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I consider a slightly modified definition of an order parameter that was recently suggested by 

DeTar and McLerran. It is supposed to test for confinement in lattice gauge theories when 

arbitrary matter fields are present, at finite physical temperature /3 -r > 0. Its definition is quite 

directly related to confinement in the sense that no physical states with fractional baryon number 

can be observed. We test the parameter for different ranges of the coupling constants in the Z(2) 

Higgs model, whose phase structure is well known at zero temperature. It is found that the order 

parameter always shows the behavior characteristic of confinement, for all values of the coupling 

constants and arbitrary non-zero temperature. 

1. Introduction 

Lattice gauge theories can have different phases, since they are described as 

systems of classical statistical mechanics. In approximative models for QCD one is 

mainly interested in phase transitions which can influence the confinement property 

of the system, when parameters such as the physical temperature /I -’ or the bare 

coupling constant g; 2 are varied. Confinement is understood in the sense that there 

are no physical states with the flavor quantum numbers of single quarks (fractional 

baryon number in QCD). Suitable order parameters should distinguish between 

different phases such that confinement is implied if they behave in a specific way. 

For pure gauge theories order parameters are well known that fulfill this task: at 

zero temperature it is the Wilson/Wegner loop [l] and at finite temperature the 

Wilson/Polyakov line [2]. 

Since they can no longer be used when matter fields are present that transform 

non-trivially under the center of the gauge group, DeTar and McLerran [3] proposed 

a quantity as a candidate for an order parameter that was supposed to test for 

confinement in the presence of quark fields, at finite temperature j3 _ ‘. The idea is to 

calculate the probability of finding in the Gibbs ensemble a quantum mechanical 

state that transforms non-trivially under the center Z(N) of the gauge group SU( N). 

* Work supported by Deutsche Forschungsgemeinschaft. 
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It might seem natural to say that confinement occurs at zero temperature if it occurs 
at arbitrarily small temperature, and the order parameter should be able to test for 
that. 

I have investigated a slightly different definition of the parameter which takes care 
of the necessity to impose proper boundary conditions. It exhibits the order 
parameter as a limit of a finite-volume quantity. 

For the Z(2) Higgs model it will be shown that the definition leads to a negative 
result. It is found that the parameter exhibits the qualitative behavior that is 
supposed to be characteristic of confinement for all values of the two coupling 
constants and for arbitrarily small but finite temperature. The proof of this result is 
contained in sect. 3, following the precise definition of the parameter in sect. 2. 

I will now discuss the meaning of this unexpected result. It will be argued that it is 
inappropriate to define confinement at zero temperature as confinement for arbi- 
trarily small temperature. Indeed it is doubtful that the notion of confinement versus 
deconfinement has a well-defined meaning in theories with quark fields (i.e. matter 
fields that transform non-trivially under the center of the gauge group) at finite 
non-zero temperature at all. Recent results of DeGrand, DeTar and McLerran point 
in the same direction [4]. 

To speak of confinement one needs to consider a system in infinitely extended 
space. However, for a system in infinitely extended space it is incorrect to write 
expectation values of observables as (0) = TrpO with a trace that runs over the 
same Hilbert space of physical states that is relevant at zero temperature (p is the 
density operator). This point has been emphasized by Araki, Haag and Kastler (cf. 
the treatment of the thermodynamical limit in the C* algebra formulation of 
statistical mechanics [5]). Roughly speaking, the states at zero temperature have a 
finite particle number (if there is a mass gap) hence zero particle density, while the 
relevant states at finite temperature have finite particle density. Therefore one 
cannot check whether there exist states at zero temperature with fractional baryon 
number (non-trivial transformation law under the center of the gauge group) by 
looking at what states contribute to the trace in TrpO at finite temperature. 
Moreover, in a state with finite particle density there is no obvious way how the total 
baryon-number modulo 1 could be determined (e.g. as a limit of a finite-volume 
quantity). The result of the present calculations suggest that it cannot be done. 

The Z(2) Higgs model is known to possess two distinct phases at zero temperature. 
It was shown by Marra and Miracle Sole [6] that there are two ranges (I), (II) of the 
coupling constants where strong-coupling expansions (I) respectively “low-tempera- 
ture” expansions (II) converge. Fredenhagen and Marcu have shown [7] that charged 
states exist in region (II) which can be handled by low-temperature expansions, but 
not in the other regions. Monte Carlo work confirmed [8] that the two regions are 
separated by a line of phase transitions. 

We have examined whether the result of Marra and Miracle Sole extends to small 
but finite temperature. If it did, one would have a candidate model with matter 
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fields for a deconfining phase transition at finite temperature. It turns out, however, 
that the convergence of the low-temperature expansions breaks down for arbitrarily 
small but non-zero temperature. This is shown in sect. 4. 

2. Definition of the parameter 

According to the definition of quark confinement, in nature confinement holds if 
there are no physical states with fractional baryon number. To derive this property 
from QCD it is sufficient to show that all physical states transform trivially under 
global transformations in the center Z(3) of the gauge group SU(3) [9]. Then the 
probability of finding a state in the Gibbs ensemble with N-ality n, i.e. a state that 
transforms according to the n th irreducible representation of the center Z(N),  (for 
finite volume A) is given by 

Zn _ Tr%,, e - aria 

Z Trx  e - ¢-A " 
(2.1) 

H A is the hamiltonian in a finite space volume A defined by the transfer matrix 
T = e - HA,,, ( a  t = lattice spacing in time direction). The traces Tr~ and Tr%° run over 
the Hilbert space of all physical states ~p and all physical states q~n with N-ality n, 
respectively. DeTar and McLerran proposed to use Z n / Z  as an order parameter [3]. 

Consider a system that is defined on a (3 + 1)-dimensional hypercubic lattice 
A~ = A × [0, fl] with lattice spacing a = 1, extensions fl in the time direction and d i 
in spatial directions, i = 1, 2, 3. fl and d r are finite. 

The path integral for the partition function Z has the general form. 

Za~(b.c. ) =f ~ u  @q e L(U,q) 
b.c. b.c 

(2.2) 

It depends on the lattice At~ and the boundary conditions (b.c.) imposed on the 
gauge fields U ~  SU(N)  and the matter fields q (q can be Higgs fields or fermion 
fields). The measures f ~ U  and f ~ q  and the action L ( U ,  q)  will be specified later. 
We choose periodic boundary conditions (p.b.c.) for the gauge and matter fields in 
time and space directions, antiperiodic boundary conditions (a.p.b.c.) in the time 
direction for fermions. 

Instead of (2.1) I have investigated a modified definition of the order parameter 
for reasons that will now be explained. 

Consider the Fourier transform 2 k of Z n on the center Z (N)  of SU(N),  given by 

N - 1  

2k  = E e 2 " i k " / N z .  • (2.3) 
n~ O 
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In the confinement phase 2, should be zero for n # 0, corresponding to Zk 
independent of k. Define the twist yk in the representation D of Z(N) on states 

+, E ‘K, by 

D( y”) $,:= e2nikn/N$,, . (2.4) 

If we choose p.b.c. for q(x) in Z (2.2), it follows that 

Zk=TrX(D(yk)ecPHn) =/ rty. tT,q, eL(u*9). (2.5) 

t.b.c. denote twisted boundary conditions for q(x). The meaning of t.b.c. depends on 
k and is given by 

4(~A=Ykq(-u% (2.6) 

(x = space coordinate, /3 = time coordinate, x E A). 
The action of the twist yk amounts to a change in the boundary conditions of Z, 

compared to Z. However, the k-dependence of Zk can be eliminated by a change of 
gauge field variables according to [lo]: 

W) + YkW)? ifbET, 

I@) + WJ), otherwise. (2.7) 

T is the set of timelike links b that touch the t = 0 slice in a site x and point in the 
box A,. Therefore Z, is not yet a suitable candidate for an order parameter. The 
possibility to eliminate the k-dependence of Zk follows from the Gauss law for 
abelian gauge fields. The Gauss law enforces N-ality zero inside A, if we choose 
p.b.c. (t.b.c.) in Z and in Z, as in (2.5). That is why we restrict the twist to a spatial 
three-dimensional subset B of A in the t = 0 hyperplane. A projection of B on two 
space dimensions is shown in fig. 1. 

Fig. 1. Subset B of sites .x in the t = 0 hyperplane for two space dimensions 
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The restricted twist yk acts on states according to 

q’(x) = e 2nikx8n/Nq( x), 

n = 1 for quarks, k = 0,l and N = 2 for gauge groups SU(2) and Z(2). 

ifxEB 
otherwise. 

Instead of pk consider now 

Zn,(B, k) =/ G?)U 9q eLcuqq) 
0.c. t.b.c.(B) 

where t.b.c.(B) specify boundary conditions 

4(x4)= 
Y%W) 3 ifxEB 

4(x90) 9 otherwise, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

if q(x) are Higgs fields. For fermions substitute a.p.b.c. for p.b.c. in the time 
direction. 

The order parameter is now defined in terms of the k-dependence of the free 
energy In p+(B, k) by 

&, = Fim (ln &,(B,O) -1n Zn,(B,l)) ) (2.12) 

for gauge groups SU(2) and Z(2). More generally one could look for different 
/B/-dependence of Pa. lB1 is the volume of B. Confinement should correspond to 
ZAs(B, k) = independent of k. More precisely, we expect 

P=o, in the confinement phase, 

Pzo, in the deconfinement phase. (2.13) 

In the confinement phase only boundary terms should contribute to the difference 
of In zAB(B, 1) and In pA,(B, 0), e.g. contributions from mesons that lie partly inside 
partly outside B. 

Let us illustrate the intuitive picture behind definition (2.12) in figs. 2a-d. We 
have drawn “mesons” with N-ality f 1 in small and large volumes 1 B I. For small 
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(cl (d) 

Fig. 2. Gas picture of the distribution of “ mesons” for small and large volumes 1 B 1 in the confinement 
phase (fig. 2a-b) and in the deconfinement phase (fig. 2c-d). 

lB1 we do not expect a difference between the confinement and the deconfinement 
phase in the probability of finding such mesons, I8B ( = 1 B I. For large volumes 1 B 1 

only short strings near the boundary of B are candidates for N-ality states + 1 in the 
confinement phase, while strings can be spanned over the whole volume B (leading 
to a contribution proportional to I B 1) in the deconfinement phase. 

Remark. Consider a quark qi and an antiquark q2 as shown in fig. 3a, b. The 
decay law of the Wilson loop is determined by the energy which is necessary to 
separate a quark qi at a position 1 from an antiquark q2 at a position 2. This energy 
is finite even in the confinement phase when matter fields are present that transform 
non-trivially under the center of the gauge group. Therefore the Wilson loop does 
not distinguish between situations as shown in fig. 3a and b. It obeys a perimeter law 
in both phases. 

Our parameter should be sensitive to the difference between (a) and (b). Instead of 
the broken string between qi and q2 of fig. 3a only the string between qi and g, 
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q1 

I % 
(b) 

Fig. 3. (a) Pair creation of q,q, leads to a broken string between a quark antiquark pair at positions 1 
and 2 in the confinement phase. (b) Long string between the same quark antiquark pair at positions 1 and 

2 in the deconfinement phase. 

near the boundary of B will contribute to P. The second state q2q4 has N-ality 0 and 
drops out of P. - 

3. Bounds on the parameter in the Z(2) Higgs model 

3.1. THE MODEL 

We consider a Z(2) gauge theory with Z(2) Higgs scalars. The gauge fields 
a(b) = -t 1 are attached to links b, the matter fields are Higgs scalars T(X) = f 1 
attached to sites x = (x, t). The action is given by 

dp denotes the boundary of a plaquette p. The gauge part has the standard 
Wilson/Wegner form. g; 2 and K are the gauge and matter couplings, respectively. 
The sum runs over all plaquettes p and links b of the lattice. Plaquettes on opposite 
sides are summed only once if the gauge field variables satisfy p.b.c. in the 
corresponding directions. The Haar measures reduce to discrete sums over all 
configurations {u(b)= kl} and {T(X)= +l}. 

For the Z(2) Higgs model a line of phase transitions was established [8] between 
the shaded regions of the diagram (full line in fig. 4), at zero temperature j3 -l. The 
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model is expected to show confinement in the whole region (I) and (III), but 
deconfinement in region (II). 

In order to establish P as a candidate for a suitable order parameter we should 
derive a qualitatively different behavior of P in these regions if we make in addition 
the following assumption: it is justified to take the limit p -+ cc last (i.e. after the 
thermodynamic limit). Then P is supposed to test for confinement also at /3 -’ = 0. 
Without this assumption qualitatively the same behavior in the whole range of 
couplings (as indicated in the diagram) would not contradict the well-known phase 
structure at zero temperature. 

3.2. BOUNDS ON P 

Configurations { a(b) = k l} and { r(x) = k l} that are summed over in i,,(B, k) 

depend on the twist yk, because they must be compatible with t.b.c. for r(x). The 
action L(a, r) depends via r implicitly on the twist. In order to exhibit the 
y-dependence of L explicitly we make the following transformation of r 

T(X) -+ r’(x) = &(x)< 
-+) 
4x1 

ifk=landxEB 

otherwise. 
(3.2) 

It follows that 

Fig. 4. Phase diagram for the Z(2) Higgs model at zero temperature. The full line corresponds to phase 

transitions between the confining/screening phase (region (I) and (III)) and the deconfinement phase 
(region (II)). 
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with r’ defined as in (3.2), or again in terms of r 

39 

gAB(B,k)-/ 9~ 9)7 exp(g;2~{o(dp)-l}+~ c 
p.b.c. p.b.c. 

P 

(3.4) 

Under the action of the twist y$, pAB(B,O) + .?Y,,s(B, l), the matter part of the 
exponent in (3.4) is changed by ( - 1) for all links b E JB. The coboundary JB of B is 
given by 

r!IB= {b=(xy)lxEB,yGB}, (3.5) 

gB is shown in fig. 5. Denote by (JB), the “vertical” part of $B, i.e. the set of 
timelike links 

(3.6) 

where e, is a lattice vector in time direction. 
Write ( 8B)h for the “horizontal” part of JB, i.e. the set of spacelike links 

(3.7) 

where e, is a lattice vector in space direction i. Then 

gB = ( JB),! ti ( 8B), . 

We make a second transformation of field variables 

a(b)+&(b)= (+0(b), for b E (JB), 

e(b), otherwise. 

(3.8) 

(3.9) 

Fig. 5. SetaB={b=(xy)I.~EB,yPB}. 
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Transformation (3.9) has the following properties: 
(i) / %7 = / QJ’. 
(ii) a’(b) still satisfies p.c.b. in all directions, especially in the time direction. 
(iii) Since the new gauge field variables depend on k, the gauge part of the action 

in terms of u’[Lo(u’, k)] now depends on the twist too. For k = 1 it gets a minus 
sign for those plaquettes that contain an odd number of links of (JB),. This set of 
plaquettes is given by $[( 8B),]. Denote by 8B the set 

8B = {x E Blno. n.n. < 4 (6) in 2 (3) space dimensions}. (3.10) 

n.n. are the nearest neighbours of x in B, 8B is the “perimeter” of B. Then 

I~[@B),]I = laBI = I(%4 7 (3.11) 

a[( JB),] is shown in fig. 6. 
Note that 

(3.12) 
ifpE 8[(8B),] 

otherwise, 

for a fixed configuration u’(b) the gauge part changes according to 

L&u’,k=l)-L,(u’,k=O)=g,* c {-0P) -4aP)) 

~~k(kl 

= -2g,* c 4JP). (3.13) 

(iv) The change in the matter part of the action is given by 

LM( u’, 7’, k = 1) - LM( u’, 7’, k = 0) = -2K c 7’(X)U’(b)T’(J+ 

h=(xy)~(t?B)~ 

(3.14) 

Fig. 6. Set i[( ;B) “1 of plaquettesp for which a’( 8~) = (~ l)%( 6?p) 



H. Meyer-Ortmanns / Unexpected behavior of an order parameter 41 

(If b E (JB),, x E B, y = x + e, the term T(x)a(b)T(y) = (- l)kr’(~) 
x (- l)ka’(b)r’(y) is independent of k and drops out in (3.14). 

Consider now the quotient 

To get a bound on (3.15) note that 

Ie’(Wl 6 1, for allp E A,, 

lr’(+‘(b)r’(y)l G 1, forallb=(xy)EAg. 

Then it follows from (3.13), (3.14), (3.11) and (3.16) that 

Taking lim,B,_oo(l/IBI)lim~,, in (3.17) finally yields 

O<F<O, or P=o. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

According to (2.13) it means that the order parameter indicates confinement 
independently of the range of couplings K and go 2 and independently of the finite 
temperature p -’ > 0. 

This result indicates the failure of the parameter in the sense that it contradicts the 
phase diagram of fig. 4, at zero temperature if it is justified to take the limit /3 ’ + 0 
last, i.e. after the thermodynamic limit in (3.18). In the introduction we have already 
commented on the doubtfulness of this order of limits. At finite temperature 
p - ’ > 0 if the phase diagram remains qualitatively the same as at zero temperature. 
The phase diagram at zero temperature is characterized by the existence of two 
phases, the so-called confining/screening and the deconfining phase, separated by a 
line of phase transitions. It has not been shown that the phase transitions persist at 
#LP’>O. 

In sect. 4 we show that the result of Marra and Miracle Sole cannot be extended 
to finite temperature. It is therefore quite possible that the phase transition which 
exists at zero temperature disappears for arbitrarily small finite temperature. 

3.3. REMARK 

The change of boundary conditions between p*,(B, 0) and pAll(B, 1) induced a 
change in the partition functions that became independent of the range of K and go- 2 
and independent of I B I in the limit of P. Let us compare with the vortex free energy 
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v, the difference between the free energy of two vortex containers whose boundary 
conditions differ from each other by the action of a singular gauge transformation 
[ll]. For gauge groups SU(2) and Z(2) the action of a singular gauge transformation 
enforces an odd number of quantums of magnetic flux through the container in a 
certain direction. Whether this number is small or large can depend on the range of 
coupling constants (e.g. g; 2 K 1, K C 1 or g; 2 > 1, K -=zz 1). This is reflected by a 
different dependence of v on the cross section of the container, see refs. [ll]. 

4. Phase diagram of the Z(2) Higgs model at finite temperature p ~ ’ > 0 

In this section we want to show that the analysis of Marra and Miracle Sole to the 
Z(2) Higgs model [6] is no longer applicable at fi -’ > 0. 

Remember now the phase diagram of the Z(2) Higgs model at zero temperature. 
Analyticity of the free energy In 2 was proved for all the whole shaded regions, 
especially for region (II) (go 2 >> 1, K +c 1) - the so-called deconfinement phase. It 
followed from the result obtained by Marra and Miracle Sole [6] that the cluster 
expansion of In 2 is absolutely convergent for sufficiently large g; 2 and sufficiently 
small K; the convergence is uniform in IA, I. Their proof does not generalize to 
systems at p -’ > 0. The absolute convergence of the cluster expansion will be 
destroyed by a certain class of graphs which contribute to In Z only because of the 
p.b.c. in the time direction for the matter fields. 

Consider a (2 + 1)-dimensional box A, = A x [0, fi] (cf. fig. 7) whose size is d,, d, 
in spatial directions 1,2 and j3 < cc in the time direction. The (3 + 1)-dimensional 
case could be treated in an analogous way. We impose free boundary conditions 
(f.b.c.) in directions 1,2 and p.b.c. in the time direction for both gauge and matter 
fields such that the top and bottom of the box can be identified. We take the 
thermodynamic limit d,, d, + 00 in the end, but keep p finite corresponding to a 
temperature j3 -’ > 0. 

Because of the identification of the top and bottom of A, there exist closed paths 
which are not boundaries. If C is a closed path (more precisely a l-chain with 

dl 

I 
P 
1 t x2 

L X' 

Fig. 7. (2 + l)-dimensional box with free b.c. in directions 1,2, and p.b.c. in the time direction for gauge 

and matter fields. CO plays the role of a “reference loop”, for further explanation see the text. 
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coefficients in IF, = (0, 1)) i.e. JC = 0 then 

either: C=aE (a), or C=C,,+az (b) 3 (4.1) 

for some surface (2-chain) z. The representative C, will be chosen on one of the 
corners of the box, see fig. 7. 

4.1. REWRITING OF THE PARTITION FUNCTION 

Given a gauge field configuration {a(b)}, this determines uniquely a set S, of 
frustrated plaquettes 

s,= {&T(l?p)= -l}. (4.2) 

Given a set of frustrated plaquettes S 

S= {PWp)= -l>, (4.3) 

the gauge field configuration {a(b)} is not uniquely determined, even not up to 
ordinary gauge transformations, because such gauge transformations have to respect 
periodicity in the time direction (otherwise they destroy p.b.c. for the matter fields). 
The partition function 

h= (X.1.) 

can be written as 

ZAB(b.c.) = c eLcr*“) 
(0.7) 

=~e-2g”*Isl c n (1 +[tanhK]7(x)u(b)r(y)} 

(4.4) 

(4.5) 

for a suitable choice of the constant in L. The constraint S, = S guarantees that 
{u, T} is compatible with S. S, is co-closed in A, (i.e. its co-boundary in infinite 
space is contained in the boundary of A,), therefore the sum over S needs only be 
taken over co-closed sets of plaquettes p with a( 8~) = - 1. In the following we write 
Z for ZAB(b.c.). 

A gauge field configuration u is specified up to an ordinary gauge transformation 
on A, (with top and bottom identified) by prescribing S and u(C,). [u(C,) can be 
changed into its negative without affecting S by taking u(b) -+ -u(b) for all 
timelike links b = (xy) with x = (0, x), y = x + e,, x varies over the points of a 
spacelike plane t = const.] Because of the periodic boundary conditions for the 
matter fields, the two classes of gauge fields with given S will give different 
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contributions to Z. Therefore we write 

z=z++z_, Z,= C ij(a(C,) f l)eL(O’r). (4.6) 
0.7 

The expression (4.5) is split into two contributions accordingly. Next the r summa- 
tions are carried out. The result is 

Z+=~e-*g~*tSt c 8(a(Co)T1)~(tanhK)‘c’a(C). 
S 

S,% 
C 

(4.7) 

Summation is over all closed l-chains C, and a(C) = rIhEc,a(b) if C’ is defined by 
c = :C&c’b. 

Finally we note that a(C) is determined by u(C,) and S. Suppose first that 

then 

C=G, 

u(C) = n u( ap> = (-l)‘“? 
PEE 

Define the winding number 

This is independent of the choice of E. Then 

Next consider the case that C = C, + 8E. Then 

ifC=az. 

In this case we define 

n*(S,C)= *(-l)‘z”s’, ifC=C,+a5. 

The summation over u is now trivial. Dropping factors of 2 which 
freedom of gauge transformations one obtains 

Z,=Ce -2~~2~S~~(tanh~)‘C’,i(S,C). 
s C 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

come from the 

(4.14) 

Summation over S is over all co-closed sets of frustrated plaquettes in A, and sum 
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over C is over all closed paths (l-chains) in A, (which do not have end points on 
aA, either; note that the top and bottom of A, were identified). 

4.2. REPRESENTATION AS A POLYMER SYSTEM 

We want to represent Z, as partition functions of a polymer system. To do so we 
must specify a notion of disjointness of polymers. The obvious generalization of the 
prescription of Marra and Miracle Sole [6] is as follows. 

Suppose a certain set (SC) is given. First one decomposes C into connected 
components (non-intersecting closed curves) cI and similarly S into connected 
components s,. A graph r is associated to (S, C) according to the following rule. The 
vertices of the graph are in a one-to-one correspondence with the “vortices” si and 
the “loops” c,. Two such vertices are joined by a line if one is a vortex s, and the 
other a loop cj, and 

C-1) F/n% = _ 1 ) if cl = azj or c, = C, + az,. (4.15) 

(S, C) is called a polymer if r is connected. Every set (SC) as described above 
admits of a unique decomposition into polymers (si,. . . , s,, cl,. . . ,c,,,), and 

n*(S~C)=~n~<si~Cj)' (4.16) 
i.j 

To see this note that cJ are closed by construction. Therefore c, = az, or cj = as, + C, 
for some zj, and z = Czj obeys the relation C = az respectively C = C, + az. 
Therefore c, = azj + C, for an odd number of polymers if C = C, + az, and an even 
number otherwise. Moreover, by the definition of polymers, ]z, n s,] = 0 (mod 2) if 
i #j. Eq. (4.16) follows from these relations and the definition of n +(s,,c,). 

To every polymer (si, . . . , s,, cl,. . . ,c,) one assigns an activity 

US 1 ,..., s,,q ,..., c,)=exp (tanhK)t~=l’c,‘~nt(s,,c,). 
i.j 

(4.17) 

In this way, Z, and Z_ are reexpressed as partition functions of a polymer system 

Summation is over collections of mutually disjoint polymers. 
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The cluster expansion of the free energies can be written as 

ln~+=~utQ)po~Q9itPo1). 
Q 

(4.19) 

Summation is over all linked clusters Q = { Pol;l,. . . , Pal”,}. A linked cluster is a 
non-empty collection of not necessarily distinct polymers. It may contain a polymer 
Poli ni 2 1 times. It is linked in the sense that the clustergraph 76 is connected. The 
vertices of the clustergraph are the polymers of Q, the links of the graph are pairs of 
polymers that are not disjoint. The coefficients a(Q) are combinatorial factors. For 
further explanation see for instance [12]. 

In order to exhibit the divergence of In 2 +_ in the limit ] Ap] + CO, (/I finite) we 
consider clusters Qi = { Pol,} with Pol, = (sLIL2, ci.. . cm), i.e. one-polymer clusters 
made of a vortex s L,L, and m matter loops c,. The vortex consists of L, plaquettes in 
direction 1 and L, plaquettes in direction 2; the loops c, with ]c,] = /I wind once 
through A, in the time direction. They intersect the surface 9, “spanned between 
sLILz” at a single point. Such a polymer is shown in fig. 8. 

The abstract graph associated to Pol, is shown in fig. 9. Its activity is given by 

The product of winding numbers equals (-)“. 
For the cluster expansion we find 

= c c la(Q,)e~2g~2’2(L~tL2)(tanhK)mSI. 
L,<d, maL,Lz 
L,<d, 

(4.21) 

Fig. 8. One-polymer cluster (sLIL2, cl.cz) forwhich IsLILzI =2(L,+L,), Ic,l =/3,j=1,2. Thevortex 
is represented by the corresponding closed loop on the dual lattice. 
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Fig. 9. Graph r(~~~,,.~. q,. , c,,,) 

Suppose a certain vortex of total length 2(L, + L2) is given. Because of 

its rectangular shape there are possible arrangements of m loops c, winding 

through sL,+ and A, as illustrated in fig. 8. This gives a factor Q,' 
Furthermore a(Q) = 1 because Qi is a one-polymer cluster. Since 

tanhstc)m = (I + tanhPK)L’LZ, (4.22) 

we find 

or 

<dEL <d 

exp{ L,L,ln(I + tanh’rc) - 4g, ‘( L, + L,)} 
1. 1. 2x 2 

‘co asd,,d,-+ co, (4.23b) 

exp{ . . _ } > 1 for all L,, L, that satisfy (4.24) 

LlL2 
L,> 

4G2 
ln(I + tanh&) ’ 

(4.24) 

Therefore the partial sum of clusters Qi destroys the absolute convergence of In Z, 
in the limit d,, d, + 00. 

Region (II) of the phase diagram characterized by the analyticity property of the 
free energy could shrink to a line K = 0, g0, 2 6 go 2 < co when the temperature /3 -’ 
is strictly positive. The line corresponds to pure gauge models. 
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I would like to thank Prof. G. Mack very much for many useful discussions during 
the preparation of this work. I am also indebted to Prof. C.E. DeTar who indicated 
the possible failure of the parameter in a private communication. 
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