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We calculate energy-energy correlauon (EEC) up to O(a,) 2 in perturbatlve QCD The effects 
of heavy quark masses and expenmental resolution an the spirit of Sterman-Welnberg on the EEC 
functions are also calculated to the same order We fred that the EEC function is sensxtave to both 
the radlatave corrections and experimental resolution cntenon The asymmetnc EEC function is, m 
contrast, stable wath respect to both the radaat~ve and power corrections ~n perturbation theory It 
as argued that both the data and perturbation theory mdacate substanual non-perturbatlve power 
corrections to the EEC but modest effects in the asymmetry for Q/> 25 GeV We show that 
llmlted-pv fragmentataon models wathout long-range colour correlataons are m agreement with the 
expectauons and data A phenomenologacal analysis of the PETRA/PEP data is performed to 
determine the QCD scale parameter We determine AMs = 120+46° MeV wath no power corrections, 
and A~s = 168 +46o MeV ff hmated-pT fragmentation effects are included The small non-perturba- 
tave power correction to the asymmetric EEC is a characteristic feature of the hmated-px 
independent parton-fragmentataon models and as testable at PETRA energies 

1. Introduction 

It IS an increasingly popular  idea that energy-energy correlat ion (EEC) provides a 

precision test of Q C D  at the ongoing experiments at P E T R A / P E P  energaes. The 

EEC was in t roduced  by Basham, Brown, Ellis and Love [1], who studied it m the 

first non- t r iv ia l  order and showed that it is calculable m perturbat lve QCD, i.e. it is 

free of mass singularmes.  First  measurements  by the P L U T O  col laborat ion [2] were 

encouraging.  Since then the EEC has been calculated to order c~ 2 by the present  

authors  [3] and  by Rlchards,  Stirling and Ellis [4] for the massless quarks and  gluons. 

Recent  measurements  by the CELLO, MAC, MARK-J ,  and the M A R K - I I  col- 

labora t ions  [5] involving high-statistics data have brought  about  the fine quahtat lve 

rappor t  of per turbat ive  Q C D  and  e+e - data, at the same time emphasizing the 

impor tance  of power corrections for quant i ta t ive  tests. 
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270 A Ah, F Barrelro / Energy-energy correlations 

In this paper, we study questions which have a direct bearing on such comparisons 
and which m our opimon have to be answered for a quantltatwe test of QCD. In 
doing this, we shall elaborate on the results in ref. [3] and systematically study power 
corrections in perturbation theory (quark masses, resolution dependence) and from 
non-perturbative sources (fragmentation of quarks and gluons). 

To recapitulate briefly, the EEC is a measurement of energy flow involving two 
calorimeters, subtending solid angles ~2 and ~2' with respect to the incoming e+e - 
axis and having an angle X between them. The quantity of interest to us is the 
"average" EEC obtained by keeping X fixed and integrating over all other orienta- 
tions. This can be regarded as the energy weighted sum over pairs of pamcles whose 
relative angle lies between X and X + A X, 

1 dZ  ¢ 2 1 N 
- E a E b , (1 .1 )  

o d c o s x  Q2Axsin x N ~ ~-" ~ A 
A = 1 pa~rs 

a and b label individual particles and the normahzauon is 

f l  d c o s x  1 d2; c 
1 o dcos X = 1 (1.2) 

when self-correlations ( a  = b, X = 0° )  are included. 
In perturbative QCD, the EEC receives contnbutlons from the followmg processes: 

e + e - ~  qq, (1.3) 

qqG,  (1.4) 

qCtGG, qCtqC t . (1.5) 

Process (1.3) contributes at X = 0° and 180 ° and the others contribute at all angles. 
If one is interested m measuring the EEC at angles X ~ 0°, 180°, one has to calculate 
only the processes (1.4) and (1.5) t o  O(as) 2. For massless quarks and gluons this was 
calculated in refs. [3, 4]. The results of the O(a~) 2 calculation can be expressed as 

- - - 

o o d cos X ~r 7r ' 

o o - 4~ra2/3Q2 Y'~ Q } ,  (1 .6 )  
f 

where F(~) is the O(a , )  BBEL function [1] 

F(~)  ( 3 -  2 ~ ) [ 2 ( 3  _ 6~ + 2~2)1n(1 _ ~) + 3~(2 _ 3~)] , 
6~5(1 - ~ )  

(1.7) 
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with 

= ½(1 - cosx ) ,  

and as(Q2) is given by the two-term Callan-Symanzlk fl function: 

as (Q2) = 2Ir/[  boln (Q2/A2) + (b l /bo) ln ln  (Q2/A2)] ,  (1.8) 

with 

b 0-- I ( 3 3 -  2nf ) ,  b 1 = ~ (153-  19nf), 

nf being the number of quark flavours. In this paper we have used n f=  5 and all 
0 (%)  2 quantities are calculated in the MS scheme [6]. 

A related quantity of interest is the asymmetric part of the EEC defined as [1]: 

d~__~ A = dZC( 180° - X) O'yC(x) (1.9) 
d cos X d cos X d cos X 

In perturbative QCD this can be obtained from eq. (1.6). In conformity with our 
previous notation [3] we define the functions A(~) and B(~) 

o 0 dcos x ~r ~- ] B(~) ,  (1.10) 

where 

A(~) = F(1 - ~ ) -  F(~) ,  

B ( ~ ) = G ( 1 - ~ ) - G ( ~ ) .  (1.11) 

The aim of this paper is to study the question, "how closely do the perturbatlve 
QCD results (1.6) and (1.10) represent the experimental measurements (1.1) and 
(1.9) 9" Towards that end we have calculated the funcnons G(~) and A(~) more 
accurately and estimated power corrections to the EEC. These corrections include: 

(i) quark mass effects; 
(ii) expenmental resolution dependence in the spirit of Sterman and Weinberg [7]; 
(iii) non-perturbative (fragmentation) contributions. 
The origin of (1) and (ili) is intuitively clear but point (li) perhaps needs some 

elaboration. It is well-known from QED that the radiative corrections are defined 
only for a given expenmental setup. For example, one has to specify the minimum 
energy of the photon detectable in an experiment. The situation in QCD is not too 
different, though a great deal more complex due to confinement effects. We 
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systematically take mto  account  the effect of expenmenta l  resolution on the underly- 

mg perturbative calculations for the EEC. 

We use the Sterman-Welnberg variables e - mln(Ez) /Ecm and 6 = rmnz~j(0,j ) 

and study the effect of (e, 8) resolution on the perturbatlve function F(~),  G(~)  and 

their asymmetric  parts*. The cut on the angle 8 means that the EEC ~s studied only 

for angles 8 < X < 1 8 0 ° - 8 .  In  other words the back- to-back configurations with 

X = 180° or almost collinear configurat ion with X = 0° no longer are accessible m 

fixed-order per turbat ion theory. The cut on e simply removes the soft par tons f rom 

the EEC. 
The SW-resolutaon criterion serves two purposes. Firstly, it as generally accepted 

that the non-perturbat ive effects dominate  for X = 0° and 180 ° and so the use of  

fixed-order per turbat ion theory in this region is not very advasable. Secondly, and 

more amportantly, this cr i tenon provides a systematic way to judge which of  the 

per turbatwe distributions, or parts thereof, are infrared stable. 

We go a step further in this paper  and advocate that the SW-resolution criterion, 

though strictly a perturbative artifact and in fact invented precisely because we do 

not  know the complete theory, could be used to guess the relative amportance of  
non-per turba twe (fragmentataon) effects. Of course, ~t assumes that the quanti ty 

being investigated is factonzable,  Le. it is calculable in perturbataon theory. We 
elaborate this point  an the example of  EEC and to keep the argument  sample we first 

concentrate  on the leading non-trivial order. The EEC for the process (1.4) defined 
with the SW criterion ~s given by 

1 dZC(e, 8) _ Ots(Q 2) F ( ( ,  e) ,  8 < X < 180° - 8. (1.12) 
o 0 d cos X ~r 

We have computed  in sect. 2 the function F($, e) and the result can be expressed 

as 

1 e2(3 - 24) t- O(~) 3 , (1.13) 
F ( 4 ,  e ) = F ( 4 ) - - ~ e 4 (  1 _ 4 ~  ~ 64(1 - 4 )  

where F(4)  is given m eq. (1.6). Note  that the SW criterion results in power 
corrections (e = rmn E , / Q )  and the dependence of F(4, e) on e is linear. Hence the 
perturbative Q C D  d~stnbutaon for the EEC is sensmve to the soft-parton contribu- 

tion. Based on this criterion, we expect substantml contrabutlons from non-perturba-  

twe effects and this indeed is the case experimentally [5]. 

* It will become clear that the soft energy cut m our calculations ~s thc same as m the Sterman- 
Wemberg prescription However, the cut on the angle has a different mterpetatlon m the EEC, 
namely that the perturbation theory weights for the 3- and 4-parton processes are evaluated only from 
the angular configurations X > 8 Thus, it would be more appropriate to call our cuts (e, X) cuts We 
hope that this does not cause any confusion 
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with 

The (e, 6) dependent asymmetric part of the EEC can be calculated from 

1 d~A(e, 8) = )(Cts'Q2~A(~, e)0(X - 6) (1.14) 
o 0 d cos X ~r 

e2(2~ - 1) 
A ( ~ , e ) = A ( ~ ) +  3 ~ ( 1 - f )  +O(e)3"  (1.15) 

Note that the power corrections to A(~, e) vanish quadratically with e and hence the 
asymmetric part of the EEC is relatively stable in O(as). It is curious, and we believe 
not quite accidental, that the data for the asymmetric EEC cross section also 
requires small non-perturbative contributions. Moreover, the Q dependence of the 
asymmetric cross section at PETRA for X > 30° is very mild. In sect. 3 we show that 
hmlted-pv fragmentation models wtthout any additional correlations are also quahta- 
tlvely in agreement with the perturbative result (1.13) and (1.15) 1.e. they lead to 
substantial non-perturbative contributions to EEC but give rise to modest effects in 
the asymmetry. 

There is yet another source of power corrections, which is exactly calculable m 
perturbative QCD, namely the quark mass effects. We take them into account in the 
Born diagrams for the process (1.4) and (1.5). Even though the c.m. energy where 
most of the P E T R A / P E P  data is taken lies substanUally above the charm and 
bottom quark-pair production threshold, the effect on the EEC is still about 10%. 
The redeennng feature of this is that the comparison of perturbatlve QCD calcula- 
tions with the data results In rather reasonable description of the asymmetry, and 
yields a value of A ~  consistent with the generally anticipated values for this 
quantity. 

The paper is organized as follows. In sect. 2 we present a recalculation of the EEC 
functions G(~) and B(~) for massless quarks and gluons. Our results are compared 
to those of ref. [4] and they are found to be compatible with those in ref. [4] within 
calculational errors. We give a simple parametrlzaUon for the function R .... (~) 
(related to G(~)) based on a fit of our numerical computation of the same quantity. 
The effect of the SW resolution on the functions F(~) and G(~) is evaluated. Again, 
we give a parametrization for the function R .... (~, e) for some representative values 
of e and 6. Next, we calculate the effect of quark masses on the functions F(~, e) and 
G(~, e). Within our calculational errors, we find the dependence of the O(a~) and 
O(a~) 2 terms on quark masses very similar and both are proportional to m/EcM. 
The information in sect. 2 is sufficient to make a comparison of data on the EEC 
with perturbative QCD in the second order. 

In sect. 3 we estimate non-perturbatlve fragmentation effects on the EEC cross 
section. This estimate is based on the use of hmlted-pv fragmentation models 
incorporating independent fragmentation of quarks and gluons in the processes 
(1.3)-(1.5). Not unexpectedly, the asymmetric EEC cross section from the process 
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qCt ~ hadrons falls off exponentially with X and ¢~. So, for v~- >/30 GeV, X >/30°, 
qq--,  hadrons gives no contrlbunons in I;A(X). It is shown that the fragmentanon 
contribution to ZA(x) in such models has a shape very similar to the perturbatlve 
EEC. The normahzation is obtained by fixing the p T and p C dlstrlbunons of hadrons 
at PETRA energies. Typically, the fragmentanon contrlbunon at ~- = 30-35 GeV in 
these models is - 15% and it falls off hke 1/v~-. We provide a simple parametri- 

A zanon for  ~frag, valid for v/~ >~ 20 GeV. Tins is only weakly correlated with the 
Intrinsic PT of the hadrons or on the details of the PC distribution of hadrons from 
quarks or gluons. 

In sect. 4 we compare the complete O(as) 2 calculation with the data, both 
including the fragmentation effects of sect. 3 and without. We find that d ~ A ( x )  

from the perturbation theory is in remarkable agreement with the data. We use the 
19f~+60 asymmetry at large angles X >/30° and it gwes A~g = ~ v  40 MeV. We remark that 

this IS a lower bound on A~g. Including non-perturbative contribution increases the 
as(Q 2) by - 15% resulting m as(Q) = 0.13 + 0.01 yielding A~g = lJqR+6° ~v~ 40 MeV. Tlus 
is in remarkable agreement with the world-average A~s +10o =160 s0 MeV [8]. We 
further remark that the fragmentation contribution is testable at presently available 
PETRA energies and we advocate an energy dependent study of ~,A(x) to indepen- 
dently deternune the power corrections from the data. The power corrections are 
measurably different in models with and without long-range colour correlations. 

Sect. 5 contains our conclusions. 

2. Perturbative QCD calculation of EEC 

In this section we present the results for the perturbative QCD calculation of the 
processes (1.4) and (1.5) to order a 2. A representative samphng of the relevant 
Feynman diagrams is shown in fig. 1. We start by deriving first the 0 ( % )  EEC in a 

+ 

36013 

Fig 1 A samphng of the 0(%) and O(a~) 2 Feynman diagrams in e+c annlhllanon into hadrons 
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somewhat  different fo rm than has been done in ref. [1]. Ttus is being under taken  to 
present  our calculat ional  method  in a simple form for subsequent  derivauons.  

The  O(as )  EEC can also be expressed as 

ldzc (~s (~Q 2 ) CFfdY12dY23dY~38(l-y12-yz3-yls)7", (2.1) 
o 0 q7 

where 

2E, E; 
t =  l~ T 3 ( x - O , s ) T ( Y 1 2 ,  YlB, Y23), 

and T is the densi ty for the process e+e  ~ q q G  derived by Ellis, Gal l lard and Ross 

[9]: 

2y12 T(Yl2, Y13, Y23)= Y13 + Y23 + _ _  
y , Y23 Yt3 13323 

Y'J = szj/Q2, s,s = ( p, + p / ) 2 .  (2.2) 

By a suitable t ransformat ion  one could write eq. (2.1) m the form 

where 

1 d Z  c _ 1 a s ( Q  2) (1-y)2z2[T12+2T13], (2.3) 
a o d c o s x  8 ~ c v f  dy(°~+l)3 y3 

1 - y o :  y z 2 
/"12-- + - - - -  + - -  y z l - y ~ o  ~o' 

_ 1 - y  + Y__Z___+2___ w T13 
y 1 - y  z 2 ' 

z =  1 - ( l + w ) ( 1 - y ) ,  2E1 (2.4) ~0 = ~ / (1  - ~) ,  y = 1 ~ - -8 .  

Eq. (2.3) revolves a simple integral, wtuch can be done in a s t ra ightforward way and 
one obtains  

1 dZ c 1 o%(Q2)CFfg12(~)+2g13(~)l[ ] (2.5) 
,s o d cos x 8 or 
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g 1 2 ( ~ )  - -  (CO -~- 1 )  3 - - 1 7  - -  421.0 - -  24~o 2 - 6(¢0 + 1)2(4w + 1 ) l n ~ - - - ~  , 
3,o 

[ ] 2g13(~ ) _  (~0+1)  3 8 + 3 3 w + 7 8 w  2 + 6 w ( 3 + 1 2 ~ o + 1 3 ~ o  ) l n ~  i- 
3,o 

Using the relation co = ( / ( 1 -  ( )  and CF = 4 one immediately obtains the O(a , )  

BBEL formula 

1 d ~  ~ _ as (Q 2) F ( ~ ) ,  (2.7) 
o o d c o s x  ~r 

where F(~) is given m eq. (1.7). There are several comments that we would like to 

make here about the derivation (2.1)-(2.7). 
(1) In order to calculate the O(a , )  2 effects to the EEC for the 3-parton state one 

has to cast the results m the form of eq. (2.1) i.e. one has to derive the density ir to 

the desired order by including the real and virtual dmgrams and Integrating out all 
other variables up to the double-differential Dalltz distribution. 

(n) The experimental resolution i.e. a cut on the SW parameters e and 6 can be 
imposed on the Dahtz boundaries whose parametric equation is given by the 

argument of the delta function in (2.1). 
(ni) The fact that g12(~)¢ 2g13(1-  ( )  is the reason why the asymmetric EEC 

function A( ( )  is not zero. 
We shall now calculate the EEC in order c~. This will be done in two ways. First 

we present our results for the case e = 6 = 0. This is the limit in which Ellis, Ross and 
Terrano (ERT) [10] calculated the O(%)  z corrections to the Fox-Wolfram shape 

2 calculations for the EEC reported in refs. [3,4] were parameters [11]. The order a S 
also done in this limit. Then we shall discuss the case of finite (e, 6) resolution- 
dependent O(a , )  2 corrections. This is the spirit in which Fabricms, Schnutt, Schier- 
holz and Kramer  [12] have done the O(as)  2 radiative corrections. Since the dif- 
ference between the two approaches lies in terms which are essentially power 
corrections, doing the O(c~s) 2 radiative corrections in two ways provides a systematic 
account of those power correcuons which have a perturbatlve orxgln. In fact the 
stability of a jet measure with respect to the experimental resolution is a reasonable 
criterion of reliability for perturbatmn theory results. Tl~s is so because the direct 
one-to-one correspondence between experimental and theoretical resolutions, to 
which we are accustomed from QED radiatwe corrections, is clouded by non-per- 

turbatlve confinement effects. 

2 1 E E C  W I T H  I N F I N I T E  E X P E R I M E N T A L  R E S O L U T I O N  

Starting the e = 6 = 0 calculations, we have made use of the ERT results [10] on 
virtual correction to e+e ---, qqG, which we find particularly useful in calculating 
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the EEC. As remarked earlier one needs T to O(as) 2 from which the virtual 0 (%)  2 
correction to the EEC can be calculated as shown m the derivatmn (2.1)-(2.6). 
Following the derivation of the 0 (%)  BBEL formula, using the formula for T from 
ERT, eq. (3.26) of the second ref. in [10], and after some straightforward algebra, 
one can derive the virtual O(as) 2 contribution to the EEC. The result is 

1 d~Cvlr l a s (g2 )CF[6F(~)+  os(Q 2) {g I2 (~ ) [CF(2Ct2  1 _ ln2w_-~ ln~o) 
o dcosx  8 7r 7r 

+Nc(lrr2 + 6~ _ ~ ln~o)+ T a(2 ln~o-  ~) ]  

+ 2gl,(~)[CF(27r 2 -  1 - 31n o~) + N~ (½~r 2 + ~ - ln2oo) - ~TR] 

dy (1-Y)~z2Tv(~O, y)}[,) ] (2.8) +(~o+ 1)3/1 
"(~0/~0+ 1) y3 )/ 

where the function Tv(~0, y) is given in appendix A. The O(as) 2 piece in eq. (2.8) is 
the sum of the virtual 3-parton and the real 4-parton contribution. We recall that the 
real 4-parton singular piece is obtained by treating the event as a quasi 3-parton 
state when one of the mvarlant masses Y,9 = s~9/Q2 goes to zero, with Y, jk = 
(P, + t79 + pk)2/Q2 and Y, jl held fixed. This is explained in detail m the ERT papers 
[10] to which we refer for the precise prescription. Alternatively, one could use the 
pole terms due to Kunzst [13], involving an invarlant mass cut-off Yn~n = 
min(m2/Q 2, Y, jk, Y,91) where mj is some pre-defined jet mass. The corresponding 
expression for d2;Cir then differs from eq. (2.8). However, this difference is exactly 
compensated by the finite 4-parton piece. Eq. (2.8) involves a one-dimensional 
integral which could be done to any arbitrary accuracy. We have used a (double 
precision) NAGLIB subroutine which does the integral using a gausslan quadrature 
method and we stopped at an accuracy of 1 part in 10 6. 

The finite 4-parton pmce was obtained numerically by calculating the 4-body 
phase space using a Monte Carlo technique. Symbolically one can wnte this 
contribunon as 

C 

o d c o s x  
(2.9) 

where T (4) is the matrix-element squared for the 4-parton processes (1.5) and T (4) is 
the y, j1 pmce of it, which has been integrated analytically and included in eq. (2.8). 
(This is the reason why T (4) has to be subtracted as in (2.9) to get the finite d~Ceal .) 
Since the quantity on the right-hand side of eq. (2.9) is by construction finite, one 
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needs  T (4) and T (4) in the physical space-time dimensions. The expressions for T (4) 

are given in refs. [14,15] for the general case of non-zero quark masses, as well as by 
ERT, who have worked in the limit m = 0. The expression for T (4) is given by ERT*.  
See also the appendix of ref. [4]. Note that the bar on d4 in the second term of eq. 
(2.9) means that the phase space in the second integral is dif ferent  from the complete 
4-body phase space and it is tins piece winch keeps track of different procedures in 
defining the virtual 4-parton cross sections. We emphasize that since ~(4) involves 
only the y,~l pole Deces (and not the complete expression for T (4) m the limit 

y, j  --* 0), one has in general a non-zero __c°ntnbutl°n for the left-hand side of eq. (2.9) 
m the lanematic domain defined by (d4). Numerically, we fred that this contribu- 
tion, winch in the jargon is also referred to as the soft 4-parton contribution, is not 

negligible. In particular, for the pole-terms, used by ERT, the contribution for the 
EEC from the soft 4-jet piece is not simply proportional to a power of the angle. 

We make the obvious remark that the use of Monte Carlo integration techniques 
allows us to impose any experimental resolution that one would hke to impose by 
redefining the phase space. Thus, it is a simple matter for example to go to the FSSK 
limit m calculating (2.9), or impose the Sterman-Welnberg resolution on EEC. 

The complete O(as)  2 corrections to the EEC are given by the sum of eqs. (2.8) and 
(2.9). In conformity with the notation used in ref. [3] we present our result first in the 

form of eq. (1.6): 

(o i 2t)2 1 d Z  'c a~(_Q2) F ( ~ ) +  - G ( ~ ) .  
% d c o s x  ~r ~r 

The values of F ( ( )  and G( ( )  are given in table 1. Note that since we are using a 
Monte Carlo integration technique to calculate dN c, the values of the F and G 

functions are averages in the cos X bin with a width A cos X = 0.1. A tyDcal error in 
the O(c~s) 2 function G( ( )  is _+4%. Thus, the EEC cross secuon is calculated to an 
accuracy of +_ 1%. Since the systematic errors m experimental measurements over- 
whelm our calculational accuracy, we think that an error _+ 1% in ~ is adequate for 
our analysis. We have generated - 10 7 Monte Carlo events and the 4% inaccuracy m 

G ~s a remnant of the subtraction m the lntegrand of eq. (2.9). 
Instead of presenting our result In the form of eq. (1.6), which is normalized with 

respect to the point-like cross section %, one could normalize the correlation cross 
2 which then guarantees to O(a~) 2 the normahza- section to o, calculated to order a s, 

tion eq. (1.2). Rewriting eq. (1.6) one has now 

o d cos X ~r ~r ' 

* Strictly spealong at 1s the y,~ 1 piece of the matrix-element squared integrated up to the trivial angular 
orientations 
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where o is the total hadronic cross section in the MS scheme [16]: 

o = % (  1+  °s(-Q2)~r +c2(C%(-Q2))2) ' ~ r  (2.11) 

where 

c 2 = (1.98 - 0.116nf) = 1.40 for nf = 5. 

The values of Rc°r~(~) are given m table 2 (column 2). We remark that R c ° r r ( ~ )  

depends on the angle X, increasing from about 7 for cos X = - 0 . 8 5  to about 10 at 
c o s x  = +0.85. Thus m the central region, order (as) 2 corrections to the BBEL 
function F( ( )  are substantial. Consequently the value of % extracted from the EEC 
cross section can differ by about (30-40)% In the first and second order. 

Next we would like to present a simple parametrlzatlon for the function RC°rr((). 
An acceptable fit to R .... ( ( )  is obtained using the expression 

Rc°rr (,~) = -21n2(1/[1-fl)+Aln(1/[1-~I)+B+C~, (2.12) 

TABLE 1 
The BBEL F(~) and the 0 ( % )  2 function G(~) defined for the EEC cross sections m eq (1 6) for the 

massless quark and gluon case without expenmental resolution 

cos X (interval) F( f ) G ( ~ ) calculated G ( ~ ) fitted 

- 090 ,  - 0 8 0  8 751 62 4 3 _  1 89 61 86 
0 80, - 0  70 4 464 35 12 ± 1 21 33 62 

- 0 7 0 ,  - 0 6 0  2975 21 81 + 0 8 7  23 17 
- 0 6 0 ,  - 0  50 2 251 16 37 _.9_ 0 76 17 97 
- 0 5 0 ,  040  1838 1412+_087  1500 

040,  - 0 3 0  1 581 13 40 + 0 57 13 17 
0 30, - 0  20 1 413 12 79 _ 0 72 12 03 
0 20, - 0  10 1 304 11 47 _.%_ 0 52 11 34 

- 0 1 0 ,  000  1235 1108+__040 1099 
000,  010  1199 10 26__+057 1091 
010,  020  1192 1122+__043 1109 
020.  030  1214 11 34+_042 11 55 
030,  040  1269 13 28+_043 12 37 
040,  050  1370 1407__+054 1366 
050,  060  1540 15 87__+047 15 71 
060,  070  1833 19 4 5 + - 0 6 4  19 14 
070,  080  2395 25 98__+072 25 60 
080,  090  3805 38 50+_120 41 63 

G(~)fitted lS the result of fitting G(~)cakulate d using the parametnzation of eq (2 12) 
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TaBLe 2 
The O(a~) 2 EEC function RC°rr(f) defined m eq (2 10) for the massless quark and gluon case both with 

and without expenmental resoluuon 

COS X Rcorr  (COS X) fit fit _ fit n f i t  Rcorr (cos X) Rcorr e - 5% R ... .  e = 10% t* corr e = 15% 

0 9 0 , - 0 8 0  713_+021 706 983 900 693 
- 0 8 0 ,  070 786_+027 753 969 924 835 
- 0 7 0 ,  - 0 6 0  733_+029 778 968 940 924 

0 60, - 0 50 7 27 _+ 0 34 7 98 9 77 9 60 9 67 
- 0 5 0 ,  - 0 4 0  812_+047 815 994 983 1007 
- 0 4 0 ,  - 0  30 847_+036 833 1017 1010 1038 

0 30, - 0 2 0  905_+051 851 1048 1040 1064 
- 0 2 0 , - 0 1 0  879_+040 870 1077 1072 1086 
- 0 1 0 ,  000 896_+032 889 1112 1106 1106 

000, 010 855_+047 909 1150 1143 1124 
010, 020 941_+036 930 11 91 1181 1141 
020, 030 934_+035 951 12 34 12 20 11 56 
030, 040 1 0 4 6 + 0 3 4  934 1278 1261 1171 
040, 050 1027_+039 997 1325 1303 1185 
050, 060 1030_+030 1020 13 73 13 46 11 99 
060, 070 1061_+035 1044 14 22 13 90 12 12 
070, 080 10 84_+030 1068 14 72 14 35 12 24 
080, 090 1011_+031 1093 15 24 14 81 12 37 

Column (11) RC~lrrulated (E = ~ = 0) ,  column (111) R}~°t~d (e = 6 = 0) using the parametnzatlon of eq 
(2 12), 0v) R .. . .  ( e = 0 0 5 ,  6 =  26°), (v) R ... .  (e = 0 1, 6 = 26°), (vl) R ... .  (e = 0 15 ,~=  26 ° ) 

with 

A = 3 . 0 ± 0 . 3 ,  B = + 1 1 . 3 ± 0 . 2 ,  C = - 8 . 2 ± 0 . 9 .  (2.13) 

The parametrization eq. (2.12) correctly takes into account the leading-log struc- 
ture. We have fixed the leading-log coefficient which has been calculated for 
X- -180°  in ref. [17] and which we have verified numerically. The leading-log 
coefficient has also been verified in ref. [4]. In table 2 we show R .... (~) using eq. 
(2.12). 

Once we have the functions F ( ( )  and G( ( )  (or equivalently R .... ( ( ) )  we can 
determine the asymmetric part of the EEC cross section as shown m eqs. (1.10) and 
(1.11). From now on we shall work with the fitted EEC function R ... .  (~) and 
compute all other functions related to it using the parametnzatlon (2.12) and (2.13). 
In fig. 2 we plot the functions F( ( ) ,  G ( ( )  and in fig. 3 the corresponding asymmetric 
EEC functions A ( ( )  and B( ( ) .  Note that the function B ( ( )  differs from our 
published result m ref. [3] in the large-x region. 

Just as we have done for the EEC cross section, we can define the asymmetric 
EEC functions wtuch are normalized with respect to the total hadronlc cross section 
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36014 

Fig 2 The 0 ( % )  and O(a , )  2 EEC functmns defined in eq (1 6) The sohd curves correspond to the case 
e = 8 = 0 and the dashed curves correspond to using e = 0 1 and 6 = 26 ° Note that e = mm(E,/¢s) and 

8 = man(0u) 

in the MS scheme: 

with 

1 d ~  A _ O~s(Q 2 ) A ( ~ ) [ 1 [  -[- Ots(Q 2)  R a s y m ( ~ )  ]] 

~ dc-~-s X ~- ~- , 

Rasym(~) = Rcorr(~) n t- F ( 1  - ~) [Rco~r(1 _ ~) - R  . . . .  ( ~ ) ]  
A(~) 

(2.14) 

(2.15) 

In fig. 4 we plot the functions Rc°~r(~) and Rasym(~)  and compare them with the 
corresponding functions obtained by Richards, Stirllng and Ellis in ref. [4]. The two 
calculations are in fair agreement with each other*. Note that Rasym(~)  is a 
monotonously decreasing function of the angle X and typically Rasym(~)  = 3. Thus 

* Our values for RC°rr(X ) though he systematically bagher by - 1 umt The results for RasY(X ) are 
closer and hence both the calculations should lead to slrmlar values for a ,  
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- -  E = O 0 0  

- - -  E = 0 1 0  \ 
\ 

\ 

Fig 3 

0 0 1 ~  
10 Q5 OO 

COS X 

The O(as) and O(~s) 2 functions for the asymmetry m the EEC defined m eq (1 10) The notation 
used ]s the same as an fig 2 

the O(as)  2 corrections in the asymmetric EEC are small. The determination of a~(Q) 

using the first and second order perturbative QCD calculations then would differ by 
- 15%, with a~ [2] < a s [1]. 

The calculation of the perturbative QCD EEC functions reported in tl~s subsec- 
tion were done for the ideal case i.e. for infinite experimental resolution. Since the 
BBEL EEC function F(~) is also defined with infinite experimental resolution, it was 
logical to calculate radiative corrections to it in the same limit i.e. with e = 8 = 0. The 
idea was to show that calculating the radiative corrections ~ la ERT, the stze of  the 
O( C~s) 2 corrections depends on the measure. In the example of EEC, the corrections 
are substantial for the correlation function itself but small for its asymmetric part. In 
subsect. 2.2 we study the effect of experimental resolution on the EEC and its 
asymmetry. Strictly speaking, these are perturbative power corrections as we shall 
presently see. 
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Fig 4 The O(c~s) 2 EEC functions Rt°rr(~) and Rasym(~) as defined in eqs (2 10) and (2 14) rcspectwely 
The solid lines are the fits using eq (2 12) The points denoted as [] are the results from Rachards, Stlrhng 

and Ellis (second of ref [4], n r = 5 case) 

2 2 EEC WITH S T E R M A N - W E I N B E R G  RESOLUTION 

The idea is to define a resolution h la Sterman-Weinberg ftrst and then calculate 

the EEC cross section. This procedure gives an angular width to a parton, and it 

defines when soft quanta are not resolvable. Since the effect of non-perturbatwe 

fragmentation is qualitatively slrmlar, 1.e. it gives an angular width to a patton, the 

perturbatlve resolution criterion may provide us with a guide about the reliabihty of 

a jet measure. 
In order to avoid any misunderstanding let us state that we are making a 

distinction here between the calculabihty of a measure and its rehablhty as a 
precision test of perturbative QCD. The EEC function ~s calculable in perturbation 

theory up to at least O(as) 2 i.e. it is free of any mass singularities and we have just 

shown that in subsect. 2.1. There is an impresswe hst of cross sections and 
distributions which have been shown to be free of mass singularities and hence by 
definition calculable. This list includes in addition to the EEC cross section, thrust 

distribution, the Fox-Wolfram shape parameters and many more. By rehably calcula- 
ble we mean that a measure is not very sensitively dependent on the resoluuon of 
soft and collinear quanta. Since QCD is a confining theory, such a criterion is 

necessary to compare perturbative QCD calculations with data. 



284 A Ah, F Barrelro / Energy-energy ~orrelattons 

We shall use the Sterman-Welnberg variables e --- m i n ( E , ) / E  c m and 6 = min(0,j ) 
to define whether or not a certain kinematic configuration is to be taken into 
account in the definition of genuine 3- and 4-jet events. We start by considering 

again the O(a~) EEC function. Recall the definition of the EEC from eq. (2.1). The 
sum m the definition of the function T runs over the pairs "12" (q-q), "13" (q-g) and 

"23" (q-g) for X =g 0% 180 °. Thus, the angular cut 6 can be implemented by the 
modification 

~/'(6) = E 2 ~ s - T ( y l 2 ,  Y13, Y23)~(x-Otj)O(Ou-~).  (2.16) 

To avoid any possible confusion we state that eq. (2.16) is the definmon of our 
angular resolutmn in the EEC function. The resolution in energy for the 3-patton 
state is defined as follows. If for a given event the scaled energy, E,/¢s, of the least 
energetic parton is less than a preassigned cut e, then the event is classified as a 
2-parton event and its contribution is not included in 7"(8). Later, we shall 
generalize these (e, 6) prescriptions to a 4-parton state. 

The e-cut can be imposed on the Dalitz boundary In a straightforward manner. 
We explain it here for the configuration t = 1 and j = 3. In that case the integrals in 
(2.1) can be transformed to the variables E~, E 3 and cos X by using the standard 
jacobian 

dy12dy13dy238(  1 -Y12 -Y13 --Y23) 

where 

Q2 _ 2QEx ) 
= JdEldE3dcos(x)  8 E 3 -  2(EI~OOSX+~-_E1) ' 

j = 4EIE  3 1 

0 2 Q -  E l ( l -  c o s x )  ' 

(2.17) 

and the variables y,j are given by 

Yl2 = 2E1/Q 2[Q-  E3(1 - c o s x ) ] ,  

YI3 = 2E1E3/Q2( 1 - cos X),  

)223 = 2 E 3 / Q  2 [Q - E 1 (1 - cos  X ) ] .  (2.18) 

The double-differential (Dalitz) distribution d2X/dE1 d cosx  has the boundary 
given by the argument of the delta function in (2.17), 

E1 = (Q2 _ 2E3Q)/[2(Q + E3co s X - E3)] .  (2.19) 
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Our (e, 6) cut modifies this boundary as follows 
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(i) X > 6, 

(ii) E ~  = eQ, Elma ~ = Q (1  - 2e) (2.20) 
2(1 - 2e¢) " 

The cut on E ~  ~ simply reflects that E3 m~ = eQ. Thus, a cut on (e, 6) is simply a cut 
on the allowed physical phase space for a given process. The other cases involving 
the pairs "23" and "12" can be treated likewise. 

With the definitions (2.16)-(2.20) it is a straightforward matter to calculate the 
EEC function F(~, e) from eq. (2.1). Recalling the definition of F(~, e) from our 

introduction 

1 dZC(e, 8) Ocs(Q 2 ) 
- F(~,  e), 6 < X < 180° - 6, 

o 0 d cos X ~r 

we quote the result for F(}, e) 

F(¢,  e)-- 
3 

1 3(1 - -  e ¢ ) 2 ( 2 ¢  - -  1) + 6(1 - e¢)(4¢ 2 - 9¢ + 4) + 1 - e¢ 
6¢5(1 - ¢ )  

X (  ( 1 - ¢ ) 2 ( 1 - 2 ~ ) - 2 ( 1 - ~ ) ( 4 ~ 2 - 9 ~ + 4 ) ) i - - e ~  

+21n((1 - e~)2/(1 - ~))(4~ 3 - 18~ 2 + 24~ - 9)] .  (2.21) 

Note that the leading-log behaviour is independent of e and m the hmlt e --, 0 one 
recovers 

lim F(~, e) = F (~ ) ,  
~ 0  

where F(~) is the 0 ( % )  BBEL function. It is worthwhile to do an expansion of the 
function F(~, e) in e. Keeping up to O(e) 2 terms we find the result already given in 
eq. (1.13), 

1 e 2 ( 3 -  2~) + O(e)3. 
F ( ~ , e ) = F ( ~ ) - 2 e ~ (  l _ ~  + 6 ~ ( 1 - ~ )  

Thus, as remarked earlier the effect of imposing a cut on e results m a power 
correcuon which starts at order e = mln E, / f~ .  Not surprisingly perturbatlve power 
corrections to the EEC function have a 1/Q dependence, just as in the Sterman- 
Weinberg 3-jet cross section to the same order. 
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However, as we have remarked earlier, the asymmetric EEC functmn A(~, e) 
defined in eq. (1.14) receives contribution to order e 2 =  min E,2/s. Restating the 
result in eq. (1.15) we have 

e2(2~ - 1) 
A ( ~ , e ) = A ( ~ ) +  3 ~ ( 1 - ~ )  +O(e3)" 

Thus, at least in the perturbation theory, power correcttons to d~.A/d cos X fall off as 
1 / Q  2. This is in contrast to most other known jet measures and puts the asymmetric 
cross section on a somewhat higher pedestal among a host of perturbatlve jet 
measures, most of which have power corrections falling off hke 1/Q.  Certainly the 
total hadronic cross section is better behaved, with power corrections to the unit 
operator ( I )  falling off like I / Q  4. However, as is well-known the leading coefficient 
in o is independent of %(Q2), whereas in d ~ A / d  c o s  X it lS propomonal to %(Q 2). 

In table 3 we present the numencal results for F(( ,  e) for e = 0.05, 0.10 and 0.15 
for the angular range 0.05 ~< ( ~< 0.95. The result for F(( ,  e = 0.1) is compared with 
the BBEL function F ( ( )  in fig. 2. The large dependence of F( ( ,  e) on e is rather 
uncomfortable. Based on this perturbatwe result we do expect that non-perturbative 
power corrections to the BBEL function should also be large and this is m 
qualitatwe agreement with the observatmns by experimental groups and our previ- 
ous analysis [3]. 

TABLE 3 
The O(as) EEC function F(~, e) with e = 0 05, 0 1, 0 15 and 8 = 26 ° 

cosx  e = 0  5 e = 0 10 e =  015 

0 90, - 0  80 7 782 6 852 5 938 
- 0 8 0 ,  070 3865 3296 2745 
- 0 7 0 ,  - 0 6 0  2 576 2 102 1 698 

0 60, - 0  50 1 381 1 535 1 208 
- 0  50, - 0 4 0  1 515 1 216 0 937 

040, - 0  30 1 289 1 019 0 770 
- 0 3 0 ,  020 1141 0891 0662 
- 0 20, - 0 10 1 043 0 806 0 590 
- 0 1 0 ,  000 0981 0750 0541 

000, 010 0945 0716 0510 
010, 020 0933 0702 0493 
020, 030 0945 0705 0490 
030, 040 0983 0778 0500 
040, 050 1055 0776 0527 
050, 060 1180 0862 0580 
060, 070 1398 1016 0675 
070, 080 1819 1314 0865 
080, 090 2878 2067 1346 
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TABLE 4 
The O(a  s) asymmetnc  EEC funcnon A(( ,  e) with e = 0 05, 0 1, 0 15, and 6 = 26 ° 
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c o s x  e = 005 r = 0 10 e = 0 15 

0 90, 0 80 4 904 4 785 4 59i 
0 80, 0 70 2 046 1 982 1 880 
0 7 0 , 0 6 0  1 128 1 086 1 022 
0 60, 0 50 0 701 0 672 0 628 
0 50, 0 40 0 460 0 440 0 409 
0 40, 0 30 0 306 0 291 0 270 
0 30,0 20 0 195 0 186 0 172 
0 20,0 10 0 109 0 104 0 096 
0 10,0 00 0 035 0 033 0 031 

In table 4 we present the results for the asymmetric EEC funcnon A((,  e) for the 
same values of e and 6 as in table 3. The result A(( ,  e = 0.1) is compared with the 
BBEL function in fig. 3. Note the relative insensitivity of A(~, e) to e. This is indeed 
satisfying and we expect that the non-perturbattve power correcnons should hkewlse be 
small. This feature is also strongly suggested by the data. 

So much for the power corrections in the O(as)  EEC cross secnon. Next we 
2 radiative corrections. F~rst calculate the effect of the (e, 6) resolution in order a s 

note that the preceding discussion in O(as)  apphes as such for the virtual EEC cross 
section given by eq. (2.8) and appendix A. One again uses the transformanons and 
cuts de fned  through eq. (2.16)-(2.22). Again, the resulting expression involves a 
one-dimensional integral, the hmlts of which take into account the e-cuts and the 

6-cut is defined as before via eq. (2.16). Again, this contribution can be evaluated 
with arbitrary precision. 

Let us now concentrate on the real 4-parton contribution. Since one is now bound 
to combine soft-partons, the results are specific to the prescription that one is using. 
We define below our recombination procedure. 

If  the partons in an event satisfy the e-cut, then the 6-cut is imposed as in the 
3-parton case using the definition (2.16). If, however, mln(Ez/~/s- ) < e, then the 

four-momenta of the partons having the smallest invarlant mass are combined. The 
EEC for the resulnng equivalent 3-parton state is calculated exactly as described 
before for the O(a~) case. Alternatively, one could have checked that if two of the 
partons have energies less than e~/s, then the event could be classified as a 2-parton 
event and not included in the calculation of d Z  c at all. However, so long as e << 1, 
the difference in the two prescriptions is small and we shall neglect it in further 
d i s c u s s i o n s * .  

* There is yet another prescnpnon of comblmng partons, e g the FSSK scheme [12] They define an 
"average" Sterman-Welnberg cross secnon by averaging the energy of the soft parton However, the 
difference between this scheme and any other would he m O(e, 6) and 0(3  '1/2) terms which they have 
neglected in, for example, the calculation of d o / d x m a  x 
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We present our results for the (~, 8)-dependent EEC cross section analogous to the 
case with no resolution dependence 

1 dXC(e,8) %(Q2)F(4, e)+(°ts(Q2)):' 
- -- G(4,  e) 8 <X < 180° - 8, 

o 0 d c o s  X ~r qr ' 

1 dZA(e, 8) 
+ 8(4, O(x-8). (2.22) 

% d cos X w ,r 

The functions R°°rr(e, 4) and Rasym(e, 4) have obvious definitions. The function 
G(4, e) is given in table 5 for e = 0.05, 0.1 and 0.15 together with the fit values using 
the parametnzation (2.12) for Rc°rr(4, e). The values of the coefficients for the fit are 
given in table 6. The values of Rc°rr(4, e) themselves are given in table 2. The fitted 
values of t h e  O ( a s )  2 asymmetric EEC functions B(4, e) are put in table 7. In figs. 2 
and 3 we plot the fitted function G(4, e) and B(4, e), respectively for e = 0 and 0.1. 

We would now like to discuss these results. Note that the dependence of G(4, e) 
on e is very similar to that of the O(as) BBEL function F(4, e). Both of them have 
power corrections starting in order e. So qualitatively one could write 

dZ  c 

d cos X 

( )2 
a ~ ( Q 2 ) ( F ( 4 ) + O ( e ) ) +  a ' (Q 2 )  ( G ( 4 ) + O ( e ) ) .  

'27" "O" 
(2.23) 

On the other hand, we see that the dependence of the O(O~s) 2 asymmetric function 
B(4, e) is also of order e. Thus, one now has 

- - ( B ( 4 )  + O(e) ) .  (2.24) 
d cos X rr w 

Amusingly, the perturbative power corrections to the asymmetric EEC functions 
A(4) and B(4) go in opposite directions. This is easy to understand since the effect 
of resolution on an initial 3-parton state is to promote it to a 2-parton state, thereby 
reducing the asymmetry. The effect of combining the 4-partons with (e, 6) resolution 
works the opposite way, since a 4-parton state is in most cases more symmetric than 
a 3-parton state. The result is that the asymmetric EEC cross section calculated to 
O(as) 2 has still small power corrections, which is mainly due to the fact that 
( O ' s / q r ) R a s y m ( 4 )  is itself a small number - 0.1 compared to 1. The effect of the (e, 8) 
resolution on the asymmetnc EEC cross sections is shown In fig. 4. We remark that 
the perturbative power corrections to the asymmetric EEC die out much faster in Q 
than in the correlation function itself or in the Sterman-Welnberg cross sections. 
This, very probably, is one of the reasons of good agreement between perturbation 
theory and the expenmental data in this quantity. 
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TABLE 5 
The O(a02 EEC functxon G(~, e) with the same cuts as m table 3 

(for each e, the fitted values are also ~ven) 
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cosx  e=O05  e=OlO  e=O15  

- 0 9 0 ,  080 76 65_+174 76 53 62 3 2 ± 1 7 8  6200 45 59_+173 41 19 
- 0 8 0 , - 0 7 0  4398_+174 3749 3383_+119 3046 2 4 8 2 + 1 1 6  2292 
- 0 7 0 , - 0 6 0  2 4 3 4 ± 0 8 5  2447 1 9 7 4 ± 0 8 8  1978 1 4 5 3 ± 0 3 5  1552 
- 0 6 0 , - 0 5 0  1812_+079 1839 1400_+076 14,74 1073_+072 1169 

0 5 0 , - 0 4 0  1 4 8 7 ± 0 3 6  1507 1143-+083 1197 542_+080 943 
- 0 4 0 , - 0 3 0  1315_+055 1311 1056_+050 1030 787_+048 800 
- 0  30, - 0  20 1269_+070 1193 992_+069 927 719-+064  705 
- 0  20, - 0  10 1105_+007 1124 531_+059 864 665_+035 641 
- 0 1 0 ,  000 1151_+037 1091 3 5 7 ± 0 3 5  830 618_+078 599 

000, 010 1038-+031 1099 7 3 8 + 0 5 9  819 493-+056 574 
010, 020 1 0 7 4 + 0 4 0  11 12 8 5 4 ± 0 3 4  829 576_+027 563 
020, 030 1 1 0 1 ± 0 4 0  11 66 8 4 9 ± 0 3 2  860 6 1 5 + 0 2 7  567 
030, 040 1261-+040 1257 925-+040 918 6 1 7 + 0 3 5  586 
040, 050 13 7 7 ± 0 2 7  13 98 1013_+053 1012 6 4 8 + 0 4 9  675 
050, 060 1639_+043 1620 1 1 4 5 + 0 4 1  1162 697_+036 695 
060, 070 21 24-+063 19 88 14 69-+056 14 13 842_+052 819 
070, 080 2774_+068 2678 1 8 0 7 ± 0 5 9  1887 9 4 1 + 0 5 1  1059 
080, 090 42 8 4 ± 1 0 7  43 86 25 0 3 + 1 0 0  30 63 1 0 8 3 ± 0 8 9  16 66 

TABLE 6 
The parameters m the fits for the funchon Rc°rr(~, e) with the X~-/d o f 

Coefficmnt 

e. A B C x 2 / d  o f 

O0 301__+031 1132__+021 819_+09 23/15 
0 05 4 90 _+ 0 45 16 03 ± 0 29 - 15 59 ± 1 14 14/15 
0 10 4 06 __+ 0 45 15 52 i 0 38 - 13 54 -+ 1 44 9/14 
0 15 0 64 -+ 0 95 12 55 __+ 0 55 - 3 03 -+ 2 53 22/13 

TABLE 7 
The O(as) 2 functions for the asymmetnc EEC B(~, e) with the same cuts as in table 3 

cosx  e=  005 e =  0 10 e = 0  15 

0 90,0 80 32 661 31 372 24 532 
0 80,0.70 10 706 11 591 12 332 
0 70,0 60 4 587 5 650 7 335 
060,0 50 2 187 3 127 4 739 
0 50,040 1 088 1 849 3 180 
0 40,0 30 0 543 1 122 2 141 
0 30,0 20 0 263 0 668 1 383 
0 20,010 0 116 0 355 0 777 
0 10,000 0032 0 111 0251 
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2 3 INCLUDING THE QUARK MASSES 

We study in this section the effect of including the quark masses on the EEC 
functions. We do flus in the approxlmatmn of keeping the mass terms only for the 
Born diagrams for the processes (1.4) and (1.5). In other words the cancellation of 
divergences between the O(a~) 2 virtual 3-parton cross section and the soft 4-patton 
real cross sections are still being done in the lilrnt mq ~ 0. 

Again, we consider the O(a~) EEC first. Our basra formula is eq. (2.1), where now 
the density T is to be obtained from the process (1.4) keeping the quark masses in 
the calculation. The effect of heavy quark masses has been considered in the 
one-gluon radiation process by Ioffe [18], who derived the differential energy 
distribution for the heavy quarks. We have verified his calculations and merely quote 
the relevant result. For our purpose, the relevant quantity is i?, 

2E, E s 
T =  • ---LS--TH(Y12, Y,,, Y23) 8(X - O,s), (2.25) 

,,s 

where now the heavy-quark denmy is given by 

Z 2 q- Z f2 

TH(y12, Yl, ,  Y23) = (1 - z)(1 - z') 
4m2(1 1 t 
Q2 + 

2m2( 1 1 ) 4m4 1 2 , 

(2.26) 

where 

z = l - - - -  
m 2 

Q2 Y23, 

m 2 
z' = 1 _~ - Y13. (2.27) 

(2 

It is straightforward to check that 

lim TH(Y12, Y13, Y23)= T(yl2, Y13, Y23), 
m - + 0  

where T(Yl2, Y13, Y23) is given in eq. (2.2). We present the result m the form of a 
double-differential distribution, the EEC function can then be obtained by calculat- 
ing the one-dimensional integral. In analogy to (2.5) we now have 

1 d2~ yc 1 as(Q2)CFtg12(z ,x )+2g13(z ,x ) lTH, t l  (2.28) 
a o dzdcos  X 8 ~" 
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where 

g 1 2 =  2f d z '  z 2 z ' 2 u 1 u 2 ~ ( 1 -  z q- 2 m 2 / Q  2 -  Z ' ( ]  -- 1,7, q- 1ZU1U2COSX)), 

( 2  - z - z " )  3 
g13 = 2zZu1 ] - - Z  ' 

2(1 - z )  
z"  = 2 - z - 

2 -  z(1 - v l c o s x )  ' 

/31 = (1 - 4 m 2 / Q 2 z 2 )  1/2, 

v 2 = (1 - 4m2/QZz'2)l/2, 

z = 2EI /Q,  z '= 2E2/Q. (2.29) 

It is again a useful check to obtain eq. (2.3) f rom (2.28) in the limit m --, 0. We have 

done the z integration numerically due to the presence of velocity factors which 
render the analytic integration rather intractable*. Expressing the O(c~,) result as 
before 

1 d N ( ( ,  m)  _ a s ( Q  2) F(~,  m)  (2.30) 
o o d cos X ~r ' 

we have tabulated the results for F(~, m) in table 8 for ~/s = 34 GeV, where most  of 
the P E T R A  data is concentrated.  Again, it is a straightforward matter  to evaluate 

the effect of  the e-cut. The results corresponding to the values e = 0, 0.05, 0.1 and 

0.15 for the ratio F((, m, e)/F((, e) are given m table 8. Note  that we have used 

m c = 1.8 GeV, m b = 5.0 GeV and neglected the quark masses for the u, d and s 
quarks. 

It is clear that the quark mass effects in the EEC correlations are not entirely 
negligible even at ~/s = 34 GeV. The ratio F ( ( ,  m, e = O)/F((, e = 0), for example, 

varies f rom 0.91 for ~ = 0.925 to about  0.84 for ~ = 0.0725. Thus, both the EEC 

function F ( ( )  and the asymmetric  part  A(~) have quark mass corrections which are 

only decreasing as m/Ebeam. This has a perceptible effect on the determination of 
the Q C D  scale parameter  as we shall see in sect. 4. 

Finally, we have used the massive-quark calculation for the process (1.5) reported 
in ref. [14]. This is also part  of  the Monte  Carlo program, generally referred to as the 

* Alternatwely one could calculate the EEC with masses from the Ah et al Monte Carlo [19], where 
mass  terms for both the processes (1 4) and (1 5) are taken into account However, we have used eq 
(2 28) to check the accuracy of the Monte Carlo and the agreement is good 
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TABLE 8 

The ratio F(e, m)/F(e) at ~s = 34 GeV for e = 0, 0 05, 0 1 and 0 15 and 3 = 26 ° 

F(~, m)/F(e) at ~/~ = 34 cm 

cosx e = 0 0  e = 0 0 5  e = 0 1 0  e = 0 1 5  

0 90, - 0 80 0 9088 _+ 0 0035 0 9201 + 0 0034 0 9294 _+ 0 0034 0 9397 _+ 0 0034 
- 0 80, 0 70 0 9281 + 0 0042 0 9433 -+ 0 0041 0 9550 _+ 0 0041 0 9576 + 0 0041 
- 0 7 0 ,  060 09313+_00047 09493_+00047 09607_+00046 09671+00046  

060, - 0  50 09387_+00051 09546+00051  0 9 6 2 7 + 0 0 0 5 0  09693_+00051 
- 0  50, - 0 4 0  09284+00054  09461+_00054 09518-+00053 0 9 6 4 2 + 0 0 0 5 4  
- 0 40, 0 30 0 9348 _+ 0 0057 0 9494 _+ 0 0057 0 9583 + 0 0058 0 9659 _+ 0 0059 

0 3 0 , - 0 2 0  09352_+00060 09501_+00059 09552+00003  09608_+00064 
- 0 2 0 , - 0  10 09294_+00063 09469+00065  09597_+00066 09717+_00071 

0 10, 0 00 0 9408 _+ 0 0065 0 9566 + 0 0066 0 9677 _+ 0 0071 0 9767 + 0 0074 
0 00, 0 10 0 9290 _+ 0 0066 0 9424 _+ 0 0068 0 9554 + 0 0074 0 9642 _+ 0 0078 
0 10, 0 20 0 9240 _+ 0 0068 0 9388 _+ 0 0071 0 9366 _+ 0 0075 0 9479 _+ 0 0085 
020, 030 09311_+00070 09481_+00074 09581_+00079 09715+00087  
0 30, 0 40 0 9197 _+ 0 0071 0 9398 + 0 0077 0 9493 + 0 0081 0 9457 _+ 0 0090 
040, 050 09218_+00073 09356_+00078 09359_+00084 09425_+00096 
050, 060 09021+_00073 09227_+00090 09418_+00088 09372+00098  
060, 070 0 8 8 5 0 + 0 0 0 7 4  09012_+00079 09124+00088  09139_+00103 
0 70, 0 80 0 8680 _+ 0 0075 0 8839 _+ 0 0081 0 8880 + 0 0089 0 9001 _+ 0 0106 
080, 090 08438_+00076 08540+00082  09609_+00091 0 8786 + 00110 

Ali et al. Monte Carlo [19]. We find that wittun our calculattonal precision (_+ 4% on 
the O(a~) 2 EEC function G(~, e)) the ratio G(~, m, e)/G(~, e) is very close to the 
one for F(~, m, e)/F(~, e), i.e. both the functions F(~,  m, e) and G(~, m, e) have 
similar though not identical linear dependence on e and m/v~. So, to a very good 
approximation, Rc°rr(~, m, e) is independent of m~ v/-s *. Thus, 

1 d ~  
o d c o s x  

- - ( e , m ) = - - - ~ F ( l ~ , m  e) 1 + - -  

+ O( em/Q ) + O( m2/Q2 ) , (2.31) 

where Rc°rr(~, e) IS the function with m = 0 (l.e the entries m table 2). The function 
A(e, m) and Rasxm(~, m, e) can be obtained from F(m, e) (table 8) and R .. . .  (~, e) 

(table 2). 
Let us briefly summarise the results of  this section before we move on to the 

discussion of the non-perturbative effects in the EEC cross section. 
(i) The O(as)  2 corrections in the theoretxcal limit (e = 8 = 0) are substantial for 

the EEC function F(~).  Typical corrections are (7 - 10)as/~r, and so the second-order 
corrections to F(~)  can be as large as - 40% at ~/s = 30 GeV. 

* It is very hkely that R c°rr(~, m)/Rc°rr(~) has O(m 2/Q 2) correctxons, but we neglect such higher-order 
terms here Again one could use the Ah et al Monte Carlo [19] to exactly take them into account 
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2 correction (m the hmit e = 6 = 0)) to the asymmetric EEC 0i) The order a S 
function A(~) are small. Typical corrections are - 3a~/~z and so the second-order 
corrections to A(~) can be as large as - 15% at ~/s = 30 GeV. 

(iil) Imposing experimental resolution in the spirit of Sterman-Weinberg, we find 
the following behawour 

F(e)  = F(e = 0)(1 + O(e)  + - - - ) ,  

- - - ) ,  

A ( E ) = A ( E = 0 ) ( ]  + O(e) 2+  -- __ __), 

= = 0 ) ( 1  + + - - - ) ,  (2.34) 

which leads us to conclude that at least in the perturbation theory power corrections 
to d ~  A are small. 

(iv) Quark mass corrections to all the functions F(~), G(~), A(~) and B(~) are 
linear m m/(s .  The effect at (s = 34 GeV is typically about 10%. Thus, it is 
important  to keep them for a quantitative determination of the scale parameter  A 

3. Non-perturbative contribution to the EEC 

In this section we evaluate the non-perturbatlve fragmentation contribution to the 
EEC cross section. Needless to say that m the absence of a complete theory of 
confinement this is bound to be model dependent. Before we embark upon a 
detailed model of the quark and gluon fragmentation, we would hke to discuss some 
aspects of fragmentation that are quite general and deserve consideration. 

The first point concerns the effect of longitudinal momentum distribuuon. It can 

be easily proven that the EEC, in the first approximation, is independent of the 
details of how quarks and gluons fragment their longitudinal momentum, so long as 
the fragmentation products are almost colhnear with the parent parton. This is 
s~mply a consequence of energy-momentum conservation. Thus, the longitudinal 
fragmentation functions in the first approximation can be neglected. Perhaps, it is 
worthwhile to remark that this property is specific to the EEC only. If higher powers 
of the energy are used as weight factors, then the information on the single-particle 
reclusive distribution (Le. longitudinal momentum fragmentatxon functions) is essen- 
ttal to determine the normahzation. Consequently, higher moments are more model 
dependent. 

Thus, the single most important  feature for the EEC ~s the PT profile of a quark 
and gluon jet. However, it is now generally appreciated that only llm~ted-pv 
fragmentation models can explain the appearance of jets in e+e - annihilation and 
elsewhere. Let us then take, for the sake of argument, the limated-pT model of F~eld 
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and Feynman [20] which has the following hadronic-pT distribution 

1 p~/2O2q 
f ( p 2 ) =  2Oq , ( 3 . 1 )  

where Oq is a free parameter  and has to be determined from the PT distribution of 
hadrons. (We stress here that the detailed features of the Field-Feynman model are 
not relevant for our qualitative arguments.) It is worthwhile to look at the EEC in 
the central region (i.e. near X = 900) • Now by definition sin x =PT/PL. However, 
since PT is cut off due to (3.1) but PL is almost scaring with energy (again a 
phenomenologlcal fact) we see that sin X falls off like - 1/~s with energy. Thus, in 
all llrmted-pT models, the contribution to the EEC in the central region must fall off 
like 1/~/s if only the process (1.3) (i.e. e+e -~ qq) is considered. Also at a given c.m. 
energy the EEC itself should have an exponential behaviour approximately of the 
form 

d2; c 

d cos X 
e -~lsmxl, (3.2) 

where a 1s a function of % and this again is a consequence of (3.1). 
The behaviour (3.2) and the independence of EEC from the PL distribution is a 

simplified picture and it is certainly going to change as more realistic features of 
heavy quark, resonance production and decays are taken into account. However, it ~s 
satisfying that a reahstic model [20] incorporating these features still maintains the 
qualitative argument (3.2). This is shown in fig. 6, where we plot the contribution to 
the EEC from q q ~ h a d r o n s  using the Fleld-Feynman model. Note the 1/~s 
dependence of d N C / d c o s x  in the central region (60°<  X < 120°) as ¢s increases 
from 22 GeV to 60 GeV, and the almost exponential behaviour of eq. (3.2). 

Another consequence of eq. (3.1) is that it predicts an exponential fall-off for the 
asymmetric EEC cross section d ~ n / d c o s x  with both cosx  and Cs. Again the 
expectation of the Field-Feynman model is shown in fig. 7, where we show the cross 
section d ZA/d cos X for ¢s = 22, 34, 45 and 60 GeV. Also shown is the behavlour of 
the asymmetric correlation cross section at cos X = 0.925, and it falls down exponen- 
tially with energy. 

Thus going to sufficiently high energy, for example ¢s >1 20 GeV, the qq ~ hadron 
contribution to d~A/dcosx  becomes entirely negligible for X >/30°. So, if one is 
interested in a study of the QCD processes (1.4) and (1.5), the cross section 
dNA/dcos  X at Cs >1 20 GeV provides a kinematic domain in X free of qq-- ,  hadron 
contamination. Of course, all of this is well-known to our experimental colleagues. 

Let us now turn to the fragmentation effects in the processes (1.4) and (1.5) 
involving at least one-gluon radiation. The difference with respect to the qq 
production is that now the perturbation theory itself provides a continuous distribu- 



A All, F Barretro / Energy-energy correlations 

E : 010 

0 01 

0001 

01 

A~--~ = 100 MeV 

l 

10 OS 
cosX 

O0 

295 

F ig  5 The  cross  sec t ion  d X A / d c o s  X m p e r t u r b a t l v e  Q C D  ca l cu l a t ed  u p  to O ( a , )  2 The  sohd  h n e  is the 

theore t ica l  h m l t  e = 8 = 0, the d a s h e d  h n e  c o r r e s p o n d s  to a cut  e = 0 1, 8 = 26 ° The  curves  are  d r a w n  for  

A ~  = 100 M e V  a n d  ~/s = 34 G e V  

tlon for d2;C/dcos X and dXA/dcos  X at all angles [1]. Thus, it is not possible to 
separate the perturbatlve and non-perturbatlve components just kinematlcally. How- 
ever, if the fragmentation of quarks and gluons involves a limlted-pz phenomenon, 
which is strongly suggested from the existence of 2, 3 and 4 jets in e+e annihilation, 
then the additional contribution to dXC/dcos X from the fragmentation should fall 
down hke 1/~/s with energy. This IS exactly what happens in d2;C/dcosx from 
qCt ~ hadrons, as we have already shown. Thus, here also the most important 
parameter is the intrinsic PT of the hadron. In fact, since the PT distributions of 
hadrons from the quark and gluon jets are qualitatively very similar at PETRA 
energies, the non-perturbatlve contribution to the EEC is essentially fixed from 
inclusive p r-d~stribution measurements. 

Again, the correlation is itself more sensitive to the intrinsic PT of hadrons but the 
asymmetry is relatively insensitive to its precise value (much in the spirit of the 
e-dependence of the EEC functions F(e) and A(e)). 
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34, 45 and 60 GeV 

To give a quantitative content to these arguments we show in fig. 8 the predictions 

of a llmited-pT fragmentation model  wtthout  any long-range colour correlations [19]. 
We see that such so-called independent-jet models (IJM) give rise to fragmentation 
components  in d Z a / d  cos X which are very close to the perturbation theory distribu- 
tions The fit to d Z A / d c o s x  shown in fig. 8 corresponds to the function (for 

X > 25°) 

1 d~frag ( X ) -  - -  

o d c o s x  re 

, [  o, IQ2> ] 
~/7 C A ( ~ )  + --~r B(,~) , (3.3) 

where C ( G e V ) =  - 6 . 3  _+ 1.3. The coefficient C does not depend sensmvely on the 
PT of the hadrons. This is shown m fig. 9, neither does it depend on the fragmenta- 
tion function of the gluon, which is shown in fig. 10 where we have compared two 
realistic G ~ qcl ~ hadrons functions. The first is the one due to Altarelh and Parisi 

[21] 

f q ( z )  = z 2 + (1 - z)  2, (3.4) 
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with 

z = E q / E G ,  

and the other 1s a constant fragmentation function 

fq(z) = c o n s t .  ( 3 . 5 )  

The error in the coefficient C takes into account all such dependences. Thus, we 
emphasize again that the profile for the fragmentation functmn in the EEC is not a 
freely mowng contour but is tightly constrained, once the lncluswe-pv distribution is 
fixed by an Independent measurement. 

The relative importance of the non-perturbatlve effects in d 2 U / d  cos X, typically 
at ~/s = 30 GeV, is of order 15% and decreases as - 1/~/s with energy. This is shown 
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in fig. 10. Thus, despite being complicated models with strong correlations among 
various input parameters, the independent jet models have a very defimte predmtmn 

about the distribution d X A / d c o s x  and its energy dependence. This is certainly 
testable at PETRA energies. 

Before we close this section we would like to rmterate what was first realised by 
Ellis [22], and which was later confirmed by various independent experimental 
groups, that long-range colour correlations, as for example in the L U N D  model [23], 

lead to a quantitatively different non-perturbative estimate than is given in eq. (3.3) 
for the independent jet models. Based on O(a~) consxderations Elhs estimated [22] 

with 

a (X) a~(Q 2) 1 d ~'s tnng frag 
d c o s x  - "/r ~ Cs tnngA ( ~ )  (3.6) 

Cstrlng = - 1 6 . 6 .  
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Thus, the non-perturbative power corrections in the string model are substantial to 
the O(as)  asymmetric EEC function A(() .  This is in contrast to the expectations of 
power corrections to A(~) in perturbation theory. What happens if O(a , )  2 effects are 
also included and the fragmentation on the 4-parton states (1.5) are taken into 
account h la L U N D  string? The quahtatlve effect of the string reduced correlation 
remains. Estimates vary from - 35% to - 70% about the relatwe contribution of 
non-perturbatlve effects in the L U N D  model if second-order terms are included in 
eq. (3.5). In any case, the non-perturbative contribution to d Z A / d  cos X is discerna- 
bly larger in models w~th strong colour correlations as opposed to the IJM estimates 
given in (3.3). This difference again is testable experimentally at PETRA and 
TRISTAN energies. 

4. Comparison with experimental data 

We would now like to make a comparison of the O(as)  2 calculatmns reported m 
sect 2 with the data. This will be done both at the parton level (1.e. using only 
perturbation theory results) and including the hadronlzatlon effects as discussed in 
sect. 3. We recall that such a comparison was already made in ref. [3]. However, 
since our theoretical calculations for the function B(~) have changed somewhat for 
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large X, and we have included the quark mass and experimental resolution effects we 
repeat this comparison. Recently the Mark-J collaboration [5] have analysed their 
data using the calculations described in this paper and in ref. [19]; we will use their 
determination of as(Q 2) and compare it with the ones here. See also ref. [4] for 
similar phenomenological analysis 

4 1 PERTURBATION THEORY VERSUS EEC DATA 

We remark that testing the bare perturbation theory matrix element in "popular  
jet measures" like (1 - T) ,  (sin26>, the average heavy jet mass (MH/~s)  or the EEC 
itself is a formidable proposition at P E T R A / P E P  energies precisely because of the 
large power corrections. This can be seen in fig. 11, which we are Including here to 
stress our point. The data come from the PLUTO collaboration [24]. The solid 
curves are the fits using a In s + b/~/s. It is clear that the coefficient b/a ,  which is the 
measure of non-perturbative power corrections, ~s not small. In contrast, the asym- 
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Fig 11 Energy dependence of some jet measures at PETRA energies The solid l,ne is a fit alnQ + b 
The dashed curve is the perturbative QCD prediction (O(a,))  The figure is taken from ref [24] 
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metric EEC cross section 

303 

NA(X > 35 °) -- fx>35odY.A/dcosxdcosx 

shown in fig. 12 indicates little 0 f  any) energy dependence m the D O R I S - P E T R A  
energy region 9.4 GeV ~< ~/s ~< 34 GeV. Though  there are systematic errors revolved 

and the statistics of  the data shown are not very high, nevertheless a certain 

qualitative difference between the je t  measures in figs. 11 and 12 is clearly visible. 

Based on our prejudgement  of  power corrections in per turbat ion theory on the 

one hand, and the remarkable constancy of  2U(X > 35 °) on the other, we con- 

centrate m ttus subsecnon on the asymmetric EEC at large angles. 
In fig. 13 we show a compar ison of  the C E L L O  and P L U T O  data [5,2] and 

compare  the complete O(as)  2 perturbative results mcludlng the quark mass terms. 

The shape of  the 0 ( % )  2 per tu rbanon  theory dls t r ibunon is an good agreement with 

the data  for X > 30°. Thus, not  only does the ~/s dependence of ZA(X) but also the 

differential d ls t r ibunon for Z > 30° hints that at least in the EEC we are already in 

the per turbanve  region. Fitting the tail of  the distribution we fred 
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Fag 12 The integrated asymmetric cross section XA(X > 35 °) from the PLUTO [2] and CELLO [5] 
collaboranons m the range 9 4 GeV ~ 7~- ~< 34 GeV The sohd hne ~s the fit using the complete O(a,) 2 

calculations and the fragmentation component from eq (3 3) 
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These numbers are slightly higher compared to the ones reported in ref. [3], mainly 
because of the inclusion of quark mass terms, but to some extent due to the change 
in the B function*. Thus, we determine that A ~ =  146+6°-47 MeV. This is to be 
contrasted with the world average A~g = 160+1°°- 8o MeV, or from a recent analysis 
[25] of the O(as) 4 calculations of the J/~p and T widths, glvlng AMS 1~+62 = ~ v  37 MeV 
from the J / + ,  and A ~ =  133 +46 MeV from the T decays. The agreement is 
remarkable! Nevertheless, we should point out that the value of AMS so determined 
is a lower bound, since all non-perturbatlve power corrections have been ignored, 
wIuch if the data is taken on its face-value are small. Thus, even modest statistical 
data in the asymmetric EEC cross section like the one used here provides a 
non-trwtal lower bound on A ~ ,  namely at 68% CL AMS >/73 MeV. This is a lower 
bound since all non-perturbatlve fragmentation contributions are negative (see sect. 
3), which reduce the asymmetry, consequently requiring bigger a s ( Q  2) and hence 
A ~ * * .  

4 2 I N C L U D I N G  N O N - P E R T U R B A T I V E  EFFECTS IN THE EEC 

We now include the considerations of sect. 3 and evaluate the effect of fragmenta- 
tion on the value of as(Q). As mentioned earlier we use the Ali et al. model [19] to 
implement quark, gluon fragmentauon, and recall that in the X > 30° asymmetric 
EEC cross section eq. (3.3) is a reasonable parametrlzatlon of this model for Cs >1 20 
GeV. 

Reanalysing the large-x region now by including (3.2) with the O(a,)  2 perturba- 
tlve calculations, we get again a reasonable fit of the data with the effect that a s ( Q  2) 

is now normalized upwards by - 10-15%. This is shown in fig. 13. We now obtain 
the following values 

A ~ g =  1682146 MeV, PLUTO,  

= 278 + 64 MeV, CELLO,  

= 140 +4o MeV MARK-J,  - 30  

where we have used the published result of the MARK-J collaboration [5]. We 
average*** this value taking into account the statistical weight of the data and this 

* The value of A~g at the parton level from the MARK-J  data is very similar (private commumcat lon)  
**  The effect of the intrinsic PT of the hadrons due to the fragmentation of quarks and gluons is to 

reduce the asymmetry from the O(as)  process e + e - - ~  qCtG Quark mass effects and weak decays of 
heavy quarks also reduce the asymmetry It ~s therefore very plausible that the non-perturbatlve 
effects to the perturbatlve QCD asymmetry are negative though we are not able to formulate this 
s tatement  as a theorem 

***  This averaging is legitimate since both we and the MARK-J  collaboration use the O(a  s) 2 calculations 
reported here and m refs [3,4], and the All et al model [19] to include the fragmentation effects 
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Fig 14 A comparison of the PLUTO data for the integrated correlation cross section S~°rr(X > X~) in 
the range 9 4 GeV ~< ~/s ~< 34 GeV with the All et al model [19] Also shown Is the fragmentation 

component  alone (broken hne) 

gwes A ~  = 168 +6°_40 MeV. Thus, c%(Q 2=  1225 GeV2) = 0.13 +_ 0.01, which is con- 
Slstent with the result from other determinations of c%(Q 2) using, for example, the 
cluster algorithms and shape analysis; using similar models like the ones used here 

[27]. 
The value A ~  + 60 = 16840 MeV determined from the EEC asymmetry, is consistent 

with the EEC correlation cross section itself. This is shown in fig. 14 where a 
comparison is made with the integrated EEC cross secuon in the range 9.4 GeV 
~< ~ ~< 33 GeV measured m the PLUTO collaboration. That the model in ref. (19) 
describes the EEC and the asymmetry for all measured angles X is checked by the 
MA RK-J  collaboration and we refer to their papers [5] for detailed comparison. 

We conclude this section by making a general remark that the value A~s = 168 + 406° 
MeV determined from the EEC asymmetry is an estimate specific to independent jet 
models, which do not take into account any long-range colour correlations. The form 
gwen in eq. (3.3) for d ~ A / d c o s  X is a definite prediction and it should be a simple 
matter  to check or rule out this dependence, once higher energies at PETRA, H E R A  

e + e -  or TRISTAN are avadable. 

5. S u m m a r y  a n d  c o n c l u s i o n  

The main motivation of the work reported in this paper was to understand 
theoretically the experimental result that the measured EEC asymmetric cross 
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section is remarkably energy independent in the entire P E T R A / P E P  range. The 
only other quantity showing tlus feature is the total hadronic cross section but there 
it is known that the power corrections fall off like - 1/Q 4 and hence they are not 
discernible in the P E T R A / P E P  data. The obvious Interpretation of the EEC data is 
that the power corrections in the asymmetric cross section are likewise small. We 
demonstrated that this indeed is the case in perturbation theory where the leading 
asymmetric function A(~) has power corrections, which fall off like - 1/Q 2. 

We have no theoretical derivation of the non-perturbative power corrections but 
we argued that limited-pT fragmentation models with no long-range colour correla- 
tions are very tightly constrained from the Pv distribution of hadrons. Given the Pv 
distribution experimentally, the fragmentation contribution to d ~ A / d c o s  X is well 
determined. Thts component is also small in stringless models at PETRA energies 
and decreases as 1/Q. Thus, the limited-pf fragmentation models with small 
long-range colour correlations naturally explain the data. Unfortunately, the quality 
and close proximity (in energy) of the present data makes it difficult to check the 
1/Q behaviour of eq. (3.3), but we do hope that such a test should be possible at the 
P E T R A / P E P  energies in the not-too-distant future. 

We conclude by stating that the energy-energy correlation provides an excellent 
ground for perturbative QCD to confront data. At the same time it provides a rather 
definitive check of the power corrections in a way which is particularly sensitive to 
the presence or absence of long-range colour correlations. 

We are grateful to our colleagues at DESY and Slegen for useful discussions. We 
particularly thank S. Brandt, G. Kramer, S.C.C. Ting, T. Walsh, R.Y. Zhu and 
members of the Mark-J collaboration for help, discussions and support. Finally we 
would like to acknowledge correspondence with S.D. Ellis and W.J. Stifling on the 
subject matter of this paper, and we thank them for sending us a copy of their paper 
prior to publication. 

Appendix A 

We write here the function Tv(¢~, y)  which appears in eq. (2.8) of the text for the 
virtual corrections to the EEC. 

Tv(o), Y) = T12V12 -1- F12 q- 2(T13V13 + F13). (A.1) 

The functions TI2 and T13 are the same that occur in the order a, calculations and 
are given in eqs. (2.4) of the text. The functions 1/12, V~3, F12 and F~3 are given 
below. 

V 1 2 = C F [ - l n 2 1 y  y 2 l n ( ~ - ~ ) l n  ~o 

- ln2z - 91nl Y - Y  921nz -2LI2(v /y ) -2LI2(1  - z ) ]  
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+ Nc[-ln2( ~Y-z ) - ~ln z - 2 Li2( u/y) -1611n~- ] 

+TR[21n 1-yy + ~ l n z ] ,  

[ _ in  2 1 -___~y _ V13 Cv 
t Y 21n2z - 2 1 n ( ~ ) l n  z 

_ 9 1  n l  - y  _ 3 1 n z -  2Li2(u/y )-2Li2(1 - z)] 
Y J 

-2L12(v/y)-~ln(17Yz)-~lnz ] 

+ TR[}ln(~-z)+ }lnz], 

(A.2) 

(A.3) 

z =  1 - ( 1  + o a ) ( 1 - y ) ,  

u=y-(1 -y)z, 
v = y - C 1  -y)~o,  

Li2(x) = _ [xln(1 7 t) 
-/o t 

5 

F12 = Y'+ f,(~o, y ) ,  
t = l  

- -  d t ,  
(A.4) 

CA.5) 

10 

FI+ = E ~(,+,.,, y ) .  
l = 6  

(A.6) 

The functions f, needed for the F12 are given below: 

k( ,~,  y) = c~ g77-~ -Y + ( 1 - y ) o a  + ' 

+in+) 
× [cF{4(I-y>+ 1-yz ], 
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[ CF ( 2 ~ z 2 ( 2 - y )  f3(to, y) = ln(z) (1 - z) 2 

[1 
/4(~o, y) = - 2 ( c ~  - ~Uc) (1 -7)~o~y {R(y~2,723) 

× ( z 2 ( 1 - y ) 2 + y 2 ( 1 - z ) 2 ) + R ( Y 1 2 ,  y13)(z2(1-Y)  2 + z 2) 

+ y / ( y - ( 1  - y)z)(o~2(1 _y)2 + z2y2)) 

( y - ( 1  - y ) z )  2 ( y - ( 1  - y ) z )  ' 
-2(lnX-Yy +lnz) 

R(x ,  y) = In xln y - In xln(1 - x) - ln(y) ln(1  - y ) ,  

7 1  1 - y  
Y12 = - - ~ Z ,  Y13 = ~, Y23 = 2. 

Y Y 

where 

The functions f, (t = 6 .... 10) for the F13 are given below: 

f6 (o~, y) = C F -]--L~_ z ) + (1 - y ) ~ o / ( y  - (1 - y ) z )  

+y/(1  - y)z  + 1 / z -  2], 

f7(w, y) = (ln((1 - y ) / y )  + In z)[CFy2/u2{2((1 -y) /y)2~(2o~ + z) 

+ ( ( 1 - - y ) / y ) z ( 4 w +  z)} + N c ( 1 - y ) z / u ] ,  

fs(oa, y ) =  ln(z)[CF/(1 -- z)2{4~o(~o + z)((1 _ y ) / y ) 2  

+ ((1 - y ) / y ) z ( 2 ~ o  + z)] + N c z / ( 1  - z)], 

f9( ~°, Y)= - 2 ( C F - 1 N c ) [ 1 / ( Y (  1 -Y)Z2) { R(Yl2,723) 

X( o~2(1 - 7 )  2 + 72(1 - z) 2) + R(y12 , Y13)(¢.02(1 __y)2 + U2)) 

(A.7) 

(A.8) 

(A.9) 
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+ 1 / [ ( 1  - y ) C y -  00(1 - y ) ) ]  ((1 _ y ) 2  + y 2 )  

- 2 ( l n ( ( 1  - y ) / y )  + In w ) ( ( 1  - y ) 2 0 o  2 ) / [ y  - 0o(1 _ y ) ] 2  

+ 2 ( 1  - y ) 0 o / [ y -  0o(1 - y ) ] ) ] ,  

f lo(0o,  Y) = - N o  [((1 - Y ) / Y ) + Y / ( l - y ) + 2 0 O / z 2 ] R ( Y 1 3 ,  Y23). (A.10)  

T h e  f u n c t i o n  R(x, y) is de f ined  in (A.8). However ,  note tha t  the var iab les  Yu for 

f6 - f m  are de f ined  as 

Y12 = 0o(1 - - y ) / y ,  Y13 = z(1  - - y ) / y ,  Y23 = z. (A.11)  
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