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Abstract. We calculate the glueball mass spectrum in 
the S U(3) lattice regularized gauge theory. We find 
four light glueballs: the 0 ++, 2 ++, 0 -+  and, most 
interestingly from the experimental point of view, 
the oddball 1 -+. We calculate the 0 ++ and 2 ++ 
masses over a range of/~ values and find that both 
states conform to continuum renormalization group 
behaviour to a very significant degree. The question 
of metastable states and temperature is addressed in 
detail. Finally we discuss and resolve contrary 
claims in the recent literature. 

I. Introduction 

Quantum chromodynamics (QCD) implies that 
gluon degrees of freedom should play as important a 
role as quark degrees of freedom in the hadron 
spectrum. The simple interpretation of the prom- 
inent low-lying hadron as (anti-)quark bound 
states implies the presence of a further sector of the 
hadron spectrum composed primarily of gluon de- 
grees of freedom: the glueballs [1]. The absence of 
any firm experimental glueball candidates en- 
courages a theoretical calculation of the glueball 
spectrum. 

In this paper we perform a variational calcu- 
lation of the glueball masses in the SU(3) lattice- 
regularized [2] gauge theory, using Monte Carlo 
techniques [3, 4] for evaluating the Euclidean Feyn- 
man path integral. In the companion paper [5] we 
have presented the calculation of the S U(2) glueball 
spectrum. We refer the reader to that paper for a 
more detailed discussion of the techniques we use. 

Some of our results, in both the S U(2) [6] and 
the S U(3) [7] cases, have already appeared in earlier 
publications. In addition, there has been a separate 
attempt to calculate the glueball spectrum by Berg 
and Billoire [8], and a further calculation of the 
0 + + mass has been performed by Michael and Teas- 
dale [9]. We shall compare all these calculations 
later in the paper. 

Clearly the most important glueball states are 
those with light masses. We find four such states: 
the 0 + +, 2 + +, 0-  + and 1 -+.  To check whether our 
results do indeed characterize the continuum limit, 
we repeat the 0 + + and 2 + + calculations at several 
values of the bare coupling and search for the con- 
tinuum renormalization group behaviour of the two 
masses. Our results do show such a behaviour to a 
significant degree. The observation of this scaling for 
the 2 ++ state, and the lightness of the 1 -+  state, 
contradict claims to the contrary by the authors of 
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[8] (they do not  calculate the 0 -  § mass). Later  in 
this paper  we shall examine these discrepancies in 
detail  and show why they occur: the essential reason 
is that  for all states except the 0 + + what  the authors  
of [8] really calculate are mass  upper bounds. Hence  
their conclusion that  only their 0 f + state is relevant  
is not  disturbing. 

Apa r t  f rom checking for the desired scaling be- 
haviour  of  the 0 f § and 2 § § masses,  we shall go in 
some detail into the quest ion of metas tab le  states 
and tempera ture  on our  spatially small lattices. 
Other  checks on our  calculat ions have been per- 
formed in the SU(2) case (SU(2) calculat ions are a 
factor of O(10) faster than  SU(3) ones) and we en- 
courage the reader to find them in [5]. We have also 
compared  the efficiencies of different updat ing  pro-  
cedures and r a n d o m  number  generators.  This is dis- 
cussed in the Appendix.  

Calculating the Mass Spectrum [5] 

Let  ~b(t) be a colour singlet, z e r o - m o m e n t u m  opera-  
tor, localized at t ime t with some jec q u a n t u m  
numbers .  Then  

(~(t) ~(0)) (4(0) e - 't  4(0)) 
(4(o) ~(o)) (~(o) 4(o)) 

n=0z--z 
. . . .  I<aL 11 )12 

n=O 

< e  -~~ (1) 

and clearly 

m(d Pc) -=-m o = l im 1 in (gh(O) ~(0))  ,_oot (2) 

where m(J Pc) is the lowest glueball mass  in the aec 
channel (we always impose  (qb )=  0). 

Suppose,  to the required precision of the calcu- 
lation, 

<r r ~ f - %  (3) 

then 

1 , < 4 ( t ) ~ ( O ) >  I 
m ~ in  ~ - -  

t ' - t  <~(t)O(o)> ,,,,_>,o (4) 

In general  (4) will be valid for smaller t, t' than  (2). 
This is impor tan t  since we can only use ( 4 ( 0  q~(0)) 
for values of t not  so large that  the signal is lost in 
statistical noise. 

It  is clear that  t~ will be smaller the larger is the 
project ion of q5 onto the glueball wave-functional .  
This suggests using a var ia t ional  type of calculation. 

Re Re Re 

(a) 

Fig. 1. a A 2 x 2 loop of link matrices, b a 0 + + combination of 
2 x 2 loops, c a 2 + + combination of 2 x 2 loops 

Let t '>t be two times at which we can obtain  ac- 
curate da ta  and for which we can hope  to find a 
wavefunct ion such that  @ ( t  and t')~b(0)) is domi-  
nated by the lowest-lying glueball contr ibut ion.  We 
choose some set of  trial wavefunct ions {~b} and find 
the qbm,x~{qb } such that  

(4im"x(t) ~br~ax(0)) = max  [(~b(t) ~b(0)) ] 
(~bmax(0) ~bma• {r L~qS(0) 4 ( 0 ) ) J  (5) 

Then  our  best es t imate for m will be 

1 , (4max(t) 4max(O)) m ~ - - .  (6) 
m = t ' -  t (4max(t) (~max(0)) 

The above  is only one possible way to incorpora te  a 
var ia t ional  improvemen t  into the calculat ion:  the 
best way will be determined by the pat tern  of sta- 
tistical errors in the par t icular  p rob lem - see [5] for 
more  details. 

The trace of a closed loop of links is a colour  
singlet. If  we sum all spatial  t ranslat ions of our 
initial loop we get a z e r o - m o m e n t u m  operator .  By 
forming a suitable combina t ion  of var ious rota t ions  
of our  initial loop we can isolate opera tors  of differ- 
ing lowest  spin J. The  real par t  of the trace has 
C = + ,  the imaginary  par t  has C = - .  By choosing a 
combina t ion  of loops that  is invariant,  or flips sign, 
under  spatial  inversion, we form opera tors  of par i ty  
+ or - .  

As an example  take as the basic loop the real 
par t  of the trace of the 2 x 2 plaquet te  shown in Fig. 
la .  In  Fig. l b we show the linear combina t ion  that  
has 0 + + as its lowest jPc q u a n t u m  numbers .  In Fig. 
l c  we show the 2 + + linear combinat ion .  

Fo r  later convenience it is useful to introduce the 
no ta t ion  

C~-= (~( t )  qS(0)) (7) 

for correlat ion functions. 

II.  T h e  S U ( 3 )  C a l c u l a t i o n  

The degrees of f reedom of our  lattice system are the 
3 x 3 uni tary  matr ices  U,(n), where # is the direction 
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of the link, out of the site n, on which the matrix 
resides. The partition function is 

Z=~ 1-[ [dUn(n)] e-S(V), (8) 

where the measure is the Haar invariant measure 
over the group. For the action S we shall use the 
Wilson action [2] 

6 
S ( U ) = / 3 ~ ( 1 - � 8 9  fi g2, (9) 

where T r D  means taking the trace of the matrix 
obtained by multiplying together the 4 matrices on 
the links forming the plaquette. This action repro- 
duces the usual continuum Euclidean action as the 
lattice spacing, a, goes to zero, and, when used with 
periodic boundary conditions (as we shall do), will 
ensure good positivity properties [10] even at finite 
lattice spacing. 

For  the Wilson action the relationship between 
the lattice spacing and /3 will be given by the usual 
two loop formula, once a is small enough: 

51 
83.5 4 ~  /87-c 2 \121 

a = - - e  55 ~ [-~-fi) . (10) 
Arrlorn 

We have replaced in (10) A~,~oe with the more fa- 
miliar Amo m [11]. We shall assume that for /3>5.5 
(10) is reliable. This is on the basis of previous work 
by other authors, in particular on measurements of 
the string tension [12]. 

In the Monte Carlo part of the calculation we 
generate the gauge field configurations using the 
heat bath routine of Pietarinen [12]. 

The Lattice Spacing in GeV ~ Units 

The result of any mass calculation will, for dimen- 
sional reasons, take the form 

ma= some calculated number. (11) 

To obtain m in physical GeV units we must know a 
in GeV-~ units. In principle we could use (10) with 
Amo m taken from deep inelastic experiments. Howev- 
er, such values of Amo m are notoriously ill-deter- 
mined. The standard alternative procedure is to 

measure the string tension, I/K-, using ratios of Wil- 
son loops [3, 12], and to equate it to the phenome- 
nological value 

]//K = ( 2 ~ ) ~  ~400 MeV. (12) 

The recent high statistics study of Creutz and Mo- 
riarty [12] gives 

A . . . .  = (0.5 ~ 0.1) ] ~ .  (13) 

Our own measurement [7] at a single value of/3, /3 
= 5.7, gives 

Amo m = (0.48 __O.O5) 1/K. (14) 

We infer from (13) and (14) the value 

Amom = 0.5 ] ~ =  200 M e N  (15) 

with an error of about _+(10 ~o to 20 ~o). 
The relationship (12) is derived using an ideal 

string picture for the higher angular momentum 
states along a Regge trajectory. The fact that, unlike 
the real world, our lattice contains no fermion loops 
is probably not very important in this context: small 
fermion loops simply lead to a different /3 function, 
while larger loops have the primary role of giving 
the Regge trajectory an imaginary part and the had- 
rons a finite decay width, which, experimentally, is 
not large. 

An alternative way of obtaining Amo m is through 
a calculation of the nonperturbative gluon conden- 

sate parameter, f ~S F a ~ > \ re  ~ F ~  , which plays an impor- 

tant role in the QCD sum rule calculations [13]. A 
recent lattice calculation [14] gives a value 

< ~s Fa Fa ; ~(260-300 MeV) 4 (16) 
7"C #v - ~v/  

if we use (15), to be compared to recent QCD sum 
rule estimates [15] of (~350MeV)  ~. This confirms 
that the value Amom=200MeV is in the right ball 
park. 

In the remainder of the paper we shall use (15) to 
set the scale of the lattice in GeV units. The error of, 
presumably, + 0 ( 1 0 ~ )  will be suppressed but should 
not be forgotten. 

Choosing the Lattice and Lattice Parameters 

Let as, a t be the spatial and temporal lattice spac- 
ings of our L~. L~ lattice (whenever we simply write a 
we mean a=as=a ) and let D G be the diameter of 
the glueball. In order that the lattice should be nei- 
ther too coarse, nor too small, nor too hot we re- 
quire that 

min (Liat, L~s-) > D~ > max(at,as) (17) 
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and 
1 

T( = temperature) = L ~  < 200 M eV. (18) 

To estimate D G we calculate F,/F 0 for 0 + + wavefunc- 
tions composed of 1 x 1, 1 x 2 and 2 x 2 plaquettes 
on a 4 3. 8 lattice at various values of/3. In Fig. 2 we 
plot the results (how the common factor, at each /3, 
of e "a is obtained will become clearer later). We 
infer [16] that 

D G ~ (1.5-2.0) a(/3 = 5.7). (19) 

ma 
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Fig. 2. F./F o for various operators versus the size of the operators 
in units of the/~ = 5.7 lattice spacing 
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Fig. 3. The diameter of the glueball De, the lattice spacing and 
half the lattice spatial extent (for a 43. L~ lattice) versus//  

In Fig. 3 we plot the lattice spacing a, half the 
spatial lattice extent � 8 9  and the glueball size, Da, 
for a lattice with L =  4. The vertical scale is in fermi 
using (10) and (15). It is apparent that a lattice with 
L s = 4  will satisfy (17) in the range 5.3%/3<5.9 to a 
large degree. If we now pick L t=  8, then the temper- 
ature ranges from ~60  to ,,~ 120 MeV in this range 
of/3 values, so (18) is also satisfied. 

In addition, we note that the string tension cross- 
over region [12] seems to occur in the range 
5.0</3<5.4, with the correct continuum renormal- 
ization group behaviour setting in immediately after- 
wards. 

All the above suggest that it is not naive to 
at tempt to do continuum glueball physics with a 
43. 8 lattice for 5.4 </3 < 5.9. 

The reason [5] we wish to minimise the spatial 
extent of the lattice (and L s = 4 is the smallest value 
of L s that can possibly satisfy (17)!) is that a given 
gauge field configuration will give us only L t 
measurements of a p = 0  correlation function: hence 
for a given error-to-signal ratio our computing time 
increases as L3s . 

The strategy of our calculation will therefore be 
as follows. We shall first perform high statistics cal- 
culations for the 0 + + and 2 + + masses as deep in the 
continuum as possible. (That this is a practical task 
we infer from our S U(2) studies [5].) We shall use a 
43.8 lattice with equal spatial and temporal  lattice 
spacings and shall perform calculations at /3=5.1, 
5.3, 5.5, 5.7 and 5.9. This will give us an extended 
lever a rm for testing the renormalization group de- 
pendence of the masses, although one has to bear in 
mind that /3=5.1 and 5.3 are in the string tension 
crossover region. From our (p=0)  SU(2) work we 
expect to have a low-lying 0-  + state. The calcu- 
lation of the relevant correlation functions is very 
lengthy, so we originally modified our usual pro- 
cedure by using local rather than translation in- 
variant operators [5]. This means our wave-func- 
tional will possess a non-zero momentum,  which can 
be estimated using the 2 + + mass. The advantage is 
of course an increase in statistics: one obtains 
O ( L ] ) . L  t measurements per configuration instead of 
L t. The price one pays is an extra systematic error 
that derives from subtracting the momentum smear- 
ing. This early calculation of the 0 -  § correlation 
function will later on be supplemented by a calcu- 
lation of the (true) zero-momentum correlation func- 
tion on an asymmetric lattice giving identical results. 

The difficulty with extracting the masses of hea- 
vier glueballs is that the e - ' ' t  decay of the cor- 
relation functions is very steep for larger m, and the 
ratio F2,,/I" . that we would like to use for estimating 
the mass gets quickly lost in statistical noise. To 
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overcome this difficulty we turn to a 43. 16 lattice 
with 

a t < a s. (20) 

To implement this we alter the Wilson action with 
the introduction of spatial and temporal inverse 
couplings 

fl~ReTrV~-~fl~ ~ R e T r ~  
all spa t ia l  

+fit ~, ReTr[2], 
temporal 

so that 

(21) 

fis/fl, =(a,/a~) 2, (22) 

ignoring perturbative corrections. The perturbative 
corrections alter (22) (and (10)) in a known [17] (to 
lowest order) way. Aiming for 

a ~ a ( # =  5.8), a,~O.5 a s (23) 

we use 

fls = 3.3, fit---- 10.68. (24) 

On this lattice we calculate with zero-momentum 
operators the 0 ++, 2 ++, and 0-  + glueball 
masses. We set the scale using the 0 + + mass (since 
higher order corrections can break the connection 
between (23) and (24)). To reduce the statistical er- 
rors we repeat the calculation with local operators: 
this also gives us mass estimates for the heavier 0 - - ,  
2 - -  and 1 +-  glueballs. These glueballs are so heavy 
that the effects of momentum smearing are small 
and introduce no appreciable systematic errors into 
the final mass estimates. 

Specific Heat 

it was originally observed by Lautrup and Nauen- 
berg [18] that the S U(2) lattice specific heat 

2 a i (25) C=fl  ~ < ~ T r D >  

peaks strongly near and just after the string tension 
cross-over region suggesting a nearby singularity in 
the complex, or mixed-action, fl plane. Subsequent 
studies [19] found a similar structure for S U(N), N 
= 3, 4, 5, 6, lattice gauge theories. (Indeed for N__> 4 
the singularity appears to [19] cross the real axis, so 
that the theory develops a first order phase tran- 
sition.) In Fig. 4a we plot our measurements of C/fl 2 
for the 43.8 lattice with as=a t. In Fig. 4b we plot 
C/fl 2 for the 43. 16 lattice with fls/flt=3.3/10.68. The 

c/#~ 
i 

O: 

Q~ 

0", 

0 1 
3 

c~ 
r i i t i [[ I I i 

0,6 

f +t t ~ 

5 6 7 8 1 2 
~s 

(a) 

13s / I~t : 0.309 

~s 
(b) 

Fig. 4a and b. The specific heat divided by fl~: a for the 43-8 
lattice with/?,=#~, b for the 43. 16 lattice with fljfi~=0.309 

peaks are apparent and it is also apparent that 
many of our measurements are taken quite high up 
the sides of this peak. The extent to which the peak 
reflects the onset of continuum physics, and the ex- 
tent to which it represents effects that are merely a 
lattice artifact is, however, still obscure. 

GluebalI Masses on the 43. 8 Lattice 

At each fl value we generate our gauge field con- 
figurations in several independent sequences. Each 
sequence begins with an independent initial con- 
figuration, obtained by upgrading the lattice at a 
random fl value, and is brought to equilibrium at 
the desired fl value with a generous ~-300 con- 
figurations. This procedure makes statistical error 
estimates particularly painless and minimises any 
danger of very long range correlations systematically 
biasing our results. The configurations are generated 
by a systematic upgrading of the links of the lattice 
using Pietarinen's S U(3) heat bath routine [12]. 

At fl = 5.9 we generate 25,000 configurations, at fl 
= 5.7 about 27,000, at f l= 5.5 about 11,000, at fl = 5.3 
about 19,000, and at fl=5.1 about 9,000. 

(a) 0 ++ and 2 ++. The 0 +§ and 2 +* wave-function- 
als are constructed from the l x l ,  l x 2  and 2 x 2  
plaquettes in appropriate linear combinations as in 
Fig. 1. We adopt as generic labels for these oper- 
ators ~b~l, ~b~2 and ~b22, respectively. For spacelike 
plaquettes we project onto "magnetic" glueballs, 
0~ + and 2~t +. The timelike l x l  and l x 2  pla- 
quettes (one step in time) generate us "electric" glue- 
balls, 0~ -+ and 2~ § (The electric states are less 
reliable in that their timelike extent is not infini- 
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Table 1. Ratios of correlation functions for 0~ + on the 43.8 
lattice 

fi operator FdFo F2ffF~ Q ~/F~ 

5.9 (1,1) 0.092_+0.002 0.107_+0.040 0.38_+0.11 
(1,2) 0.116_+0.002 0.154_+0.010 0.28_+0.04 
(2, 2) 0.121 _+0.002 0.216 _+0.007 0.42 _+0.07 
max. 0.121 _+0.002 0.216_+0.007 0.42_+0.07 

5.7 (1, 1) 0.159_+0.002 0.316_+0.019 
(1, 2) 0.200 _+ 0.004 0.340 _+ 0.026 
(2,2) 0.195_+0.002 0.378+_0.013 
max. 0.214_+0.003 0.361_+0.018 

5.5 (1,1) 0.214_+0.002 0.343_+0.011 0.36_+0.03 
(1,2) 0.241_+0.002 0.332_+0.006 0.38_+0.02 
(2, 2) 0.179 _+ 0.002 0.322 _+ 0.008 0.33 _+ 0.05 
max. 0.248_+0.002 0.335_+0.011 0.36_+0.04 

5.3 (1, l) 0.141 _+ 0.002 0.216_+0.024 0.38 _+0,07 
(1,2) 0.146_+0.002 0.213_+0.011 0.46_+0.04 
(2,2) 0.067_+0.003 0.201_+0.020 0.32_+0,05 
max. 0.152_+0.002 0.220_+0.025 0.38_+0,07 

5.1 (1,1) 0.080_+0.004 0.090_+0.020 
(1,2) 0.075 -+0.005 0.117_+0.023 
(2, 2) 0.023 _+ 0.004 0.272 _+ 0.064 
max. 0.083 _+ 0.004 0.105 _+ 0.020 

tesimal relative to the distances over  which the cor- 
relat ion functions are measured.)  

In Table  1 we present  our  results for rat ios of 
correlat ion functions for 0~t § In addi t ion to giving 
values for each of the three operators ,  we also find 
the linear combina t ion  ~bm, ~ which maximises  FffF o 
and present  the corresponding values of F2a/F a and 
F3~/F2~ (when significant; in our  first run at /3=5.7 
F3,/F2, was not  calculated). The  linear combina t ions  
are 

(~max(/3 = 5.9) ,~, ff~22, 

q~ma~(/3 = 5.7) = 0.23 ~b, ~ + 0.45 qb, 2 + 0.87 (~22, 
(~max(/3 ~- 5.5) = 0.75 (~ 11 + 0.43 qSx2 + 0.50 4)z 2, 

qbma~(/3 = 5.3)=0.85 ~bt, +0.49 q5,2 + 0.19 q52;, 

qSmax(/3 = 5.1) ~ 0.85 q~lt + 0.49 q5~2 + 0.19 q522. (26) 

Our  procedure  for obta ining mass  est imates is mot i -  
vated by the following observations.  Consider  FjFo. 
We write it as 

Ca/['O = O~e-ma + ( 1 - -  0~) e - Ma, (27) 

where m is the desired glueball mass  and M is the 
average mass of the excited states. If ~ is not  too 
small, and a is not small on the scale of M, we have 

~ / V o ~ - ~ e  . . . .  . (28)  

Given that  the glueball size is 

D a ~, (1.5-2.0) a(/3 = 5.7) ~ a(/3 = 5.1), (29) 

the 1 x 1 plaquet te  should be  a good  wavefunct ion,  
i.e. ~ - 1  a t / 3 = 5 . 1  (this we will substant ia te  later on), 
s imply because it is the smallest  loop one can con- 
struct. Moreover ,  at these values of /3 a(/?) is quite 
large, so to a reasonable  approx ima t ion  we can (in 
principle) expect 

Co ~o m a ~ l n  c ~ + l n - - ~ l n - -  
Ca Ca" 

(30) 

This is even more  so for the 22  + , which is ap- 
preciably heavier  and results in an apprec iably  larg- 
er ro/r~. 

As/3 increases, ~ decreases and any est imate of it 
becomes increasingly unreliable. If  e is still quite 
large, say e~0 .5 ,  then F~ will still be domina ted  by 
the lowest glueball contr ibut ion,  and a reliable es- 
t imate  of ma can be obta ined f rom the (harder to 
obtain) rat io F2ffF~ : 

m a = l n  F" . (3i) 

The pa t te rn  of values in Table  1 indicates this to be 
a good  procedure  for f i=5.1,  5.3, 5.5 and 5.7. 

We expect, however,  that  as fi increases further, 
and the glueball size becomes  more  than  2 lattice 
units across, the p lanar  character  of simple loops 
such as ours will become  manifest,  and the pro-  
ject ion onto  the lowest glueball state will collapse 
dramatical ly .  This begins to happen  at /3= 5.9. N o w  
both  terms in (27) are impor tan t ,  so that  F2,/F ~ is no 
longer a reliable measure  of e -m~ even if F2~ is still 
domina ted  by e - " a  (as, for a while yet, it will): 

l '2a O~e - 2ma 
- - ~  ~ee - ' '~  (32) 
ca u.e-~" + ( 1 - c 0  e - ~ a  

This effect is c o m p o u n d e d  by the decrease of the 
exponents  (a(/~) decreases as /? increases). At  this 
stage we have to use (the even harder  to obtain) 
F3,/F2~ for our  mass  est imate:  

m a = l n  F2a. (33) 
Vaa 

And so on. 
Thus  mot iva ted  we obta in  our 0~t + masses as 

follows. At  /3=5.9 we use (33) on our  maximised  
wavefunction. At f i=5.7,  5.5, 5.3 and 5.1 we use (31) 
on our maximised  wavefunction.  (We have also 
found a signal for F3,/F2, a t / 3 = 5 . 5  and 5.3 as shown 
in Tab le  1. Within  errors the values obta ined  for 
Faa/Fz, are consistent with those for FzffF,. ) 

We plot  our  measured  values of a at /3= 5.1, 5.3, 
5.5, 5.7 and 5.9 in Fig. 5 taking 
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Fig. 5. The projection (probability) of the maximal wavefunction 
on the lowest 0 + + and 2 + + glueball states as a function of/7 

c~(fl= 5.9)= ( Fz~] ( F3~)-2 (34) 
\Q ] "V2a/ 1~=5.9 

and 

(F.) (F2~ t t (35) 

otherwise. The trend is clear (and as we have anti- 
cipated): ~ increases towards 1 as fi decreases. This 
demonstrates that indeed our wavefunction becomes 
sort of ideal at smaller ft. 

In Table 4 we present our estimates of e - ~  and 
the mass m in GeV units (using (10) and (15)) for the 

Table 2. Ratios of correlation functions for 2~  + on the 43-8 
lattice 

/7 operator FJF o Y2~/F~ 

5.9 (1, 1) 0.026 _+0.002 -0.006 _+0.149 
(I, 2) 0.039 _+ 0.001 0.154 _+ 0.094 
(2, 2) 0.049 _+ 0.001 0.166 _+0.038 
max. 0.051 _+0.001 0.163 _+0.037 

5.7 (1, 1) 0.032 _+ 0.002 0.062 _+ 0.016 
(1, 2) 0.047 _+ 0.003 0.053 _+ 0.004 
(2, 2) 0.049 + 0.003 0.150 _+ 0.025 
max. 0.055 _+ 0.002 0.107 _+ 0.020 

5.5 (1, 1) 0.033 _+0.002 -0.043 _+0.100 
(i, 2) 0.042 _+0.002 0.015 _+0.010 
(2, 2) 0.029 _+0.002 0.168 _+0.010 
max. 0.044 _+ 0.002 0.034 _4- 0.050 

5.3 (1, 1) 0.032 _+0.002 
(1, 2) 0.031 _ 0,002 
(2, 2) 0.013 +_0.003 
max. 0.034 -+ 0.002 

5.1 (1,1) 0.024 +_0.002 
(1,2) 0.026 -+ 0.002 
(2, 2) 0.008 _+ 0.002 
max. 0.028 -+ 0.002 

Table 3. Ratios of correlation functions for 0~ + and 2{ + 
43. 8 lattice 
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on the 

/7 j P c  ope- FjFo F2o/F ~ F3~/~ o 
rator 

5.9 0+ + (t, 1) 0.067_+0.003 0.167_+0.024 0.310_+0.187 
(1,2) 0.092__0.003 0.168_+0.021 0.295_+0.254 
max. 0.092_+0.003 0.168-+0.021 0.295_+0.254 

2~ + (1,1) 0.012_+0.001 -0.269-+0.076 
(1,2) 0.031-+0.002 0.113-+0.040 
max. 0.031 _+0.002 0.113 _+0.040 

5.7 0~ -+ (1,1) 0.123_+0.003 0.330_+0.062 
(1,2) 0.147_+0.003 0.329_+0.044 
max. 0.i50_+0.003 0.330_+0.047 

2+ + (1,1) 0.011_+0.003 0.205_+0.153 
(1,2) 0.024_+0.001 0.214+_0.041 
max. 0.024-+0.001 0.208_+ 0.055 

5.5 0+ + (1,1) 0.154-+0.004 0.319-+0.012 
(1,2) 0.155_+0.004 0.332+_0.014 
max. 0.167-+0.004 0.329_+0.014 

2 + § (1, 1) 0.013 +0.001 0.367 + 0.064 E - -  - -  

(1,2) 0.013_+0.002 0.134+_0.038 
max. 0.015 • 0.201 _+0.050 

5.3 0+ + (1,1) 0.082_+0.004 0.285_+0.044 
(1,2) 0.071_+0.005 0.273_+0.042 
max. 0.085 +0.004 0.281 _+0.044 

2 + * (1,1) 0.002 _+ 0.001 
(1,2) 0.003_+0.001 
max. 0.003 -+0.00i 

5.1 0+ * (1,1) 0.036_+0.002 0.141_+0.063 
(1,2) 0.026_+0.002 0.306_+0.055 
max. 0.036_+0.002 0.i68_+0.063 

2~ § (1, 1) 0.003 _+ 0.001 
(1,2) 0.001 _+0.003 
max. 0.003 _+0.001 

0~ + glucball. We also present the corresponding 
values for the electric glueball 0~ + in Tables 3 and 
4. 

We now repeat this procedure for the magnetic 
and electric 2 ++ glueballs. The values of the cor- 
relation functions for 2~ + are tabulated in Table 2. 
It is clear that the 2~ + is appreciably heavier than 
the 0~ +. For this reason it is sufficient to use F2a/F ~ 
for our mass estimate at fi=5.9. For the same rea- 
son we obtain no significant signal for F 2 j F  a at fi 
=5.3 and 5.1 and large errors at f l=5.5,  so we shall 
(have to) take the largest FjF o there: 

m a  = in c~ + in ~ ,,,in' (36) 

We plot our measured values of c~ at f i=  5.5, 5.7 and 
5.9 in Fig. 5. The trend is the same as for the 0~ + 
glueball. So for /3<5.5 we may expect 0 . 8 < ~ < 1 ,  
which gives the mass estimate a t /7=5 .5  (cf. Table 2): 
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Table 4. 0 + + and 2 + + masses on the 43. 8 lattice 

fi 0 ++ O; + 2 ++ 2;  + 

5.9 e ~~ 0.42 +0.07 0.163_+0.037 

+0.17 +0.23 
m (GeV) 0.79 1.66 

-0 .14 -0.19 

5.7 e , , , a  0.361+_0.018 0.330_+0.047 0.107_+0.020 

+0.15 
m (GeV) 0.74 _+0.04 0.81 _+0.10 1.63 

-0.13 

5.5 e -"a 0.335_+0.011 0.329_+0.014 0.044 +0'014 
- 0.002 

+ O.O2 + O.O2 
m (GeV) 0.64 _+0.02 0.65 1.81 

-0.03 -0.15 

5.3 e - ' 'a  0.220_+0.025 0.281 _+0.044 0.034 +0011 
- 0.002 

+ 0.06 + 0.08 + 0.03 
m (GeV) 0.70 -0.05 0.59 -0 .07 1.57 -0.13 

5.1 e -'~" 0.105• 0.168_+0.063 0.028 +0'010 
- 0.002 

+0.08 +0.17 +0.03 
m (GeV) 0.84 0.67 1.33 

-0 .06 -0 .12  -0.11 

0.295 + 0.254 
-0.148 

+ O.64 
1.11 

-0 .56 

0.208 -+ 0.055 

+ 0.22 
1.15 

-0.18 

0.201 _+ 0.050 

+0.17 
0.93 

-0.13 

>0.003 _+0.001 

> 0.003 +_ 0.001 

e -ma=~-  l ~o ma x 

= ~- 1 (0.044 __ 0.002) 

+0.014 
0.044 

-- 0.002 
and 

(37) 

m a  = 3.12_+0.04+1n~ 

0.04 
~ 3  12+ , 

' -0 .26  
(38) 

and similarly at /3=5.3 and 5.1. Note that for 
being even as low as 0.6 the error in (38) will only 
increase to about  15 ~o due to the large lattice spac- 
ing and 2~ § mass. This is to say that the pure 
variational calculation gives reasonable mass es- 
timates here. 

Our maximal 2~ + wavefunctions are 

4max(fl = 5"9) = 0 ' 1 5  411 + 0 . 1 5  412  + 0 . 9 8  422 ,  

4max(fl = 5.7) = 0.20 4 , ,  + 0.45 4 t 2 + 0.87 422, 

4max(fl = 5.5) = 0.43 411 + 0.75 412 + 0.50 422, 

4max(fl = 5.3)=0.85 4 t l  +0.49 412 +0.19 42a, 

4ma,(fl = 5.1)~0.85 41~ +0.49 412 +0.19 422. (39) 

Our final mass estimates appear in Table 4. The 
error on the fi=5.5 and 5.3 2~t + masses are domi- 

nated by the error in the estimate of cffp). At f l= 5.1 
the statistical error dominates. The corresponding 
values of the correlation functions and the mass 
estimates for the electric glueball 2~ + are presented 
in Tables 3 and 4. 

Although our detailed procedure for extracting 
the masses is entirely plausible, the only real way to 
check if it is really correct would be to do a very 
high statistics study on a large L t lattice and to 
check that indeed 

F2a ,~,F3~a ~, ~4a (40) 

G G,, Go 
This we do not do here for reasons of computer 
time. In the faster SU(2) case, however, we have 
obtained [5] measurements of the correlation func- 
tions up to 12 lattice spacings on a 53.40 lattice 
with 

a t = 0.25 a,, (41) 

and the resulting fine-grained version of (40) con- 
firms the validity of our equivalent mass estimate 
procedures in the equivalent range of couplings. A 
much more modest SU(3) version of such a check 
will be described later on in this paper. 

The electric glueball states are broadly compat-  
ible, within large errors, with the results for the 
magnetic states. F rom now on we shall ignore the 
electric states and drop the magnetic label. 
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( b )  Renormal i za t ion  Group Behaviour .  The state- 
ment of renormalization group behaviour is simply 
that our calculated glueball mass, when expressed in 
terms of a fixed scale via the continuum renormal- 
ization group equation for a(fi), should not depend 
on the bare coupling, ft. 

Accordingly we plot in Fig. 6 the glueball mass 
versus the value of fi at which it is calculated in the 
dimensionless product  form of ma(B=5.7 ). We ob- 
tain this value from the measured quantity ma(fl) by 
the use of the two loop formula, (10). We could 
equally well have plotted m in GeV units, as it 
appears in Table 4. The only difference would in- 
volve an overall rescaling of the vertical axis. 

We see that for fi>5.3 both the 0 ++ and 2 ++ 
masses are indeed independent of fi within their 
error bars, except for may be a slight dip (enhance- 
ment) in the + + + + 0 M (2A~) at f l=  5.5, i.e. at the peak in 
the specific heat. The relative constancy remains 
striking even if we consider the whole range, f i>  5.1. 

Given the finite size of the error bars, what is the 
significance of this? To answer this question we need 
some standard for what might be a natural rate of 
variation of m with fi if we were not in the con- 
t inuum limit. Such a standard is provided by the 2- 
loop a(fi) itself as given by (10), since we have scaled 
our experimental results with this functional depen- 
dence. From fi=5.1 to fi=5.9, the 2-loop a(fi), as 
plotted in Fig. 6, varies by a factor of ~2.5. The 
systematic variation of the 0 + § data in this region is 
less than a factor of 1.3 and for the 2 + § less than a 
factor of 1.4. We conclude that both the 0 +§ and 
2 +§ states display a significant adherence to the 
desired continuum renormalization group behaviour 
- implying that our mass estimates do indeed ac- 
curately characterize the continuum glueball masses. 

mo( 3 =5.7) 
i 
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050 ;1 
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F i g .  7. T h e  r a t i o  o f  2 + + t o  0 + + g l u e b a l l  m a s s e s  v e r s u s  fl 

The deviation from continuum behaviour at fl 
=5.1 (cf. Fig. 6) seems to involve a convergence of 
the 0 + + and 2 + + masses in the "cross-over region"�9 

In Fig. 7 we plot the ratio of masses 
m(2 + +)/m(O + +) - note that in this ratio a(fl) cancels, 
so no 2-loop calculation is involved - to see this 
trend more explicitly. We remark that a decreasing 
m(2 + +)/m(O + +) ratio as fi enters the strong coupling 
regime is indeed what one expects on the basis of 
strong coupling expansions [20]. However, the pres- 
ence of a rapid variation of this ratio in the cross- 
over region, as suggested by Fig. 7, would be bad 
news for attempts to extrapolate the strong coupling 
expansions, in a smooth manner, through this re- 
gion. 

( c )  0 +. The natural trial wavefunction for the 0 - +  
would be a lattice version of the FF  operator 
("E-B"),  the topological charge density. We employ 
as our basic loop a variation on one of the standard 
[21] such versions: 

-+3 

~b0- +(n)= ~ ~ o i j k R e T r [ U o ( n ) U i ( n + e o )  
i , j , k _  § 1 

�9 Uj(n + e o + ei) Ul,(n + e o + e i + el) U~- (n + e i + ej + G) 

�9 Ui + (n + ej + G) Uj + (n + G) Uk + (n)], (42) 

where the g~vpo tensor coincides with GYp~ for all 
indices positive and is extended to negative values 
by the definition 81 ~pr = - ~_ t v,r following [21]. 

The numerical calculation of (42) is very slow. 
So, to obtain a mass estimate in a reasonable time, 
we first discarded our ideal procedure of using trans- 
lation invariant, p = 0 operators (for the calculation of 
p = 0  0 - +  correlation functions see later on) and 
instead formed trial wavefunctionals out of clusters 
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of neighbouring (in all 3 spatial directions) loops. 
This increases the number of measurements by a 
factor of 8. The price we pay is that what we extract 
is an energy 

(Ea)2 = (ma)2 + p2 (43) 

involving an a priori unknown average momentum 
smearing. To estimate p2 we perform the same cal- 
culation for the 0 + + and 2 + + states, and substitute 
the already measured 0 ++ and 2 ++ masses in the 
corresponding relations (43). This gives us a con- 
sistent estimate 

p2 ~ 4/a z. (44) 

Using this we find from FJF o the mass upper bound 

m(0- +) <(8.46 _+ 0.20) A,~om (45) 

and a mass estimate from FzJI ' ,  of 

m(0- +t= (v 2 + 16t 
\ �9 _0.9]Amom 

= 1440 + 320 MeV. (46) 
- 1 8 0  

Glueball  M a s s e s  on the 4 3. 16 La t t i ce  

We work with a lattice action as in (21), which 
allows us to vary the spatial and temporal  lattice 
spacings, a s and at, independently. We would like to 
work as deep in the continuum as our 43 spatial 
volume allows. So we choose couplings 

fi, = 3.3, fit = 10.68, (47) 

which, according to the perturbative calculation [17] 
should correspond to 

a s ~ a ( f l =  5.8), at,wO.5a s (48) 

in terms of our previous, hypercubic lattice spacing 
a(fl). This choice of a t should be appropriate  for high 
mass states. Since the perturbative, l - loop calcu- 
lation is not expected to be exact at these values of 
the coupling, our actual normalization of a t will be 
performed by calculating m a  t for the 0 ++ glueball, 
and then inserting for m the value obtained in our 
calculation on the 43. 8 lattice. We will find that in 
fact 

a t =(0.737 _+0.057) a(fl = 5.8), (49) 

showing significant O(g 2) corrections to the pertur- 
bative l- loop results [17]. This is in contrast to the 
SU(2) case [5], where the perturbative estimate 

works very well. One must also check a s. This we 
shall do later below and we confirm that 

a s ~ a(]? = 5.8). (50) 

Before we performed any measurements of the cor- 
relation functions we have generated ---4,000 con- 
figurations (upon which we measured the specific 
heat etc.). This ensures that our lattice is indeed in 
equilibrium. The correlation functions are measured 
upon a subsequent 6,000 gauge field configurations. 
Note that this is equivalent to 12,000 configurations 
on 43.8. In addition we use a rather sophisticated 
upgrading procedure: the link to be upgraded next 
is chosen at random using a sequence of -~ 107 true 
(physically generated) random numbers [22], and 
the actual upgrading is performed with a 60 bit 
multiplicative congruential random number genera- 
tor [23]. This is in contrast to our previous calcu- 
lations, where the links were chosen by sweeping 
systematically through the lattice, and where the 
generator used was often a 32 bit one. The reason 
for this extra effort is that we have some indication 
that the more massive states are sensitive to the 
procedure used. We refer the reader to the Appendix 
for a detailed discussion of all this. 

( a )  Glueball  Masses .  The basic loops we use for our 
operators are shown in Fig. 8. They will be referred 
to in the following by their length, which varies from 
4 to 12 links. In addition, for the 0 - +  state we use 
the FF operator as in (42). 

We form 0 ++, 2 ++ , 0 _+ , 1 -+ ,  0 - - ,  2 - -  and 
1 + -  ze ro -momen tum operators by suitable combi- 
nations of translations, rotations, spatial inverses 
and real/imaginary parts of these basic loops. 

' 

X 

Fig. 8. Basic loops used to construct glueball operators on the 
43. 16 lattice 
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The ratios of p = 0  correlation functions are 
shown in Table 5. 

In Fig. 9 we plot the effective 0 + § and 2 § + mass 
as extracted fi'om the ratios of correlation functions 
given in Table 5, i.e. 

(F(,_ 1,a~], 
meff(r/) a ,  = i n  ~ n a n  a T /  n =  1,2,3. (51) 

The 0 + + meff(rt ) shows very clearly that the lowest 
energy state already dominates the ratio F3aJF2a,, i.e. 

F2,~ ,~  oc e - 2 ma', F3 a ,~  Cc e - 3 ' h a '  (52) 

Table 5. Ratios of correlation functions for 0 + +, 2 + +, 0 -  +, 1-  +, 
0 - - ,  2 - -  and 1 + - on the asymmetric  43. 16 lattice 

j v c  operator F~JF o ~,,JF.~ F3,,JFz. ' 

0 ++ 6 0.317+_0.01 0.414___0.03 0.504+-0.06 
8 0.265+-0.007 0.382+-0.019 0.51 +-0.03 

12 0.239+_0.007 0.474+_0.034 0.48 +_0.06 

2 ++ 4 0.17 +_0.47 
6 0.105_+0.003 0.138_+0.024 0.35 +_0.17 
8 0.130_+0.002 0.23 ___0.02 0.19 +_0.20 

12 0.050_+0.003 0.166+_0.048 0.57 +_0.30 

0 - +  FF  -0.054_+0.003 0.28 +_0.08 

1 -+  6 0.080_+0.003 0.102+_0.022 
12 0.040+_0.0014 0.201 +_0.055 

0 - -  6 0.021+_0.004 0.175___0.14 
12 0.013+_0.004 -0 .21  ___0.29 

2 -  6 0.035+_0.002 - 0 . 0 2  +0.05 
12 0.021+_0.002 0.05 __+0.12 

1 + -  6 0.044+-0.0025 0.03 +_0.04 
8 0.050 _+ 0.002 - 0.005 +_ 0.04 

12 0.022+_0.002 0.14 +0.08 

0 . *  
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Fig. 9. The effective 0 + + and 2 + + masses (defined as local loga- 
rithmic derivatives of the correlation function) as functions of 
distance (in lattice spacings) 

Comparing the value of m a  t obtained from F3~/F2, 
with our previous 0 + + mass measurement on a 4 3.  8 
lattice allows us to relate a t to the hypercubic lattice 
spacing a(fl) as in (49). 

To check the self-consistency of these compar-  
isions we note that a / ~ 2 / 3  a(B=5.7), so that 

r2,~= 5.77 c3a, r3o, (53) 

Since at fl=5.8 the 8 link operator is of a different 
size and is a worse glueball wave-functional than at 

=5.7, it is not the appropriate  operator for a com- 
parison. Instead we should use an operator  here 
which has the same projection, e=0.59,  as the best 
operator at ]3= 5.7. The 6 and 12 link operators have 
~=0.50 and 0.44, respectively. For the average of 
these two operators we obtain 

-- 1,5(m+O'O73)at 
F3~ - 0 . 9 3 e - l 5 ' ~ = e  1.5~ , (54) 

(~,. rz~) -~ 

indicating that our procedure on the 4 3. 8 lattice, at 
/~=5.7, of extracting the 0 ++ mass from the ratio 
F 2 j F  ~ is accurate to 0(7 ~), which is comparable to 
the statistical error. Since our best operator  at /~ 
= 5.7 is better than either of the two operators used 
in (54), the error should in fact be less than 7 ~ .  

We can estimate a~ by a similar argument. For 
the 2 x 2 plaquette the projection 

e(/~ = 3.3,/~, = 10.68) = ~  e2m~ = 0.39 _+ 0.025, (55) 

whereas for the same operator on the 43. 8 lattice we 
find 

c~(p = 5.7) = 0.54 + 0.027, 

~(fl = 5.9) = 0.16_+ 0.035. (56) 

A straight-line interpolation on a graph of the kind 
in Fig. 5 gives us an estimate of 

a~ = a(fl = 5.78 + 0,02), (57) 

being remarkably consistent with the perturbative 
expectation, (50). As a further check we have calcu- 
lated parallel plaquette correlation functions along 
spacelike directions and compared with similar cal- 
culations on the 43. 8 lattice. Again we confirm (50), 
although less precisely. 

Turning now to the 2 ++ glueball, the error on 
F3,,/F2~ ~ is too large to make it useful. However, we 
have seen (Fig. 9) that for the 0 ++ the maximal 
value of Fz,jF,~ will already provide an accurate 
mass estimate. For  the heavier 2 ++ this should be 
even more the case. (That the 2 + + is heavier can be 
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Table  6, 0 + + , 2  + + , 0 - + ,  1 - + , 0  , 2 - -  and  1 + -  masses  on  the 
a symmet r i c  43. 16 la t t ice  

j P c  m a  t 

p : O  6p b 

0 + + 0.67 +_ 0.04 
2 + + 1.47 +_ 0.09 

+ 0 . 5  
(1.24 
\ - 0 . 3 5 ]  

0 -  + 1.27 + 0.33 
- 0 . 2 5  

+0 .32  
1 - + 1 . 6 0  

- 0.24 

O- - 2.30 + 
1.1 

- 0 . 7  

+O.6 
2 - -  2.8 

- 0 . 4  

+ 0 . 2  
1 + - 2.8 

- 0 . 3  

1.57_+0.17 

2 .61•  

3.1 +_0.2 

2.7 -t-0.12 

" from Q,,/Q~, 
b using (Ea,) 2 = (m a,) 2 + (0.4 +_0.4) 

inferred from the values of F3,t/F2~). Accordingly, in 
the spirit of the variational calculation, we ask 
which of the three wavefunctions maximises F2,/F o 
and use the measured value of F2a/F~ for this wave- 
function to extract the mass, i.e. we use the 8 link 
operator. This gives the value in Table 6. 

For the 0-  + glueball we use a trial wave-func- 
tional based on the zero-momentum linear combi- 
nation of the operator in (42). We extract the mass 
from the measured value of F2,/Fa~ (see Table 5). It is 
given in Table 6. 

For the 1 - +  both trial wave-functionals have 
equal values of F2a/Fo; this introduces some am- 
biguity into how to implement the variational pro- 
cedure. One way is to use the greater of the two 
values of F2aj[ 'a t  , and we give the result in Table 6. 
We note that the alternative possibility of averaging 
the two values of F2~]F~, leads to a mass estimate 
that is consistent, within errors, with that in Table 6. 

For the 0 - - ,  2 - -  and 1 + - states the errors are 
so large that the variational procedure is not useful. 
Instead we simply average all the values of F2~,/F~ 
weighting with the inverse of the square of the stat- 
istical error, and using the Q/F o for mass upper 
bounds where appropriate. The resulting mass es- 
timates are given in Table 6. 

We illustrate our procedure of the preceding 
paragraph with the 1 + .  state. First we average 
-F2at/Fat for the three values in Table 5: 

F2a,/F~t = 0.027 +_0.031, (58) 
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where in the average we weight each term by the 
inverse of the error squared. Now we observe that 
the 8 link F~]F o gives us the upper bound 

e . . . .  >0.048. (59) 

We impose (59) upon (58) as follows. We have a 
Gaussian random variable x(=F2ajI'~) with mean 
=0.027 and a=0.031. Now we impose x>0.048. 
The resulting distribution is no longer normal. We 
define our new mean p and errors a+, or_ by the 
requirement that 

probabili ty (0.048 __< x G ~) = probabili ty (x > y), 

probabili ty ( y -  a_ < x N ~) 

= probabili ty (~ < x < p + rr +) 

_ 2 probabili ty (x > p). (60) - - 3  

Using standard error function tables [-24] we finally 
get the mass estimate 

e -  ma, = 0063 + 0 0 1 8 .  (61) 
-0.011' 

which translates into the mass value in Table 6. A 
similar procedure was followed for the 2 - -  state, 
while the 0 - -  was calculated by a straight average 
of the two F2a~/F~, values. 

Our final values for the various masses, Table 6, 
show that we have 3 relatively light excited glueball 
states, the 2 ++, 0 - +  and the oddball 1 - §  and three 
probably rather heavier states. The obvious intense 
interest of low-lying oddballs puts a strong premium 
on reducing the rather large statistical errors which, 
in this zero-momentum calculation, necessarily af- 
flict our 1 - +  and 0 - -  mass estimates. To reduce 
these errors in a reasonable time we must drop our 
restriction to wave-functionals that are translation 
invariant. 

(b) Reducing Errors with Momentum-Smeared Wave- 
functions. We repeat the calculation, for all the states 
except the 0 - + ,  using a spatially localized com- 
bination of our 6 link operator. We sum the basic 
loops about  the 8 sites of the simple spatial cube. 
This gives us 8 measurements per configuration at 
each time versus 1 for p = 0  wavefunctions and cor- 
respondingly reduced errors. 

Our results for ratios of correlation functions are 
given in Table 7. Since we are using localized wave- 
functions what we extract is not the mass directly, 
but an energy: 

P C  2 2 P C  (E(dPC)a~)2=(rn(d )a~) +p (J ). (62) 

Since our wavefunctions all have the same geometric 

size, the momentum smearing pa(jec) should depend 
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Table 7. Ratios of correlation functions for 0 + +, 2 + +, 1-+, 0- , 
2 - -  and 1 +- on the asymmetric 43. 16 lattice, using momentum- 
smeared wavefunctions and 6-1ink operators only 

0 ++ 0.165 • 0 .227_+0.003 0.244• 

2 ++ 0.114 • 0.162• 0.226• 

1 -+ 0.105 • 0.146 kO.O03 0.184 • 

0 - -  0.0383• 0.068 • 0.15 +0.13 

2 - -  0.040 • 0.044-+0.007 

1 +- 0.043 • 0.0005 0.064• 0.004 -+ 0.088 

only on m2(jPc), and, in particular, it should be 
approximately the same for all masses satisfying 

{mat)2 >~ p:Z. (63) 

As expected, for the 0 ++ (63) is not true, so we 
cannot use it to obtain a useful p2. For the 2 ++ 
however, we find (using G at/V2o, from Table 7 and 
the p = 0 mass estimate in Table 6) 

p2 = 0.4 • 0.4 ~ (m(2 + +) a,)2 ~ 2. (64) 

Since it is already clear from our p=O mass es- 
timates that none of the states being considered here 
is significantly lighter than the 2 + +, (64) should pro- 
vide an adequate estimate of p2 in all cases. Using 
(62), (64) and the F2,]F,t (F3~JF2, ~ for the 1-+) ratios 
in Table 7, we obtain the mass estimates in the ap 
column in Table 6. Note that the momentum cor- 
rection affects the final numbers by <10%.  Note 
also that our final 1- + mass estimate comes from 
F3,,,/F~, ~ and hence is particularly reliable. 

We conclude that the 1 -+  oddball is indeed 
light, being about 10% heavier than the 2 ++ , and 
that the 0 - - ,  which, within its errors, might have 
been light on the basis of our p = 0  estimates alone, 
is indeed rather heavy, and hence of less interest. 

IlL Thermal Loops and Metastable States 

In setting up our lattice calculations we have been 
careful to ensure that finite size effects should be 
under control, in particular we insisted that the spa- 
tial extent of the lattice should satisfy 

L~G >~ 2D6, (65) 

where D G is our estimate of the glueball diameter. 
We also made sure that the timelike extent of the 
lattice, L~G, should be such that the temperature, T, 
of the lattice is always well below the deconfining 
temperature, T~: 

g = L ~  < T ~ 2 0 0 M e V .  (66) 

The absence of severe finite-size effects is implied 
by the approximate continuum renormalization group 
behaviour we found for the 0 + + and 2 + + masses in 
a region of couplings, where the lattice spacing, and 
hence the spatial lattice extent also, more than dou- 
bles in size. Further evidence comes from the SU(2) 
case where we obtained [5] consistent mass es- 
timates on  4 3 . 8 ,  8 4 and 53.40 lattices in a range of 
couplings analogous to that being considered in this 
paper. (The operator projections, ~, for the 2 x 2  
loop did show significant changes, as might be ex- 
pected.) 

This is in contrast to (quenched quark) ha&on 
spectrum calculations, where finite size effects on 
lattices comparable in size to ours have been found 
[25, 26] to be very large. A prominent part of this 
effect has found a transparent description in thermo- 
dynamic terms [26]: the small spatial extent of the 
lattice implies a spatial temperature around the de- 
confining transition [27] temperature (gc~Amora 

= 200 MeV), so that the global Z(3) gauge invariance 
in spatial directions will be spontaneously broken. 
This is to say that spatial thermal loops (spatial 
loops that close through the periodic boundaries) 
will pick up a corresponding Z(3) phase factor, and 
a quark propagating through a boundary will pick 
up a corresponding phase relative to one that does 
not, and hence the meson propagator, consisting of 
a product of quark and ant• propagators, will 
pick up pieces with interfering phases when one of 
the quarks loops through the boundary (or when 
both do so through differing boundaries). All this 
then raises the question of whether similar thermo- 
dynamic effects might not be affecting our glueball 
mass calculations. 

The first point to make is that for a meson or 
baryon calculation our criterion (65) is grossly vio- 
lated for a lattice that is comparable in size to 
the 43. 8 lattice at fi=5.7. Indeed, since DH~_ 1--2 
fermi (the subscript H standing for hadron), it is 
reversed (!): 

1LsG = 2a(fi = 5.7) < DH. (67) 

Hence the presence of strong finite size effects was 
to be expected. 

The second point is that the effect on meson and 
baryon propagators as described in the previous 
paragraph is actually a straightforward consequence 
of (67). When both q and g/propagators go through 
the same boundary, the Z(3) phase factor cancels in 
the product. Hence the effect only arises when the q, 
7=/ propagate through differing boundaries (or when 
only one goes through a boundary), and this re- 
quires the q, q inside the propagating meson to be a 
distance ~-L~a s apart at some point, which cannot 
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happen if (65) is valid (confinement) and only hap- 
pens because (65) is badly violated, as in (67). So if 
the hadron calculations had been performed under 
the constraint (65), as our glueball calculations have 
been, they would not show the above effects�9 

The third point is that a propagating gluon, be- 
ing a colour octet, will not pick up any Z(3) phase 
factor even when it passes through a spatial bound- 
ary. Hence the particular problem we have described 
would not afflict our glueball calculations, even if we 

had been so careless as to neglect imposing (65) 
upon our choice of lattice�9 

The above problem of "fake" loops [25, 26], 
which we have shown to be irrelevant to our glue- 
ball calculations, is, however, a relatively superficial, 
even if readily visible, one. The same thermody- 
namic language points to a more pertinent question: 
the spontaneous breaking of the global Z(3) sym- 
metry implies that the characteristic configurations 
of the vacuum are now systematically different to 
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those in the symmetric phase - how does this affect 
meson/baryon/glueball masses? Of course, these mas- 
ses will be independent of which "Z(3)" vacuum we 
are in (neglecting explicit finite-size effects, where 
quarks loop through boundaries). However, they cer- 
tainly need not be the same as in the symmetric 
phase. This is a question relevant to all mass calcu- 
lations - and needs to be addressed in quark calcu- 
lations just as seriously as the question of fake 
loops. 

To help to clarify the above question, we have 
calculated expectation values of the thermal loops, 
in all four directions, on 43.8, 43-6, 43.5, 43.4, 
43. 3, 43. 2 lattices at ]3 = 5.7. We choose this value of 
/~ since it is the most relevant one for the bulk of 
our mass estimates. In Fig. 10a-e we plot the real 
part of the thermal loop in the time direction for 
these lattices. For each configuration we average the 
real parts of the 43 parallel temporal thermal loops, 
and we plot this value for a sequence of ~ 300 gauge 
field configurations for each lattice size. The spon- 
taneous breaking of the temporal Z(3) symmetry will 

be apparent in that the Re WL should remain fixed 
in one of three values corresponding to a phase for 
the loop of 0 or +2~c/3. The onset of the phase 

transition will be apparent in that Re WL will oscil- 
late between these values with an increasing wave- 
length (in terms of the number of configurations) as 
the system passes through the transition to the bro- 
ken symmetry phase. From Fig. 10 we conclude: 

(i) on a 43-8 lattice the temporal Z(3) symmetry 
is not spontaneously broken; 

(ii) the phase transition occurs in a smooth fash- 
ion as we change L~ from L~=6 to L t=3 ;  this 
corresponds to a width of ATe-150  MeV for a phase 

transition which in the large (spatial) volume limit 
attains a zero width. 

The first observation tells us that the physical 
system described by the transfer matrix, which takes 
us between equal time slices, on the 43. 8 lattice is in 
the desired confining phase. That is to say, our glue- 
ball mass estimates were indeed made for the low 
temperature gauge theory. The second observation 
suggests that for a lattice as small as the present one 
the thermodynamic language (with its precise phases 
and phase transitions) has become too obscure to be 
very useful. Probably our more direct finite-size ap- 
proach, as embodied in (65), is more appropriate. 

For  completeness, in Fig. 11 we plot for the 
43. 8, 43-6 and 43-3 lattices the average over the 
real parts of the 43. (8, 6, 3) thermal loops pointing 
in the x direction and, separately, for those pointing 
in the y direction. We conclude: 

(i) the level of metastability in the spatial Z(3) 
symmetry is appropriate to the onset of a broad 
phase transition to a spontaneously broken phase; 

(ii) the degree of spatial Z(3) metastability is in- 
dependent of the temporal length of the lattice; 

(iii) the degree of metastability in the x direction 
is independent of that in the y direction. 

We describe now a direct search for evidence of 
metastable states, which possess differing glueball 
properties. We perform the search on our 6,000 
43. 16 gauge field configurations. Our procedure is 
to split the data up into batches of 100 sequential 
configurations, to calculate F.~,/F(._ ~)~, for each such 
batch and finally to plot the results and to search 
for a multiple peak structure in the plotted distribu- 
tion. A statistically significant multiple peak struc- 
ture would indicate the presence of metastable states 
of a lifetime T>100 configurations. We repeat the 
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exercise for batches of 200 and 400 sequential con- 
figurations. The resulting distributions will be sen- 
sitive to metastable states with lifetimes ~---200 and 
400 configurations, respectively. The reason for 
doing so is that the statistical fluctuations on F~]F o 
will decrese as the batch length increasses, enabling 
us to discern peaks that may be closer together 
(although increasing the batch length reduces the 
number of batches, and this will tend to counteract 
this improvement). 

In Fig. 12 we plot the distribution of the 0 + + 
F3a]F2a ~ ratio for batches of 200 and 400 iterations. 
We have thirty such batches obtained by using both 
the 6 and 12 link operators. Since F3at/F2a=e . . . .  , 
any significant structure in these distributions would 
be a reflection of metastable states with differing 
0 § masses. We see no such statistically significant 
effect for batches of length 400. The only possible 
candidate, the peak around 0.65-0.70, should be 
more pronounced, if real, for batches of 200. But it 
is not there. For  batches of 200 the statistical fluc- 
tuations are large. In fact there is an entry at -0 .63  
(!), which we have omitted for presentation reasons. 
It is probably reasonable to conclude that any im- 
portant  metastable states of lifetime >400 iterations 
have average ['aa]I'2at values between 0.4 and 0.55, 
i.e. the masses of different such metastable states are 
confined to a region 

m a  t -~ 0 .60 -  0.92. (68) 

In Fig. 13 we plot Fo]I 0 for the 6 link 2 + + operator 
for batches of 100, 200 and 400 configurations. F,]/" 0 
reflects a mixture of mass and wavefunction factors. 
We would prefer to use F2~]F~t, but the statistical 
fluctuations would certainly mask any structure. We 
observe an obvious secondary candidate peaking 
around ~ ] F  o ~0.075, which is relatively independent 
of the batch length. Looking at the data in detail, we 
find that out of the 14 blocks with F~]Fo<0.09, 6 
belong to a single sequence of 600 configurations, 
and this sequence possesses a subsequence of 4 blocks 
with F, j F o < 0 . 0 8 5 .  A probabili ty calculation sug- 
gests that this sequence has occurred about 10 to 20 
times more frequently than it should have, if it was 
at random from a single overall Gaussian distribu- 
tion. The hypothesis suggests itself that the system 
possesses a main (possibly conglomerate) metastable 
state with a correlation length of 0 (4,000), and a 
secondary metastable state, responsible for this sec- 
ondary peaking, with a correlation length of 500 
+_200 configurations. To test this hypothesis, we 
have looked at our 0 ++ and 1 - +  data for these 
same -~ 600 configurations. There is no signal of any 
special behaviour. We return to our 2 + § data and 
look at the 12 link F~]F o. We find no comparable 
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behaviour. We conclude that there is no evidence of 
any metastable state. 

A similar conclusion follows from our data on 
the 43. 8 lattice. There our data comes from 10 inde- 
pendently initiated and generated sequences of 2,500 
to 3,000 configurations. The error on our estimate 

/~22<1o + + =0.361 __+0.018 (69) 

shows directly that any metastable states with life- 
times >2,500 configurations must possess very simi- 
lar 0 + + masses. 

The above evidence points to the conclusion that 
our mass estimates are not being corrupted by high 
temperature effects. Of course, the ultimate test of 
this would be to redo the mass calculations on larg- 
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er lattices. We remind the reader that we have done 
this indirectly by using the 43. 8 lattice at smaller j~, 
and directly in the SU(2) case with calculations on 
53. 40 and 84 lattices [5]. 

IV. Discussion and Conclusions 

In this final part of the paper we shall begin by 
comparing our glueball mass estimates with those of 
[8, 9] and shall resolve the discrepancies. 

We shall then return to our rather surprising 
glueball size estimate, DG~ 0.5 fermi, and present the 
arguments for its validity. This is important because 
our choice of lattice was critically dependent on this 
estimate. 

Finally we shall summarise our most interesting 
results and mass estimates. 
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Comparison with Other Calculations 

In addition to our work [7], there have also been 
mass estimates for the bulk of the glueball spectrum 
by Berg and Billoire [8] and a 0 + + mass estimate 
by Michael and Teasdale [9]. 

The calculation of [8] is on a 43.8 hypercubic 
lattice and uses a variational technique [28] in a 
way similar to ours. Reference [9] is on a 43. 10 
hypercubic lattice and uses the attenuation with time 
of an oscillating zero-momentum source (based on 
the plaquette). 

The most interesting states are those of light 
mass, the 0 ++, 0 -+,  2 ++ and 1 -+.  For the 0 ++ 
there is broad agreement (see Fig. 14). For  the 0-  + 
ours is the only calculation. For  the 2 ++ , however, 
the authors of [8] claim a severe breaking of con- 
tinuum renormalization group behaviour, especially 
in the region /~> 5.4, where, in contrast, we do find 
scaling (see Fig. 15). The discrepancy between our 
results and those of [8] is greatest for the 1 -+  
oddball, where their number is 2.5 times greater 
than our value (see Fig. 16). (The error on the 1- + 
mass value from [8] is large, and one might be 
misled into seeing the disagreement as being only 
a~2a effect. In fact, it is F~/Fo, not ma=lnFo/F~, 
that has a normal distribution, and if one goes 
through the logarithm, one can see that the discrep- 
ancy is really at the ~ 7 a  level). Clearly we need to 
resolve these discrepancies if we are to have con- 
fidence in our results. 

We begin with the 0 + + glueball. In Fig. 14 we 
plot the various mass estimates versus ft. As usual 
we have taken the measured values of ma(~) and 
expressed at/?) in terms of a fixed unit, a(/3=5.7), 
using the 2-loop formula, (10). In the resulting plot 
of ma(/~=5.7) continuum behaviour manifests itself 
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as independence of/3. We find this preferable to the 
common alternative of plotting ma(/3) directly on a 
semi-log plot, which easily conceals large disagree- 
ments. To give a measure of the significance of any 
apparent constancy, we also plot the /3 dependence 
of a mass which is independent of/3 in lattice units, 
i.e. 

1 
m ~ a(/?)" (70) 

Such a behaviour is a typical example of what one 
might find if one were not in the continuum limit. 
(The data we take from [8] is as follows: fo r / ?>5 .4  
the (maximal) F2,/F ~ is used, and for/? < 5.4 the (max- 
imal) F i E  o. From [9] we use: the analogue of F2a/F a 
for /?>5.6, and 1"~.5jFo.5~ - the half-integer values 
come from using timelike plaquettes - for /?<5.6.) 
We observe an overall consistency between the var- 
ious mass estimates. There is a trend for the mass 
estimates of [9] to be somewhat higher than ours or 
those of [8]. There is also a trend for the mass 
estimates of [8] and [9] to increase (in GeV units) 
with /3 for /?>5.6. Such a trend is not unexpected: 
the mass estimates come from F2JF~, and we have 
found that at /?=5.9 this has become a poor  mea- 
sure of the mass. We display in Fig. 14 the actual 
mass estimate (square point) we would obtain from 
the (maximal) F2a/I" a ratio at /3=5.9. It  follows well 
the upward trend of the estimates from [8]. Our 
0 ++ mass estimate at /?=5.9 comes from using 
F3o/r2o. 

We turn now to our areas of disagreement. In 
Fig. 15 we plot our estimates of the 2 ++ mass along- 
side those of [8], again as the dimensionless ratio 
ma(/? = 5.7). We also plot the quantity 

;rg 
mcut-~ = a(fl)" a(fl = 5.7), (71) 

which is a measure of the highest mass for which the 
coarse 43-8 lattice can be considered reliable. We 
note that the mass estimates of [8] are close to 
Mcut_of f and show a strong fl dependence for /?>5.4 ,  
in contrast to our mass estimates. We also note that 
where our mass estimates appear to show some /3 
dependence, for /3<5.3, Mcut.of f has sunk below the 
higher /3 2 + + mass estimates. This corroborates our 
earlier suggestion that for /?<5.3 the 2 ++ glueball 
changes into a lattice rather than continuum object. 

In Fig. 16 we plot the glueball mass estimates of 
[8], other than the 0 ++ and 2 ++ . We also plot 
Mcut_of f for this data (solid line). (The data [8] comes 
from / /=5.7 where possible; for the 0 - -  and 3 + -  
this was not possible, so we used mass-estimates 
taken [8] at /?--5.6.) In the same figure we plot our 

excited glueball mass estimates, as obtained on the 
43. 16 space-time asymmetric lattice. We plot 
Mcut_of f for this data (dashed line). Since the tem- 
poral lattice spacing is smaller, the 43. 16 lattice 
should in principle be more reliable for higher mas- 
ses. We observe that all our mass estimates lie 
below the corresponding ones from [8], the 1 - +  
being the most dramatic example. We also note that 
our mass estimates have a much healthier relation to 
their Mcut_of f than do those of [8]. 

The resolution of all these disagreements lies in a 
simple observation: all the excited glueball mass es- 
timates of [8] are obtained from FJF o. This is in 
contrast to our estimates, which (for fl>5.5) all use 
Fza/F~ or even F3a/F2a. (Where we have used F,/F o for 
fi<5.5, we have always been careful to estimate 
wavefunction corrections and to include these with 
generous errors, as in Fig. 5.) Suppose we write 

F~ = c~(fl) e -  m,(t~), (72) 
r0 

then the mass estimate, m, one obtains from this 
ratio, is 

r ~ = m + a ( ~ l n  [ ~ ( ~  ] . (73) 

As /3 increases not only does a(/?) decrease, but so 
does c~(/3), and rapidly. This is true even if one per- 
forms a variational improvement  of a f i xed  (with /3) 
subset of trial wave-functionals (see Fig. 5). Hence m 
will increasingly overestimate m as /3 increases. (In 
reality the situation is worse; at larger /3 we must 
include higher mass contributions in (72).) It is clear 
that the discrepancy will become worse sooner the 
lighter is m. 

The disagreement between our masss estimates 
and those of [8] follow this pattern exactly: for 
increasing/? the disagreement grows rapidly, and for 
higher mass states it is relatively smaller. As a final 
check we take our measured values of FJF o, and find 
that if we use these to obtain mass estimates, then 
indeed the discrepancies disappear. 

It is clear then that the higher /3 mass estimates 
of [8] for excited glueballs should really be seen as 
mass upper-bounds, and as such they are no longer 
in disagreement with our estimates. 

On the Size of  the 0 + + GluebaI1 

We have estimated the mean glueball diameter to 
be: 

D~ ~ (1.5 - 2.0) a(~ = 5.7) 

~0.5 fermi. (74) 
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This is in contrast to normal meson and baryon 
sizes, 

DM/B-~ 1 -- 2 fermi 

- ~ ( 4 -  8) a(fl = 5.7), (75) 

and raises the question of how confident we can be 
of our estimate for D G. 

The most naive possibility is that we might have 
our GeV scale wrong. If in fact Amo m~- 70 MeV rath- 
er than 200 MeV, the D a becomes -~ 1.5 fermi. How- 
ever such a Amo m would give wildly wrong pre- 
dictions for the gluon condensate and string tension, 
and it would wreck quenched Q C D  hadron spec- 
t rum calculations which generally prefer a larger 
Amor, than 200MeV. Accordingly we discard this 
possibility. 

The only other way that D G could be equal to 
DMm is if we were wrong in our estimate of D G in 
terms of lattice units, i.e. DG--~(4-8 ) a(fl=5.7) rather 
than (74). We take this possibility seriously and give 
arguments why we believe it to be incorrect. 

Our original evidence for (74) came from Fig. 2: 
the better an operator  mimics the glueball wavefunc- 
tion, the bigger will be its projection and hence the 
bigger should be FJF o. Hence the position of the 
maximum in FJF o plotted versus the size of the 
operator should give a reasonable estimate of the 
glueball size. We note that the glueball size es- 
timates obtained in this way vary by no more than 
~ 1 5 ~  over a range of fi values corresponding to 
the lattice spacing, and total lattice size, varying by 

100 ~o. This is impressive evidence for the correct- 
ness of our procedure and simultaneously for the 
renormalization group behaviour o[ the 0 + + glue- 
ball size. Secondly we observe that if D G was really 
-~4a(fl=5.7), then, as we decrease fl so that the 
glueball fits more easily into the enlarging lattice, 
the similarly growing (in GeV -1 units) 2 x 2 loop 
should rapidly become a good trial wave-functional. 
What we observe instead is completely the opposite 
behaviour. 

If we still wish to continue our pursuit of a 
larger glueball, we must at this point discard the 
evidence of Fig. 2. That  is to say, we must claim that 
the operators are all very bad approximations to the 
true 0 + r  wavefunction, so that they are dominated 
by higher mass states, and what we see is some 
obscure reflection of that. This however completely 
contradicts our estimates for the goodness of our 
operators as obtained by comparing FJF o with 
Faa/F~; see Fig. 5. 

To continue along this line we must therefore 
assume that in fact I2 , /F a is also dominated by higher 
mass states and not by the lowest 0 r +  glueball 

m ( n  i 

0* SU[2} 

r i i i i ~ i i i r i 

1 2 3 /~ 5 5 ? 8 9 10 11 
rl 

Fig. 17, As in Fig. 9 for the 0 + in SU(2) on a 53.40 lattice 

i . J  

12 13 

mass as we assumed. That  is to say, if we plot the 
effective mass obtained as 

meff(n)a t = l n  F(,_ 1),t (76) 
~ 

tTt  ' 

then at n = 2 this should still be a rapidly decreasing 
function of n. Our direct measurements on the 43. 16 
lattice, as shown in Fig. 9, show no such decrease. 
Rather they support the assumption that F2,~/F~ is 
dominated by the lowest glueball mass. (Recall that 
the temporal  lattice spacing on the 4 a. 16 lattice is 
3 a t ~ 2a(fi = 5.7).) 

As final evidence we present in Fig. 17 the result 
of calculating mcff(n) on a 53.40 lattice with a t 
= l / 4 a  s for the SU(2) 0 r glueball [5]. This calcu- 
lation demonstrated very clearly that in the S U(2) 
case, for a region of couplings precisely analogous to 
that being considered here, 

I~2a I~sat 
(77) 

does indeed accurately reflect the lowest 0 r glueball 
mass. 

All of this leads us back to our original estimate 
of D G in (74). 

Conclusions 

We have calculated the masses of the lowest-lying 
0 ++ , 2 ++ , 0 . +  , 1 + - ,  1 -+ ,  0 - - ,  2 - -  glueballs in the 
SU(3) lattice-regularized non-abelian gauge theory. 
(Of course, our operators cannot be pure j e c  wave- 
functionals: for example, both the 0 ++ and 2 ++ 
operators possess admictures of 4 r +. If however the 
4 + + glueball were lighter than the 0 r +, we should 
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have obtained equal "0 ++" and "2 ++" masses, 
which we did not.) 

We have shown that both the 0 ++ and 2 ++ 
adhere to a statistically significant extent to the de- 
sired continuum renormalization group behaviour, 
implying that they are indeed representative of the 
continuum gauge theory. This reflects favourable 
upon the validity of our other states, for which we 
have not yet performed such a calculation. 

Using the string tension as our scale (Amo m 

=200MeV),  we summarise our mass estimates in 
MeV units: 

m(0 + +) = 740 +40 MeV 

m(0- +) = 1420 + 240 MeV 
- 170 

m(2 + +)= 1620 • 100 MeV 

m(1 - + ) = 1730 • 220 MeV) 
_ MeV~ ~ re(O- -)  = 2880 + 300 

m(2- -)  = 3420 • 300 MeV 

m(1 + -)  = 2980___ 300 MeV 

(78) 

We have thus found four light glueballs, the scalar 
0 f +, pseudoscalar 0-+ ,  tensor 2 + § and the oddball 
1-+. These should be of special phenomenological 
interest, especially the light oddball. The fact that we 
find that the typical glueball diameter is only about 
0.5 fermi should also have interesting implications 
for glueball production and mixing. 
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Note Added. After completion of this paper we received a preprint 
by Berg and Billoire (Saclay preprint SPh.T/42), which repeats 
their previous SU(3) calculation (8) on a slightly larger 53.8 
lattice. Moreover they systematically consider all operators of 
length up to 8 links. They find finite size effects for F o, but  not  for 
the mass  estimates (a possible effect is an increase of the 0 + + 
mass a t /?=5.6 ,  but it is a < 2 ~  effect and so not very significant). 
We recall our own finite size studies [-5, 6] in S U(2), in an 
analogous range of couplings, on 43. 8, 53. 40, 6* and 84 lattices. 
While we found some changes in FjFo, we did not observe any 
changes in the mass estimates. For the excited states they find no 
cont inuum behaviour, and the mass  estimates are systematically 
(much) higher than ours (as in the 43-8 case), including now a 
0 -  + estimate. This is to be expected since all these mass  estimates 
are obtained using Fo/F o rather than Fza/F,, jus t  as in their 43. 8 
calculation [81, and it re-emphasises the necessity of taking 
measurements  further out along the correlation function as one 

probes deeper into the cont inuum limit: a pure variational calcu- 
lation is not enough! 

A p p e n d i x  

A Comparison 
of Different Random Number Generators 

The Monte Carlo procedure generates a sequence of 
gauge field configurations from an underlying se- 
quence of random numbers. The randomness of 
these numbers is necessary to ensure that any con- 
figuration is eventually accessible, and that these 
configurations should indeed be generated with the 
correct weighting as given by the exponential of the 
action. 

In practice the computer generates the sequence 
of " random numbers" from some well-defined algo- 
rithm, and hence they are not truly random. It is 
conventional to call them pseudorandom [23]. 
These pseudorandom numbers possess (weak) cor- 
relations, which will perturb our Markovian Monte 
Carlo procedure. The general problem is analogous 
to the stability problem of a highly non-linear sys- 
tem under a weak perturbation. Two pertinent ques- 
tions are: (i) are "asymptotic" values of correlation 
functions affected by these perturbations? (ii) are 
statistical errors smaller with some standard gener- 
ators than with others? 

The first question has been addressed previously 
[4] within the context of some relatively simple ex- 
actly soluble models in statistical physics. We shall 
investigate both questions within the context of our 
glueball mass calculations, following a brief dis- 
cussion of pseudorandom numbers. 

Pseudorandom Numbers [23] 

Sequences of pseudorandom numbers are not in- 
finite but periodic with a period that is typically 
O(2t), where t is the number of bits used for integer 
representation. For  a 32 bit machine (e.g. IBM) this 
is O(109) ,  while for a 60 bit machine (e.g. CDC) this 
is O(1017). A typical long calculation of the type 
desired in this paper uses O(109 ) random numbers. 
This suggests taking the precaution of working with 
a double-precision generator on a 32 bit machine. A 
period of 0(10 iv) may be considered infinite in the 
context of any conceivable lattice calculation. 

An interesting manifestation of the correlations 
in a sequence of pseudorandom numbers is the Mar- 
saglia effect [29]: group successive members of the 
sequence into n-triples and regard these n-triples as 
specifying the coordinates of a point in n dimen- 
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sional space. One finds that these points are not 
distributed randomly in this space. Instead they lie 
in a finite (n-dependent) number  of hyperplanes. For 
n = 2 or 3 this effect is, by design, very weak. But for 
n = 0(20) it typically becomes significant. One might 
imagine that, within our context, this could manifest 
itself in the non-uniform population of colour space 
and correlations between the colour orientations of 
different links. Since different generators manifest 
these effects to a greater or lesser extent, one can 
search for the impact of these correlations by com- 
paring calculations with different generators. This we 
now do. 

a 
i i 1 i 

0 § 

RH-O H 0 RH-RH M M ~ 

Fig. 18. q/F 0 for the 0 + + with various random number generators 
and upgrading procedures 

Numerical Comparison 

We work on a 43-8 lattice at /~=5.7. We calculate 
F j F  0 (defined in (7)) for 0 ++, 2 ++ and 1 + -  glueballs, 
using p = 0  wavefunctions constructed out of the 
simple plaquette. We perform six independent such 
calculations using different generators and updating 
procedures, labelled by X - Y .  X e { R N ,  M, RNDM2} 
specifies (see below) which of three pseudorandom 
number  generators was used for updating the link 
matrices and Y specifies how the link to be updated 
is chosen. If  Y=0, then the choice is sequential 
(ordered), otherwise the choice is at random and Y 
specifies the (pseudo)random numbers used. 

The combinations of X - Y  tested are RN-0, 
M-0, RNDM2-0 ,  RN-RN,  M-M and R N D M 2 - T R N .  
Here R N  is a standard 32 bit multiplicative con- 
gruential generator [23], R N D M 2  is a 60 bit such 
generator [30], and M is a generator [31] designed 
to exhibit no Marsaglia effect up to n =  16. T R N  is a 
sequence of 107 true, physically generated, random 
numbers [22 I. This sequence is too short for link 
updates but is long enough to use for the random 
choice of which link to update next. 

For each combination of X - Y  we generate 300 
configurations to reach equilibrium and then a fur- 
ther 800 configurations for measuring FjI  o. 

The various values of FJF  o for 0 ++ and 2 ++ 
show no significant differences within the statistical 
errors. In Fig. 18 we show, for example, the 
measurements for 0 + + 

The values of FjFo for the 1 + - state are plotted 
in Fig. 19 as solid circles. There is a large, though 
not significant, scatter of points. What  appears more 
significant is the variation of the sizes of the statisti- 
cal errors on these points. To clarify this question, 
we have taken what look like two extreme cases, 
RN-0 and R N D M 2 - T R N ,  and we have performed 
measurements on a further set of 3,000 configu- 
rations in each case. The results are the solid tri- 
angles in Fig. 19. We observe that in each case the 

m .  10 

02  

M - 0  

-02  

tN-O 

1 " -  

t+ 
RHDM2-TRI 

M - H  

Fig. 19. A study of the dependence of FjFo for the 1 +- for 
various random number generators and upgrading procedures 

errors have been reduced by about  a factor of 2 for 
an increase in the number  of measurements by 
about a factor of 4. This is as expected and indicates 
that our error estimates are accurate. (Studies of our 
other data indicate that the errors on these error 
estimates are not more than 0(30 ~o).) All this leaves 
us with rather strong evidence that statistical errors 
can depend strongly on the generator/updating pro- 
cedure employed. In the present example of the 1 + - 
state the error using R N D M 2 - T R N  is a factor 4 to 
5 smaller than the error with RN-0. In other words, 
using the latter procedure, we need ~ 2 0  times more 
events for the same statistical accuracy! 

We now address the crucial question of whether 
the actual "asymptot ic"  values vary with the X - Y  
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procedure employed. We have seen already (in the 
main body of the paper) that the mass ratios of the 
0 ++, 2 ++ and 0 -+  glueballs are the same (within 
errors) in the two independent calculations on 4 3. 8 
and 4 3. 16 lattices. Since the former used RN-0, 
while the latter used R N D M 2 - T R N ,  this indicates 
that at least these states are stable under the per- 
turbations induced by the use of pseudorandom, 
rather than truly random, numbers. The situation 
with the 1 + - state is more delicate. Comparing Fa/F o 
for 1 + -  using RN-0 on about  27,000 configurations 
with the R N D M 2 - T R N  value (3,000 configurations) 
suggests a discrepancy at the ~ 3 a  level. This is 
worrisome but not conclusive. 
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