-lb~zdtb(b). Furthermore, the transfer matrix T is hermitean and its 
square is therefore positive (semi) definite and can be used to define a hamiltonian 
[13, 14] so that T 4 = e -2UT2. 

Next the Wilson criterium for confinement of static quarks [8] will be adapted. 
Consider a rectangular closed loop C composed of straight pieces C~, C 2, C a, C 4 of 
length T, L, T, L respectively, as in fig. 4, and define 

W(C) = t r ( ~  (C 4 )U(C 3 ) ~ ( C  2 )U(C~ )) .  (2.17) 
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Fig 4. Wdson loop 

The parallel transporter ~(C) is defined by eq. (2.4), and U(C) is defined by the 
same equation with U substituted for ~. U is determined by • through the polar 
decomposition (2.2). (The set of field configurations • where either U(C1) or U(C 3) 
is not well-defined has measure zero. This remains true in the infinite-volume limit, 
because of the Markov property [15].) In the limit T --* 

( w ( c ) )  = (2.18) 

and V(L)  can be interpreted as the potential energy of a pair of static quarks at a 
distance L. Therefore static quarks will be confined by a linearly rising potential 
V(L)  if ( W ( C ) )  shows an area law behavior. 

Instead of W(C) one can use tr U(C), but for our purposes W(C) is more 
convenient. 

The argument for the validity of this criterion is the standard one. One considers 
the Hilbert space ~(~x~, ~2 of states with static quarks (of opposite charge) at positions 
x t and x 2, and specifies a trial state • ~ ~x,,  ~. Then one considers matrix elements 
of powers of the transfer matrix T. 

( ~ ,  T 2 " ~ ) / ( $ , ~ )  = e - 2"v~'-x:) ,  as n ~ ~ ,  (2.19) 

assuming ~ does not happen to be orthogonal to the state of lowest energy (highest 
eigenvalue of T)  in ~x,,  ~:. This is a standard assumption which is always needed to 
justify the Wilson criterion. As a trial state we take 

,t,({ = , I , (c4)f  (b)eL+(*)" (2.20) 

b > 0 are the links in the Xd> 0 half space, and L + ( ~ )  is the sum of those terms in 
L which depend on some @(b) with b > 0, plus ½ • those which depend only on q~(b) 
with b ~ Z .  Then ('It, T2"'t ')  = Z(W(C))  and ( ' I ' , ' I ' )=  Z( t r  ~(C4)~*(C4) ) if T =  
2n. This justifies eq. (2.18) with c independent of T. (For simplicity we dropped 
some colour indices and sums over them.) 
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Finally the main result of this paper can be stated. I will only prove it for 
G = SU(2). It states that static quarks which transform according to the fundamen- 
tal representation of SU(2) are confined by a hnearly rising potential m dielectric 
lattice gauge theories with a local action L (of the form (2.16)) provided ~ -- 0 is the 
only maximum of L(q~) and it is non-degenerate (i.e. ( d 2 / d t 2 ) L ( t ~ ) , . o  4= 0 for all 

= { ~ ( b ) E  ~ } b ~ a ~ 0). This is in agreement with the intuitive argument of fig. 1. 
The theorem is actually not quite as strong as that, though: It does not cover the 
case where the potential V has "valleys", such as c'~(o,,o~)= ?~(o~- o~) 2 (which 
would favor isotropic o). 

Theorem 1. Constder the dzelectnc lattice gauge theory model (wuhout matter 
fields) m d dtmensions with gauge group G = SU(2) and actton L(@) gwen by eqs. 
(2.14), (2.1 la,  b, c), wuh m 2 > O, r 2 >t O, e~q and c'~ 2 bounded below. I f  

d 
E 

s,=2 

zs a non-decreasing functzon of 01 ~ R +, for arbttrary o~ E ff~ ÷, 1, = 2 . . .  d, then the 
Wtlson-loop expectatton value obeys an area law 

(W(C) )  <~c(L)e -~Lr, with a> O. (2.21) 

R + is the set of non-negative real numbers and W(C) was defined in eq. (2.17) and 
fig. 4. The theorem remains valid for anisotropic lattices or actions, provided 
m~, tc~,q."ll,~x, is substituted for m 2, xz,%],5~ in Its statement. Theorem 1 holds 
for arbitrary d~mension d. 

Finally I will discuss how one may put quark fields into the action. One could of 
course use one of the standard forms of the matter action in ordinary lattice gauge 
theory, with gauge field U(b) that are obtained from q~(b) by the polar decomposi- 
tion (2.2a). This satisfies the requirement of physical positivity (Osterwalder-Schrader, 
or reflection positivity); but it ~s non-polynomial in the ¢"s. A possible local matter 
action which is polynomial in the ~ ' s  and m the quark fields 4', 4" is as follows (in 4 
dimensions) 

Lmatter( ~, 4'+, ~ ) =  ~.,x ( - ~ ( x ) 4 ' ( x )  

+ Z [ K l ~ ( x + e . ) ( 1 - Y . ) O ~ ( x ) 4 ' ( x )  
ta-±l ±4 

- k f f ( x ) ( 1  -y,)¢;(x)rb(x)4'(x)]). (2.22) 

Here y, are euchdean Dirac matrices, and q7 = 4 '*Y4  

{V,, y. } = 23~.. for/~, u = 1 . . .4, y* = V, = - y _ , .  
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For practical calculations we use the hermitean matrices (7.4). Colour and spinor 
indices a are suppressed in (2.22). 

The computation of expectation values involves integrals over anticommuting 
variables ++(x), q,(x) [16]: 

x O(~k, ++, ¢)exp[ L(qb) + L~atm.(~k, ~k +, qb)]. (2.22') 

It will be shown in sect. 7 that physical positivity is satisfied provided 

K 2 < 23 k,  (sufficient condition). (2.23) 

In the special case of an ordinary lattice gauge theory, where ¢ ~ ( x )  ~ G is unitary, 
the last term in (2.22) is proportional to ff~k, because ¢ * 4  --- 1 and the terms with -/, 
and ~,_~ cancel. The matter action (2.22) reduces therefore to the standard Wilson 
action with hopping parameter K---K~(1 + 6k) -1 after suitable rescaling of the 
fields. For given K the constraint (2.23) can be satisfied by a suitable choice of K~ if 
K < ~. This reproduces Ltischers result for standard lattice gauge theory [14]. 

3. Hamiltonian limit and Gauss' law 

The natural way to construct models in continuous time is to start w~th models on 
an anisotropic lattice, and to require that the variables % ( x )  attached to time-like 
links ( x  + e d, x )  get frozen to a constant multiple o 0 > 0 of I in the limit when the 
lattice spacing a t in the time direction tends to zero. This can be achieved for 
instance by taking %c1~ (which depends on the direction tt on an anisotropic lattice) 
to be of the form (2.16) for It = d with h--,  0 as a t --* 0. Integration over the 
remaining variables U(x  + e d, x ) ~  G projects on the physical state space as in 
ordinary gauge theories. The limiting theory admits of a conventional hamiltonian 
description [18]. 

Let X °, a = 1. . .  dim G be a complete set of antihermitean generators of the gauge 
group G, and let B ~ = tr(BX a) for B ~ g. Gauss' law takes the form (in 4 dimen- 
sions) 

(D ,*~4 , (x ) )  ~ = O~(x), a = 1 . . . & m G ,  (3.1a) 

with 

pa= 2 K l ~ b + ( x ) X ' ~ ( x ) ,  (3.1b) 

if the matter action has the form (2.22). The number of equations obtained m this 
way equals the number of generators of the gauge group, as it must be. Eq. (3.1) can 
be obtained, for instance, as the equation of motion that is obtained by varying U d, 

cf. [19], and setting U d = 1 in the end. 
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Let the electric field $, be defined like ~4,, but with the U ' s  in place of the ~'s .  
Inserting the definition and expanding to leading order in the lattice spacing a, in 
the space direction gives, formally, 

3 

E ( ( a , - A , )  * ° o,o, Oo ,) + O(a ) = o °. 

This suggests we identify 

as a dielectric (tensor) field. 

e u ec o,o*6u, (3.2) 

4. The Ol-dependent lmrt of the action 

We return to the consideration of models with discrete euclidean time. The action 
L(O)  given by eqs. (2.14), (2.11) can be split into two pieces 

L ( ~ )  = L " ( ~  1, ~ ± )  + L ~ ( ~ ± ) .  (4.1) 

The first piece contains all the dependence on the variables ~a(x) that are attached 
to links in the 1-direction, and the second piece depends therefore only on the 
remaining variables 

~.L = ( 4  2 . . . . .  ~a) .  (4.2) 

If .~ consists of N × N matrices we set 

1 
(~ t ,  if'l) =- ~ ~-tr ~ ( x ) v t ' l ( x  ) . (4.3) 

x 

After a partial integration (summation), L" takes the form 

L n ( ~ )  = - ½(qbl , [ -AZ + K 2 ~ ) ] ' C + r n 2 ] ~ l ) - - ~ . , ~ f x ( O l ( X ) 2 ,  dP'L ) . (4.4) 
x 

~f:, Is given by 

~ x ( ° 2 ,  q~J ' )=%~(° , )  + E c~2(°1,°~(x)). (4.5) 
v = 2  d 

The multiplication operator O~ and the "transverse covariant laplacian" A l depend 
on • "  and are defined as follows 

°'-~/'1 ( x )  = ½ E [dP~(x+el)*dP~(x+el)~i"l(x)+g'l(x)dP~(x)*dP~(x)] 
/~ ~ __+ 2 _+d 

- GJlL(x)Vl" l (X) .  (4.6) 

If G = SU(2), ~*#~,(x) is a multiple of the unit matrtx and commutes with matrices 
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-A±=e-~-k=~ E D*Ov. (4.7) 
v=~ +__ 1 

/~ ~/'1 ( x )  = ~ .  #Pv.(x+e,)*qPl(x+ev.)~v.(x) 
~ = 4 2  +d 

=--~_,~(x, y)'Ipi(y). (4.8) 
V 

@(x,  y)  is a multiplication operator which is only non-zero if y is a nearest 
neighbour of x. A ± is a covariant generalization of the ordinary lattice laplacian 
which is defined by Af(x) = Y:y[f(y) - f ( x ) l ,  sum over nearest neighbour y of x. 

Let us now consider the expectation value (W(C)) of a Wilson loop operator 
(2.17), with C posttioned as in fig. 4, so that its "short  legs" C4,C 2 point m the 
1-direction. 

W(C) = t r ( * ( C 4 ) U ( C , ) * ( C 2 ) U ( C , ) )  ; (4.9) 

U(CI) and U(C3) are determined by ~ ± .  
We start with a finite lattice A and denve bounds which are umform in the lattice 

size. They remain therefore valid in the infinite-volume limit. 
We write x I = s, x = (s, r),  and denote the endpoints of the path C 3 by (0, r l )  and 

(0, r 2). Their distance is I r i - r 21 = T. Thus 

1 (w(c))  = ~ f l - [  d *  ± (x)et"~('t'")U(C3)l~o.,,,oV(C,)~,,,,,. 
x 

× f ~ [d,,/x)e-%'°,"'2,°~'lexp ( , 'a,  , ,~± - ~  ,,t- + ' : ~ + ' ~ l * , ) }  

t - 1  

× I-I [* , (s,r , ) , , ,~,o~,, ( , , r~) , . , ,~, , ] .  (4.10) 
s = l  

From now on we restrict attention to gauge group G = SU(2) so that ol(x ) is real. 
We insert the Fourier-integral representations of e - %  

e_ ~Ao2.o~) f_+oo = dagx(a, dpX)e'ao2, 
~o 

( o ~ l i + ) .  (4.11) 

If the hypotheses of theorem 1 are fulfilled, we may subtract a small fraction of 
the quadratic mass term cx m 2 and add it to attfx. The monotonicity assumption 
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guarantees then that the Fourier representation (4.11) 
N -  1 tr ¢ l ( x ) *  #x(x)  we obtain, upon inserting (4.11) 

exists. Smce 
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o l ( x )  2 = 

<w(c))-- f rI (x) (as above) f O[da(x)g~(a(x), ~l)d~, (x)] 
x 

X e x p { - - ½ ( q ~ l , [  - A ±  +g26~qT.,+ m 2 _ 2 / a ] ~ l ) }  

L - 1  

x Yl 

The operator a is multiphcation with a ( x ) ~  R.  
The ~vintegration is now gaussian, and can be performed after interchange of the 

order of the integrations. As a result 

× f ~ x [ d a ( x ) g x ( a ( x )  ' O . t ) ] d e t ( _ g i  + x2¢)~, + m 2 - 2ta)- , /2  

L - 1  

X ]- I  ( - A l  + x 2 ~ + m 2 - 2 i a ) ~ , l . ~ . , . t J . ~ O , (  s, r l ; s ,  r2 ) ,  (4.12) 

for G = SU(2). 
The inverse o f ( - A  ~ +x291~+ m 2 - 2ta)-~exists if m 2 > 0, because - A  ± and M 

are positive (see below). It is an integral operator whose kernel is the propagator 
( - A j- + K 2 o91L + m 2 _ 2za) - 1 (x; y). The decay properties of such propagators will 

be studied in sect. 5. 
The partition function Z is represented by the same integral as appears in (4.12), 

without the last factor F I , ( . . . )  in the integrand, and without the factors U(C,). 

5. Random walk representations 

Random walk representations for propagators are well-known [4-6] and were 
studied in detail by Brydges, Fr0hhch and Spencer [5]. In this section I will present a 
self-contained derivation of the random walk representation for the propagators that 
appeared at the end of sect. 4, and derive some elementary bounds on them, for 
/¢2 ~ 0. 

We restrict attention to the gauge group G = SU(2) in the sequel. In this case, 
°31L(x) is a multiplication with a ~.L-dependent non-negative real number, see eq. 
(4.6). We assume that ¢)lL(x)> 0 to begin with. This restriction can be dropped at 
the end by a limiting argument; m 2 > 0 is always assumed. 
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- A ± is a positive operator because - A ± = ~,~,~ ±ID*D~ >10. Writing - A  l = 

6~ _ k as in (4.7) it follows that R ~< ~)E. Call a site x odd if Ea_ lX~ is odd, and even 
otherwise. Define a unitary operator ~ by °2Lg'l(x)= + ' /q(x) with ( - )  for odd sites 
x and ( + )  for even sites. Then 6'tLgKS/L* =~'3L and °2L/~°~L* = - /~  because the 
nearest neighbours x + e~ of an even site x are odd and vice versa. Of course, 

- ~'-~LA ~ o2L* is also positive. Therefore °3L + k >/0, i.e. k >/ - ~ .  Both inequalities 
together imply that 

/~ = ~LR,  with IIIRIII ~ 1. (5.1) 

Here [11" [[I is the operator norm in the Hilbert space with scalar product (4.3). 
Consider now the propagators that enter into eq. (4.12). Inserting - A  ±= 

~JK(1 - R) we have 

( - A  ± +,~6"5Z+ m z -  2ia)- '  =(1  - [ 1  + , ~  + ( m  2 -  2ia)ONL - t ]  - 1 R ) - I  

x ( m 2 - 2 i a + [ l  +,~2]~grc) - '  , (5.2) 

a and 631L are operators of multiplication with real numbers a(x) and °31L(x) > 0. 

Therefore 

ill1 + 1~2 + ( m  2 -- 2ia)63]L-,] -'}l = supl [ 1 + ,2 +(m 2 -- 2 ,a(x))gK(x)-1]- ,1  
x 

(1 + (5 .3 )  

As a consequence of the bounds (5.1), (5.3) we have that 

A - [ I + r 2 + ( m 2 - 2 , a ) ~ I L - ~ ] - ~ R ,  hasnorm IIIAIII~<(I+K2) -~, 

(5.4) 

and the first factor on the right-hand side of eq. (5.2) may be expanded into a 
convergent Neumann series: 

( - A  ± + K 2 ~ +  rn 2 -  21a) -I  = 
oo 

E A"(m2-2,a+(l+~2)s31L)  -1 (5.5a) 
n-O,1, 

l - I  

-- 12 - '  
n - - O  

+A'(--A ± +~26NL+m2-2ta) -I (5.5b) 
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Because of  eq. (4.8) we have 

A q q ( x )  = [(1 + ~2)~")lL + m 2 - 2 , a ] - l R q ' l ( x )  

= E [(1 + ~:2) °~ (x) + m 2 - 2 , a ( x ) ] -  16J~(x, z)~t' t(z  ) . 
Z 

(5.6) 

~ ( x ,  z)  Is only non-zero if x and z are nearest  neighbours  and x 1 = z 1. Therefore,  
eq. (5.5a) produces  a r andom walk representat ion for the kernel. If  yl  = x I = s we 

obta in  

( - -A~ +x2~K + m z -  2 ia)-1(y;  x )  

= Y'~ { [-I [ m Z - 2 t a ( z ) + ( l + ' 2 ) ° ) l L ( z ) ]  l@(z,z')} 
to s x ~ v  ( z , z ' ) ~ o ,  

X [ m  2 -  2 t a ( x )  +(1  + x 2 ) M ( x ) ]  -1 (5.6 ' )  

Summat ion  is over  all paths % from x to y which consist  of links (zl ,  z2) in the 
z ~ --- s hyperplane.  If  yl ~ x 1 the kernel is 0. U p o n  inserting the explicit expressmn 

(4.8) for ~, ,  we obta in  the formula  

( - A  J + g2cglL + m e - 2ia )(81~(y,  x)  

= E ~(~°,+el),,*~q~(*°~)~t~ 1-I [ m 2 - 2 1 a ( z ) + (  1 + ~ 2 ) ~ ( z ) ] - 1  

(5.7) 

for  x ~ = y~ = s. 

I f  the pa th  w, consists of hnks (z 0, zl) ,(z  1, z2)...(z,,_ i, z ,)  the produc t  over  z e % 
is to be read as a product  over  z,, t = 0 . . .  n. The  number of VISitS n,~(z) of the pa th  

~0 s to site z equals the number  of  values of  i, i = 0 . . .  n, with z, = z; it can be > I.  
oa s + e~ is the pa th  G shifted by one lattice spacing in the 1-directmn. The  parallel 
t ranspor ters  q~(~0) were defined in eq. (2.4). 

F r o m  eq. (5.5a) we will obta in  a bound on the p ropaga to r  (for a(x)=--O) 

(_/%1 + x : ~ L + m 2 ) ( l . ~ , # ( y , x ) = ( f s , . v , ( _ A . t  +Kzo-NL+m2)- l faB.  x ) ,  (5.8) 

where f~a. ~, is a .q-valued funct ion defined by [f,q~. x(z)]~n ~-6~r6~6x~v/-N. The  scalar 
p roduc t  (4.3) is m use. Let us use a dis tance a x - Y l  = length of  the shortest  pa th  
f rom x to y, 

d 

I x - y [  = ~ Ix~ ' - y~ l .  
tL = 1 
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According to (5.6), the operator A makes only "single steps". Therefore, the first 
term in eq. (5.5b) makes no contribution to expression (5.8) if l~< I x - Y l .  Conse- 
quently the left-hand side (l.h.s.) of (5.8) obeys 

II.h.s. of (5.8)1 ~ Ill/By,fill IIIf~a. ~lll Illhllltlll( - A ±  + Kzgrc + m2)-llll 

(1 + 

by (5.4) and the positivity of the operators - A  ~, cAlL. Thus finally 

1( _A ± + K2~-F~ + m2)~-sx.,#(y, x)  I ~< m-2(1 + K2) -Ix-yl (5.9) 

This is valid for arbitrary ~ .  It shows that the propagator decays exponentially if 
x 2 > O .  

6. Generalized Fr61dich-Durhuus (random surface) representation and proof 
of theorem 1 

We start from expression (4.12) for the Wilson loop expectation value. We reinsert 
the integral representation for the determinant 

d e t ( - A  J- + 1 ~ 2 6 ~ +  m 2 _ 2 ta )  -1 /2  

d *  1 (x)exp{ , ( * , ,  a f f~ l ) -~(  *1, [ -  A" + x2~jlL + m 2 ] , 1 )  } . 

(6.1) 

We also insert the random walk representation (5.7) for the propagators in the last 
factor of the integrand in (4.12). As a result there will appear sums over L-tuples of 
paths o~= (o~ 0 . . . . .  ~ot_l), where ~s is a path from (s, r2) to (s, r l)  in the z I = s  
hyperplane. Let 

n~,(z)=no,,(z), ifz x = s  

= number of visits of a path ~ to z. (6.2) 

Then the result takes the form 

( w ( c ) >  = z f x ,, 

x E 1--I {da(z)g.(a(z), ~ ± ) [ n ( z ) -  2,a(z)]-~'(Z)e'a(z)°'(z)2} 
g 

L - 1  

(6.3) 
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with 

~ (x )  = m2 +(1 + x2) ~°31L(x) > 0. (6.3') 

Now the a integrations can be done again. Upon inserting the integral representation 

- ,  1 f0 ~°d~.-le-(~-2,~)~ (vl - 21a) = F(n)  

it follows from the definition of g:,(a, cb') (after a variable transformation ~ ~ ~) 
that 

f~o~ dagx(a ,  ~-t)e'~°? [ r / -  2 , a ] - "  = -  ],~ - n foOQ | F(n)  d~ ~n-le-~e-%(°?+ 2~ "~'~) 

(6.4) 

Then 

m ( , o , )  = 

and similarly for ¢(o~ + et)*. 

(6.8) 

Set 

1 
d v, (~) = F - - ~  d~/2"- le- ~, , f n > ~ l ,  dr0 (~) = 8 (~)d~ .  (6.5) 

Th:s :s a probabihty measure on the positive real line, i.e. / ~ d v , ( ~ ) =  1. The result 
of the a integrations is 

(W(C))  = 1 f l - I  dq~, ( x ) e x p { -  ½ (if),, [ - a  x + K2 ~631L + m2]~1)  + L±(  ~ ) }  

L - 1  

× ~ I  O(to, + el)~3,.,,,,.~(lo,),,,13U(C3)a:oU(Ct)fl,_,,. (6.6) 
s=O 

Given ~ l  = ( ~ ( x )  = U(x + e v, x)o~(x))~. 2 d define ~.t = (~, (x))  by 

~ ( x ) = o ~ ( x ) l l .  (6.7) 
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The L-tuples of paths to = (%) can be looked upon as defining a surface with 
boundary C. Eq. (6.6) exhibits the Wilson-loop expectation value as a sum of 
contributions from (random) surfaces to. For the standard SU(2) lattice gauge theory 
model, this representation had been derived by Fr6hlich and Durhuus [4]. In the 
standard lattice gauge theory, an area law decay is supposed to come about through 
destructive interference when the phase factors U ( ~ )  from different paths % are 
added up. In the present approach, part of this effect (at the level of the fundamen- 
tal action) is supposed to have been taken care of in the course of the computation 
of the effective action L (q0, when the block spin variables q~(b) were constructed as 
linear superpositions of parallel transporters along different paths. Destructive 
interference among these will lead to favoring variables q~(b) with small modulus 
o~(x). 

In accordance wxth this physical intuition, we will now proceed to the inequalities 
which are obtained from eq. (6.6) when all phase factors U(-) downstairs are 
dropped. This amounts to replacing q~ by ~b in the last factor. 

Since ~g~ is a non-decreasing function of o~ by hypothesis, and dr, is a 
probability measure on the positive real axis (i.e. "it averages"), we have the 
inequality 

2"~lf ( 2 ¢h J. ~, f dr, (6)e -¢afd°?+2OI t,¢~) ~< e _ .  o,,_ '. (6.9) 

As a result 

1 

" < -  U 
× ~ { ]-/I [ m2 + (1 + to2) ~'.~L (z)] -~t~'  

L1 ) 
x 1--I ~(tos+el)~,+,,~ff(to~).~a, • (6.10) 

s~O 

When ~± is substituted for q~-~, ~IL remains unchanged whereas -z~ ± gets 
replaced by -2t  L . We can therefore now go backwards and use the random walk 
representation (5.7) again to do the summations over L-tuples of paths to in (6.10). 
In order to handle the special case x 2 = 0 later on, we extract a factor first. We split 

with 

m = + (1 + ~ 2 ) ~ ( x )  = o ( . ) [ ½ m  = + (1 + } ~ = ) ~ ( x ) ] ,  

o ( x )  = 1 + ~ 2  + ~ m 2 ~ ( x ) - ,  (6.11) 
1 + K 2 + m z 9 % ( x )  -~ 
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We extract a factor 

sup H p(x), 

from the sum over ~o in (6.10). After that we do the resummation with the result 

1 
I<mfc)>,  < fFI d~,(x)eL(e)8~o,,oS&,,,(sup [-I p(x)}  

X , ~  ~O X E ~  

L-1 
x U (-a 

~=0 

Only terms with a s = B, contribute because ~b(%) are multiples of 1. Now we insert 
the bound (5.9) on the propagators. It is valid for arbitrary ~ ± hence in particular 
for ff ±. This gives 

[(W(C))[  ~ 2(4m-2) L(1 +-~K2)-Lr( sup xU~ p ( x ) ) .  (6.12) 

In case K2> 0, the area law follows from this right away. Since s)~(z)>/0, it fol- 
lows that 0 ~ p ( z ) ~ ( 1  + ½K2)/(1 + t d ) .  Therefore the expectauon value is 

[(1 + ½x2)/(1 + r2)]Lr. Therefore 

I(W(C))l < 2(4m-2)Le -"t'r, 

with a -- In(1 + ~¢2)> 0. 
The case K z = 0 ~s more complicated. Inequality (6.12) tells us that 

(6.13) 

I(W(C)>I < 2(4m-2)L( I-I [ 1 + ½ m 2 ~ ( x )  - '  sup 
~ / 1+ m29rC(x) -~ 

(6.14) 

Since 

d 
6 ~ ( X ) =  ½ E [°~(x)2Top. (xTel )2]  >~ O, 

~=2 

6)To(x)-1 is non-negative but it can become arbnrarily small. This requires, however, 
that %(x) 2 or o~,(x + e~) 2 is very large for some #. Because of the hypothesis of 
theorem 1, the probability that this ~s the case ~s very small. The potentml is 
bounded below and the quadratic mass term suppresses large of by a factor 
exp[ -  ½m2of]. By standard procedure one can prove that the probability 

p r o b ( 6 ) E ( X l ) - l < e  . . . . .  631L(x, ) l < e ) <  e .x / , ,  (6.15) 
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for some ~ > 0, if e > 0 is small enough and x~... x ,  are n dzstmct points. This 
inequality can be derived by using either chessboard estimates [20] (for a simdar 
application see e.g. sect. 8 of ref. [21], or superstability [22]. 

The sum over to is over all L-tuples of paths to~, s = 0 . . .  L - 1, with fixed initial 
and final points. These paths vasit at least T + 1 distract points. Each point x ~ to, 
visited by ~ contributes a factor < 1 to 1-I, ~ ,~(...) in (6.14). Therefore the sup can 
only be increased if we abandon the requirement that the end points be fixed and 
strip the path to~ down to a self-avoiding walk of length precisely T by removing 
loops and cutting away a piece at the end if necessary. Therefore inequality (6.14) 
remains valid when the sup is read as a sup over L-tuples to of self-avoiding walks to~ 
of length T with a prescribed initml point. In the following we only consider to's 
with these properties, and sups and sums over to are restricted to these. 

Set n = L ( T +  1) = numbers of sites x ~ to. All of these sites are d~stinct because 

toe are self-avoiding. Then 

sup 1-I 1 + ½mZ0E(x) -1 / 
,~ x~,~ l + m E ~ ( x )  -1 

+ ~ p r o b ~ t h a t S ~ ( x ) > e  l f o r )  
<~ 1 -b era2 k 1 + era2 ~ k (distinct) sites x E to ] 

n>~k> ~n 

( l + ½ e m  2 -O/2)n ~> ( l + ½ e m 2 )  - .+k ( ~ 3 ~ ( x ) > e _ l f o r }  
+ ~ prob • 

<~ 1 + em 2 n>~ '2. 1 + e m  2 ~ . k sites on to 

("/ f The number of all sets I of k sites x on to is k ' and the number of all paths to~ o 

length T with given initial point is ~< (2d) ~. Together with the bound (6.15) this 

implies that 

~ p r o b t  ~ c  (x)  > e - l f ° r  } 
~, ~ k sites on 

~< Y'. • prob { o'~ (x)  > e-x for all sites x ~ I 
¢o Ic=¢~ 

I11 = k 

Setting k = ½n + I gives 

( l + ½em2 ) -O/2)n 
(sup I-I - ) ~< 1 + e m  2 

x I1  + ( 2 d ) " e  - u / 2 ) ' x . - '  n '1 
~n~l>O 
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Now we choose e so small that 

(1 + em2)e -x` ~ < 1, e -x,-' < (8d)  -1 

The sum o v e r / i s  then bounded by ET,=0(k) = 2". As a result 

1 + ½era 2 ) 
(supI-I -" ) ~< 1 + e m  2 

-(I/2). 

[ 1 + 2 - " 1 .  

We insert this into inequality (6.14) and remember that n = L ( T  + 1). In this way we 
obtain the desired area law (2.21) with a = ½1n[(1 + em2)/(1 + ½era2)] > O. 

7. Physical positivity 

Physical positivity can be expressed m terms of euclidean expectaUon values 
(2.22'). This is the celebrated Osterwalder-Schrader positlvity condition [9]. It states 
that if O is any polynomial of positive time (x 4 >I 1) fields we should find 

( ( 9 ( 0  ~ )O)  >/0. (7.1) 

Here, O denotes euclidean time reflection and O ÷ is the complex conjugate of O (e.g. 
~ ÷ =  ~q~k). In 4 dimensions 

O 6 ( x )  = ~k(Ox), etc., 

(Ox)  4 = - x  4, (Ox) '  = x ' ,  (t = 1 ,2 ,3) .  (7.2) 

We assume that our lattice is positioned so that x 4 = 0 is a lattice plane containing 
sites, and that the boundary conditions are O-invariant. It will be shown that the 

expectation values of a theory with action L(q~)+ Zrnatter( ~, ~b +, qb)=- Lto t as defined 
by eqs. (2.11), (2.14), (2.22) satisfy the positlvity condition (7.1) if the condition 
(2.23), viz. K~ ~< Zk 3 , is fulfilled by the parameters in the matter action. 

With any O as described above a wave function ~t' o will be associated. A positive 
(semi) definite scalar product ( , )  of such wave functions will be defined so that 

('I'o,, 'I'o2)= (o(o?)o:>.  (7.3) 

Inequality (7.1) follows from positive semidefinlteness of the scalar product. The 
scalar product makes the space of all wave functions with finite norm 0I', ' t ')  1/2 into 
a Hilbert space ~ (division by the subspace of all null vectors and completion ~s 
understood). ~ is the quantum mechanical Hilbert space of states and ~I' are its 
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states in the "Schrtxtinger representation" [23]. It is convenient to use the following 
hermitean representation of 7-matrices (3'~ = Y~* = -~'  , )  

~ ' 4 =  _ , V j = l  - ~  ('~: Pauh matrices,j = 1 ,2 ,3) .  (7.4) 

We decompose the Dirac spinors into upper and lower components 

¢+) ¢+= (¢; ¢-_) (7.5) ~ =  q~_ , , . 

For pedagogical reasons, I will consider the case of free boundary condmons first. 
Let Z be the time zero hyperplane x 4=  0 ("space"). In canomcal quantum field 
theory, ~k and q/  are conjugate vanables. Therefore, in a Schr&linger representation 
the wave function should only depend on half of these variables. (In quan- 
tum mechanics, position Q and momentum P are conjugate variables, and the 
Schrodlnger wave function depends only on Q.) 

Our wave functions ~ will be functions of the variables ¢(b),  ff+(x), 6_(x) 
attached to spacehke links b and sites x in space 2?. 

We make a split of the total action so that 

Ltot(~k, 4,+,~P)= L~ ( ¢, ¢~, ¢) + L_( ¢, d/~, ¢) +~, (7.6) 

with 

E E 
x ~ E  t= - 1 .  43 

×[ Kl~(x + e,)ff~,(x)f(x)-k~/(x)dP,(x)*c~,(x)q/(x)] }, (7.6') 

and L+ depends only on variables ~(b),  6(x) ,  qJ*(x) attached to links b and sites x 
m the positive time halfspace (excluding those in ~:, but including hnks (x + e 4, x) 
with x ~ E), and on variables qb(b), ~ . ( x ) ,  q~_(x) attached to links b and sites x in 
2;. Furthermore it is required that 

L _ =  O(L+)  + . (7.7) 

The possibility of a split (7.6) with these properties is the crucial feature which will 
allow us to define wave functions if', by eq. (7.9) below, which depend only on the 
variables listed above. There are three things to be checked to see that such a split is 
possible - the rest is obvious. 
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0) The  cont r ibut ion  to Lmatter from the links (x  + e,, x )  with x ~ X should admit  
the split. Referr ing to eq. (2.22) it is seen that  those contr ibut ions  which do not 
contain  matr ices ~,j make  up the term A in (7.6). Because of the off-diagonal  form of 

the matr ices  ),t; the remaining terms take the form 

~_, Y" {-tK?p~(x+ej)~¢b)(x)~p_(x)+tk~+(x)~j(x)*~j(x)~_(x) 
x I=+_1, +_3 

+ t K l ~ P - 5 _ ( x + e j ) ~ d p j ( x ) ~ p + ( x ) - t k q ~ - ( x ) ~  * , 

(7.8) 

The  first term depends  only on q~j, ~k~ and ~k-, and is incorpora ted  into L _ ,  and the 

second one in L_.  
(is) The  con t r ibu tmn f rom links (x  + e 4, X) with x ~ 2; should not depend on 

4 ,+(x)  or 4,+(x).  The  presence of the projection opera tor  (1 - 3'4) assures this. This 

is the reason why the project ion opera tor  (1 -3'~,) m the last term in (2.22) was 

included. 
(iii) Eq. (7.7) needs to be checked. The  ( + )  opera t ion is an an t i au tomorph l sm of 

the G r a s s m a n n  algebra which takes c -numbers  into their complex conjugate,  4',, into 
f ~' + W,,, 4',, into ~b,,, and ( A B )  + = B+A +. Using these properties,  the required equality is 

s t ra ightforward to check. For  instance, the second line in (7.8) is the ( + ) -  

conjugate  of  the first (when summed  over  x, t). To  see this one needs to use that 

/ ( x )  = qb)(x - ej)* by (2.0). 
N o w  we are ready to define the wave functions 

,1,2,f FI (x)d o(x) l 

× O(q~, q~+, ~p)e I (~ .~ .* )  (7.9) 

The  produc t  l-I '  runs over  x, It with x 4 > 0, It = 1 . . .  4 or x 4 = 0, it = 4, and over  
Dirac  and colour indices a. The  variables ~k+(x), ~ _(x) for x ~ , ~  are not in- 
tegrated, instead the wave function ' t '  o depends  on them. 

Next ,  the scalar product  of two wave functions will be defined. We introduce a 

new nota t ion  

(7.10) 

e = an t i symmetr ic  tensor in 2 dimensions.  (I t  acts on spinor  indices and converts  a 
co lumn vector  into a row vector  in a rotat ion covar iant  way). With thas notat ion,  the 
wave functions q / d e p e n d  on qJ~., ×+, and their adjoint  q / -  are functions of  ~k+ and 
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X-. Expression (7.6') for ~ takes the form 

~ =  - E [ , I , : ( x ) ( A , t , + ) ( x ) +  X_+(x)(A×_)(x)] ,  
x 

with 

(A"I '+)(x)= [l + k ~ ±1 ~-~ +_3 ~ff(X)¢I)~(X)] ~it+(X) 

-K1  E * , ( x - e , ) f f ' + ( x - e , ) .  
a - ± l  ±3 

(7.11a) 

(7.11b) 

The entries of the matrix .4 are the complex conjugate of those of A. The scalar 
product of two wave functions is defined by 

( .1 ,~2)= I f  I-I d(/) (b) I-I [d~~(x)d~+(x)dx+(x)dx-(x)] 
b~Z x~Z 

x e~(~t', ({ ¢ , ( x ) , ~ * . ( x ) , x + _ ( x ) } ) )  + ~1"2((dP,(x),q't(x),x+_(x)}), 

(7.12) 

with ~ gwen by eq. (7.11). 
With these definitions, the relation (7.3) between scalar products of wave func- 

tions and expectation values is satisfied. To see this one needs only insert the 
definition (7.9) of ~o,  relabel the variables of integration ~(x)---,~b(Ox) in the 
integral representation for ~c~,, and refer to (7.6). 

It remains for us to examine whether the scalar product (7.12) is positwe definite. 
An answer is provided by the following well-known lemma [16,14, 19]. 

Lemma. Let the Grassmann algebra a be generated by the totally anticommutmg 
+ and consider functions "t' on the subalgebra a ~ which is objects a t, a (  . . . . .  a n, a n , 

generated by a~ .. .  a ,  + . The scalar product 

(+,,  %) = f da + dan.., da[ da, e - z'~'A,j'~, ('t tx ( a + )) ÷ ~2 ( a÷ ), 

is positive definite if the matrix A = (A,~) is posmve definite. 
(Integrals over Grassmann variables admit linear changes of variables. Therefore 

it suffices to have the validity of the iemma for Za,+A,jaj = Zafaj .  In this case its 
validity follows from the well-known isomorphism of n + with a Fock space.) The 
matrix A given by eq. (7.11) is positive (semi-) definite if K~ ~ ~k. This is seen as 
follows. Define the covariant shift operator S, by 

, ( x )  = - + ( x  - e , ) .  
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Its adjoint S,* = S_, because of (2.0), and 

A= ~_~ [~(1-3K,S,*)(1-3KIS,)+(k-~K?)S,*S,]. 
~ = ± 1  ±3 

This Is manifestly positwe if Ka z ~< ~k. This completes the proof of Osterwalder- 
Schrader positivaty, for free boundary condiuons. 

Osterwalder-Schrader posltivlty holds also for antiperiodic boundary conditions m 
the time direction and either periodic or anuperiodic boundary conditions in the 
space directions. In this case, reflection O leaves a pair 2; = ( ~ ,  2~_) of hyperplanes 
x 4 = const, invariant, see fig. 5. 

The SchrOdlnger wave function ',I' depends on ~k~, ~k- on 2+ and on ~p+, ~p+, on 
2~ . W e  m a k e  the substitution 

~b_=X+_e, Lk!=e-lX_, onZ~, 

q~_ = X2E, ~p~ = E-tX+, on ,~ 

For antlperiodic boundary conditions in time direction, eq. (7.3) with (7.12) gets 
replaced by 

( o ( o - ) o )  -- ~ dq,(h) l--[ [dq,+'(x)d~. (x)dx + (x)dx_ (x)] 
X E ~  

x I1 [d~-_ (x)d~_ (~)dx; (x)dx+ (x)le ~" 
xE~." 

x ~,({,~,,/,;, x - }  ~,, { , ~ , - ~ _ ' , -  x_+ } ~_) + 

x ,I,( { ~,, ,t, ; ,  x+_ } ,~ , { ~ ,  ,l, '_, × t } ~._ ) , (7.13) 

l x . 

? 

~+ 

x Idenhf led 
b y a . p . b . e .  

j 
Fig 5 Reflemlons m a lamce with anttpenodac boundary condlhons 



224 G. Mack /Dte lec tnc  latttce gauge theory 

in obvious notation, with 

E 
XE~, . 

- E 
x e Z _  

The lemma can be applied again. Since if, if+ are independent integration variables, 
they can be transformed independently. By a variable transformation ~_---, 
- ~ - ,  X- --' - X- the minus sign in the second term of - (~ can be cancelled against 
the ( - )  sign in the argument ( - ~ k - , - X - ) z  of the wave function ~I '÷ which came 
from the use of antiperiodlc boundary conditions. As a result, the positivity of 
expression (7.13) is obtained. This completes the proof of Osterwalder-Schrader 
positivity in the case of antiperiodic boundary conditions in the time direction. 

We note, finally, that one can also write down a hermitean transfer matrix. It is 
given by a formula which involves an integration over variables ¢4(x)  attached to 
umelike links. 
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