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We calculate energy-energy correlation (EEC) up to O(e,)? 1n perturbative QCD The effects
of heavy quark masses and experimental resolution 1n the spint of Sterman-Weinberg on the EEC
functions are also calculated to the same order We find that the EEC function 1s sensitive to both
the radiative corrections and experimental resolution criterion The asymmetric EEC function s, in
contrast, stable with respect to both the radiative and power corrections 1n perturbation theory It
15 argued that both the data and perturbation theory indicate substantial non-perturbative power
corrections to the EEC but modest effects in the asymmetry for Q > 25 GeV We show that
hmited-p 1 fragmentation models without long-range colour correlations are in agreement with the
expectations and data A phenomenological analysis of the PETRA /PEP data 1s performed to
determine the QCD scale parameter We determine Aygs = 12059 MeV with no power corrections,
and Ayg = 168750 MeV 1f imuted-p 1 fragmentation effects are included The small non-perturba-
tive power correction to the asymmetric EEC 15 a charactenstic feature of the limited-p
independent parton-fragmentation models and 1s testable at PETRA cnergies

1. Introduction

It 1s an increasingly popular 1dea that energy-energy correlation (EEC) provides a
precision test of QCD at the ongoing experiments at PETRA /PEP energies. The
EEC was introduced by Basham, Brown, Ellis and Love [1], who studied 1t 1n the
first non-trivial order and showed that 1t is calculable 1n perturbative QCD, 1.e. it 1s
free of mass singularities. First measurements by the PLUTO collaboration [2] were
encouraging. Since then the EEC has been calculated to order o by the present
authors [3] and by Richards, Stirling and Ellis [4] for the massless quarks and gluons.
Recent measurements by the CELLO, MAC, MARK-J, and the MARK-II col-
laborations [5] involving high-statistics data have brought about the fine qualitative
rapport of perturbative QCD and e*e” data, at the same time emphasizing the
importance of power corrections for quantitative tests.
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270 A Al, F Barreiro / Energy-energy correlations

In this paper, we study questions which have a direct bearing on such comparisons
and which 1n our opinion have to be answered for a quantitative test of QCD. In
doing this, we shall elaborate on the results in ref. [3] and systematically study power
corrections in perturbation theory (quark masses, resolution dependence) and from
non-perturbative sources (fragmentation of quarks and gluons).

To recapitulate briefly, the EEC is a measurement of energy flow involving two
calorimeters, subtending solid angles §2 and £’ with respect to the mncoming e*e”
axis and having an angle x between them. The quantity of interest to us is the
“average” EEC obtained by keeping x fixed and mtegrating over all other orienta-
tions. This can be regarded as the energy weighted sum over pairs of particles whose
relative angle lies between x and x + Ay,

N

1
~ L X EJE], (1.1)
A=1 pairs
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odcosx Q2Axsinx

a and b label 1ndividual particles and the normalization 1s

C

f dcosxl (1.2)

dcosx

when self-correlations (a = b, x = 0°) are included.
In perturbative QCD, the EEC receives contributions from the following processes:

ete > qq, (13)
- qqG, (1.4)
- q3GG, qqqq.- (1.5)

Process (1.3) contributes at x = 0° and 180° and the others contribute at all angles.
If one is interested in measuring the EEC at angles x # 0°, 180°, one has to calculate
only the processes (1.4) and (1.5) to O(a,)?. For massless quarks and gluons this was
calculated in refs. [3,4]. The results of the O(a,)? calculation can be expressed as

1 g a0 g (28 g ),

o, dcosx

0o = 47a? /30> Y. 07, (1.6)
f

where F(£) is the O(«,) BBEL function [1]

(3-2¢)

65 ¢) [2(3 - 6£+282)In(1 — &) +3£(2 - 3¢)] (1.7)

F(§)=
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with
£=3(1—cosx),
and a,(Q?) is given by the two-term Callan-Symanzik 8 function:
a,(Q?) = 21/ [ byln(Q*/A%) +(by/by)InIn(Q*/A%)], (1.8)
with
by= (33 —2n,), by =+(153 = 19n,),

n; being the number of quark flavours. In this paper we have used n, =5 and all
O(a,)? quantities are calculated in the MS scheme [6].
A related quantity of interest is the asymmetric part of the EEC defined as [1]:

d3* _ d3°(180° —x) _ d3*(x)
dcosy dcos x dcosy

(1.9)

In perturbative QCD this can be obtained from eq. (1.6). In conformity with our
previous notation [3] we define the functions A(¢) and B(§)

a,(0%)

T

1 dx* _ a(Q)
- = A(
o, dcos x T

£)+( )23(5), (1.10)

where
A(§)=F(1-¢)-F(¢),
B(§)=G(1-¢)-G(¢§). (1.11)

The aim of this paper 1s to study the question, “how closely do the perturbative
QCD results (1.6) and (1.10) represent the experimental measurements (1.1) and
(1.9’ Towards that end we have calculated the functions G(§¢) and A(§) more
accurately and estimated power corrections to the EEC. These corrections include:

(i) quark mass effects;

(ii) expenimental resolution dependence in the spirit of Sterman and Weinberg [7];

(i) non-perturbative (fragmentation) contributions.

The ongin of (1) and (ui) is intuitively clear but point (11) perhaps needs some
elaboration. It is well-known from QED that the radiative corrections are defined
only for a given experimental setup. For example, one has to specify the minimum
energy of the photon detectable 1n an experiment. The situation in QCD 1s not too
different, though a great deal more complex due to confinement effects. We
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systematically take into account the effect of experimental resolution on the underly-
ing perturbative calculations for the EEC.

We use the Sterman-Wemberg variables ¢ = min(E,)/E, and § =mn , (6,)
and study the effect of (&, §) resolution on the perturbative function F(§), G(§) and
their asymmetric parts*. The cut on the angle 8 means that the EEC 1s studied only
for angles 6 <x <180° — §. In other words the back-to-back configurations with
x = 180° or almost collinear configuration with x = 0° no longer are accessible n
fixed-order perturbation theory. The cut on & simply removes the soft partons from
the EEC.

The SW-resolution criterion serves two purposes. Firstly, it 1s generally accepted
that the non-perturbative effects dominate for x = 0° and 180° and so the use of
fixed-order perturbation theory in this region is not very advisable. Secondly, and
more 1mportantly, this criterion provides a systematic way to judge which of the
perturbative distributions, or parts thereof, are infrared stable.

We go a step further in this paper and advocate that the SW-resolution criterion,
though strictly a perturbative artifact and in fact invented precisely because we do
not know the complete theory, could be used to guess the relative importance of
non-perturbative (fragmentation) effects. Of course, 1t assumes that the quantity
being 1nvestigated 1s factorizable, 1.e. 1t is calculable in perturbation theory. We
elaborate this point in the example of EEC and to keep the argument simple we first
concentrate on the leading non-trivial order. The EEC for the process (1.4) defined
with the SW criterion 1s given by

1d3(e,8) _ (0% o
o, deosx = F(§e), 8<x<180°-3. (1.12)

We have computed in sect. 2 the function F(£, ) and the result can be expressed
as

1 e2(3 - 2¢)
(1-¢) 6¢6(1-§)

F(£,8)=F(€)—%sg +0(e)’, (1.13)

where F(¢) 1s given n eq. (1.6). Note that the SW criterion results in power
corrections (¢ = min E, /(Q) and the dependence of F(£, €) on ¢ 15 linear. Hence the
perturbative QCD distribution for the EEC is sensitive to the soft-parton contribu-
tion. Based on this criterion, we expect substantial contributions from non-perturba-
tive effects and this indeed 1s the case experimentally [5].

* It will become clear that the soft energy cut 1 our calculations 1s the same as in the Sterman-
Weinberg prescription However, the cut on the angle has a different interpetation in the EEC,
namely that the perturbation theory weights for the 3- and 4-parton processes are evaluated only from
the angular configurations x > & Thus, 1t would be more appropriate to call our cuts (e, x) cuts We
hope that this does not cause any confusion
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The (& 8) dependent asymmetric part of the EEC can be calculated from

1 d3%(e,8) _ a,(0?)

o, dcosx 7 A&, e)0(x - 9), (1.14)
with
A(i,e)=A(£)+§%:Tl;+0(e)3. (1.15)

Note that the power corrections to A(&, ) vanish quadratically with ¢ and hence the
asymmetric part of the EEC is relatively stable in O(«,). It is curious, and we believe
not quite accidental, that the data for the asymmetric EEC cross section also
requires small non-perturbative contributions. Moreover, the Q dependence of the
asymmetric cross section at PETRA for x > 30° 1s very mild. In sect. 3 we show that
limited-p fragmentation models without any additional correlations are also qualita-
tively 1n agreement with the perturbative result (1.13) and (1.15) re. they lead to
substantial non-perturbative contributions to EEC but give rise to modest effects in
the asymmetry.

There is yet another source of power corrections, which 1s exactly calculable 1n
perturbative QCD, namely the quark mass effects. We take them into account in the
Born diagrams for the process (1.4) and (1.5). Even though the c.m. energy where
most of the PETRA /PEP data 1s taken lies substantially above the charm and
bottom quark-pair production threshold, the effect on the EEC is sull about 10%.
The redeemung feature of this is that the comparison of perturbative QCD calcula-
tions with the data results in rather reasonable description of the asymmetry, and
yields a value of Agg consistent with the generally anticipated values for this
quantity.

The paper 1s organized as follows. In sect. 2 we present a recalculation of the EEC
functions G(§) and B(¢) for massless quarks and gluons. Qur results are compared
to those of ref. [4] and they are found to be compatible with those in ref. [4] withun
calculational errors. We give a simple parametrization for the function R™(§)
(related to G(£)) based on a fit of our numerical computation of the same quantity.
The effect of the SW resolution on the functions F(¢) and G(£) 1s evaluated. Again,
we give a parametrization for the function R (£, €) for some representative values
of ¢ and 8. Next, we calculate the effect of quark masses on the functions F(¢, €) and
G (&, £). Within our calculational errors, we find the dependence of the O(a,) and
O(a,)? terms on quark masses very similar and both are proportional to m/Ey,.
The information in sect. 2 is sufficient to make a comparison of data on the EEC
with perturbative QCD in the second order.

In sect. 3 we estimate non-perturbative fragmentation effects on the EEC cross
section. This estimate is based on the use of hmuted-p; fragmentation models
incorporating independent fragmentation of quarks and gluons in the processes
(1.3)-(1.5). Not unexpectedly, the asymmetric EEC cross section from the process
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qq — hadrons falls off exponentially with x and Vs . So, for Vs > 30 GeV, x > 30°,
qq — hadrons gives no contributions in Z4(x). It 1s shown that the fragmentation
contribution to 24() in such models has a shape very similar to the perturbative
EEC. The normalization 1s obtained by fixing the p and p; distributions of hadrons
at PETRA energes. Typically, the fragmentation contribution at Vs = 30-35 GeV 1n
these models 15 ~ 15% and it falls off ke 1/Vs. We provide a simple parametri-
zation for Zf’rag, valid for Vs > 20 GeV. This is only weakly correlated with the
intrinsic pr of the hadrons or on the details of the p; distribution of hadrons from
quarks or gluons.

In sect. 4 we compare the complete O(a,)? calculation with the data, both
including the fragmentation effects of sect. 3 and without. We find that d=“(x)
from the perturbation theory 1s in remarkable agreement with the data. We use the
asymmetry at large angles x > 30° and it gives Ay = 12075 MeV. We remark that
this 1s a lower bound on Ayz. Including non-perturbative contribution increases the
a,(Q?) by ~15% resulting in a,(Q) = 0.13 + 0.01 yielding Ays = 168 5 MeV. Thus
1s in remarkable agreement with the world-average Ay = 16071 MeV [8]. We
further remark that the fragmentation contribution is testable at presently available
PETRA energies and we advocate an energy dependent study of =“#(x) to indepen-
dently determine the power corrections from the data. The power corrections are
measurably different in models with and without long-range colour correlations.

Sect. 5 contains our conclusions.

2. Perturbative QCD calculation of EEC

In this section we present the results for the perturbative QCD calculation of the
processes (1.4) and (1.5) to order a?. A representative sampling of the relevant
Feynman diagrams is shown in fig. 1. We start by deriving first the O(a,) EEC in a
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Fig 1 A samphng of the O(a,) and O(a,)? Feynman diagrams i e ¢~ annitulation mto hadrons
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somewhat different form than has been done 1n ref. [1]. This 1s being undertaken to
present our calculational method in a simple form for subsequent derivations.
The O(a,) EEC can also be expressed as

1 a,(0%)

o d2c= 7 CFfd,Vlzd)’Bd)’laa(l‘J’1z")’23_)’13)T, (2.1)
0
where
. 2EE
T=Z Q218(X—0U)T(Y12’)’13»)’23)»
1, ]

and T 1s the density for the process e* e~ — q4G derived by Ellis, Gaillard and Ross
[%1:

Jis y Ip o 2

T(y13, Y13» Y3) = ,
(5120 13> ) Yoz Vi3 Vi3

y,=5,/0% s,=(p+p). (2.2)

By a suitable transformation one could write eq. (2.1) in the form

1 dzc  1e«(Q
)

) (1-y)’
— Uy
(o) dCOSx CF/dy(w+ 1) y3 “ [T12+2T13]» (23)

T

where

y 1—y 72

1-(0+e)1-0),  e-g/(-8, y=l-Tge (24

.
Il

Eq. (2.3) involves a simple integral, which can be done n a straightforward way and
one obtains

1 dx _1a(9Q%)
8

o, decosx p- Cr[812(8) +281:(£)], (2.5)
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where
(0+1)° 2 @
gn(€)= T[—17—42w—24w2—6(w+1) (4w+l)lnw+1],
((,.)+1)3 w
2813(8) = 5= [8 + 330 + 78” + 60 (3 + 1260 + 1307 )In—— ] . (2.6)

Using the relation w=¢/(1—§¢) and Cp=$ one immediately obtains the O(a,)
BBEL formula

1 dz _ «(Q?)
o deosx ~ 7 F(¢), (2.7)
where F(¢) 1s given 1n eq. (1.7). There are several comments that we would like to
make here about the derivation (2.1)-(2.7).

(1) In order to calculate the O(a,)? effects to the EEC for the 3-parton state one
has to cast the results in the form of eq. (2.1) i.e. one has to derive the density Tto
the desired order by including the real and virtual diagrams and integrating out all
other variables up to the double-differential Dalitz distribution.

(1) The experimental resolution i.e. a cut on the SW parameters e and 6 can be
imposed on the Dalitz boundaries whose parametric equation 1s given by the
argument of the delta function 1n (2.1).

(ui) The fact that g),(£)# 2g,5(1 —£) 1s the reason why the asymmetric EEC
function A(§) 1s not zero.

We shall now calculate the EEC 1n order aZ. This will be done 1n two ways. First
we present our results for the case ¢ = 8 = 0. Thus is the limit in which Ellis, Ross and
Terrano (ERT) [10] calculated the O(a,)? corrections to the Fox-Wolfram shape
parameters [11]. The order a calculations for the EEC reported in refs. {3,4] were
also done 1n this limit. Then we shall discuss the case of fimite (&, ) resolution-
dependent O(a,)? corrections. This 1s the spirit in which Fabricius, Schmutt, Schier-
holz and Kramer [12] have done the O(a,)? radiative corrections. Since the dif-
ference between the two approaches lies 1n terms which are essentially power
corrections, doing the O(«a,)? radiative corrections i two ways provides a systematic
account of those power corrections which have a perturbative origin. In fact the
stability of a jet measure with respect to the experimental resolution is a reasonable
criterion of reliabihty for perturbation theory results. This 1s so because the direct
one-to-one correspondence between experimental and theoretical resolutions, to
which we are accustomed from QED radiative corrections, 1s clouded by non-per-
turbative confinement effects.

21 EEC WITH INFINITE EXPERIMENTAL RESOLUTION

Starting the ¢ = 8 = 0 calculations, we have made use of the ERT results [10] on
virtual correction to ete” — gqgG, which we find particularly useful in calculating
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the EEC. As remarked earlier one needs 7 to O(a,)? from which the virtual O(a,)?
correction to the EEC can be calculated as shown in the denivation (2.1)-(2.6).
Following the derivation of the O(«,) BBEL formula, using the formula for 7 from
ERT, eq. (3.26) of the second ref. in [10], and after some straightforward algebra,
one can derive the virtual O(a,)? contribution to the EEC. The result is

6F(£)+ M{gu(g)[CF(%wz -1 - In%w— %lnw)

ki

1 d=, 1 a,(Q%)
=g a CF

o dcosx

+N(372+ - L Inw) + Tr(3Ine - ¥)]
+2813(§)[Ce(37° —1-3Inw) + N(3n* + §f —In'e) - $Ty]

: (2.8)

2
el =g
(w/w+1) y

where the function T, (w, y) is given in appendix A, The O(a,)? piece 1n eq. (2.8) is
the sum of the virtual 3-parton and the real 4-parton contribution. We recall that the
real 4-parton singular piece 1s obtained by treating the event as a quasi 3-parton
state when one of the invanant masses y,, =s, j/Qz goes to zero, with y, .=
(p.tp,+p)?/Q% and y, , held fixed. This is explained in detail in the ERT papers
[10] to which we refer for the precise prescription. Alternatively, one could use the
pole terms due to Kunzst {13], involving an invarant mass cut-off y, =
min(m?3/Q?, y, k> Vi) where my is some pre-defined jet mass. The corresponding
expression for d=%  then differs from eq. (2.8). However, this difference 1s exactly
compensated by the finite 4-parton piece. Eq. (2.8) involves a one-dimensional
integral which could be done to any arbitrary accuracy. We have used a (double
precision) NAGLIB subroutine which does the integral using a gaussian quadrature
method and we stopped at an accuracy of 1 part in 10°,

The finite 4-parton piece was obtained numerically by calculating the 4-body
phase space using a Monte Carlo technique. Symbolically one can write this
contribution as

1 d2h,
o dcosx

= f (d4)SOT@ — f (d4)SOT@, (2.9)
where T™ is the matrix-element squared for the 4-parton processes (1.5) and T® is
the y,;l piece of it, which has been integrated analytically and included in eq. (2.8).
(Thas is the reason why 7 has to be subtracted as in (2.9) to get the fimte d2s...)
Since the quantity on the right-hand side of eq. (2.9) is by construction finite, one
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needs 7 and T™® 1n the physical space-time dimensions. The expressions for 7
are given 1n refs. [14, 15] for the general case of non-zero quark masses, as well as by
ERT, who have worked in the limit m = 0. The expression for T is given by ERT*.
See also the appendix of ref. [4]. Note that the bar on d4 in the second term of eq.
(2.9) means that the phase space in the second integral is different from the complete
4-body phase space and it is this piece which keeps track of different procedures in
defining the virtual 4-parton cross sections. We emphasize that since 7 involves
only the y,;l pole pieces (and not the complete expression for 7™ in the limit
¥,, — 0), one has in general a non-zero contribution for the left-hand side of eq. (2.9)
in the kinematic domain defined by (d4). Numerically, we find that this contribu-
tion, which in the jargon is also referred to as the soft 4-parton contribution, 1s not
negligible. In particular, for the pole-terms, used by ERT, the contribution for the
EEC from the soft 4-jet piece 1s not simply proportional to a power of the angle.

We make the obvious remark that the use of Monte Carlo integration techniques
allows us to impose any experimental resolution that one would like to impose by
redefining the phase space. Thus, it 1s a simple matter for example to go to the FSSK
limut 1n calculating (2.9), or impose the Sterman-Weinberg resolution on EEC.

The complete O(a,)?* corrections to the EEC are given by the sum of eqgs. (2.8) and
(2.9). In conformity with the notation used in ref. [3] we present our result first in the
form of eq. (1.6):

S—

1 _dx _ «(0) o (0%)

o, dcosx 7 F(£)+( T )G(i).

The values of F(£) and G(£§) are given in table 1. Note that since we are using a
Monte Carlo integration technique to calculate d2¢, the values of the F and G
functions are averages in the cos x bin with a width Acos x = 0.1. A typical error in
the O(a,)* function G(§) 1s +4%. Thus, the EEC cross section 1s calculated to an
accuracy of +1%. Since the systematic errors 1n experimental measurements over-
whelm our calculational accuracy, we think that an error +1% in 2* 1s adequate for
our analysis. We have generated ~ 107 Monte Carlo events and the 4% inaccuracy 1n
G 1s a remnant of the subtraction in the integrand of eq. (2.9).

Instead of presenting our result in the form of eq. (1.6), which 1s normalized with
respect to the point-like cross section g, one could normalize the correlation cross
section to ¢, calculated to order a2, which then guarantees to O(a,)?* the normahza-
tion eq. (1.2). Rewriting eq. (1.6) one has now

1 d3* « (Q )
o dcosx Fe

(Qz)

R™(&)], (2.10)

* Strictly speaking 1t 1s the y,;l prece of the matnx-element squared integrated up to the trivial angular
orientations
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where ¢ is the total hadronic cross section in the MS scheme [16]:

. 03(7?2) +c2(“5(32) )2) (2.11)

6 =0,

where

¢, =(1.98 —0.116n;)=1.40 for n;=5.

The values of R°™(§) are given 1n table 2 (column 2). We remark that R*™(§)
depends on the angle x, increasing from about 7 for cos x = —0.85 to about 10 at
cosx = +0.85. Thus 1n the central region, order (e )* corrections to the BBEL
function F(£) are substantial. Consequently the value of «, extracted from the EEC
cross section can differ by about (30-40)% 1n the first and second order.

Next we would like to present a simple parametrization for the function R*(§).
An acceptable fit to R“"(£) is obtained using the expression

RO™(£)=—3I°(1/[1 - ¢]) +AIn(1/[1 - £]) + B + C¢, (2.12)

TABLE ]
The BBEL F(¢) and the O(a,)? function G(£) defined for the EEC cross sections 1n eq (16) for the
massless quark and gluon case without experimental resolution

€os X (mterval) F(g) G(g)CalCuldI(d G(S)fmed
—090,-080 8 751 6243 +189 61 86
-080,-070 4 464 3512+121 3362
~070, -060 2975 2181 +087 2317
-060,-050 2251 1637+ 076 1797
-050,-040 1838 1412 + 0 87 1500
—040,-030 1581 1340+ 057 1317
-030,-020 1413 1279+ 072 1203
-020,-010 1304 1147+ 052 1134
—010, 000 1235 1108 + 0 40 1099
000, 010 1199 1026 £ 057 1091
010, 020 1192 1122+ 043 1109
020, 030 1214 1134+ 042 1155
030, 040 1269 1328 +043 1237
040, 050 1370 1407 + 054 13 66
050, 060 1 540 1587+ 047 1571
060, 070 1833 19454 064 1914
070, 080 2395 2598+072 2560
080, 09 3805 3850+ 120 41 63

G (&) fea 18 the result of fitting G(£) cacutaea USING the parametrization of eq (2 12)
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TABLE 2
The O(a,)? EEC function R (¢) defined in eq (2 10) for the massless quark and gluon case both with
and without experimental resolution

cos x Repr(cosx) Rl (cosx)  Rigye=5%  RI e=10% RE e=15%
—-090,-080 713+021 706 983 900 693
—-080,-070 786+ 027 753 969 924 835
-070,-060 733+029 778 968 9 40 924
—-060,-050 7271034 798 977 9 60 967
—050,-040 8§12+ 047 815 994 983 1007
—-040,—-030 847+036 833 1017 1010 1038
—-030,-020 905+ 051 851 1048 10 40 10 64
-020,-010 879+ 040 870 1077 1072 10 86
=010, 000 896 +032 889 1112 11 06 11 06
000, 010 855+047 909 11 50 1143 1124
010, 020 941 +036 930 1191 11 81 11 41
020, 030 934+ 035 951 1234 1220 11 56
030, 040 1046 + 034 934 1278 12 61 1171
040, 050 1027 +039 997 1325 1303 11 85
050, 060 1030+ 030 1020 1373 13 46 11 99
060, 070 1061 +035 10 44 1422 1390 1212
070, 080 1084 + 030 10 68 1472 14 35 1224
080, 090 1011 + 031 1093 1524 14 81 1237

Column (1) R aeq (6=06=0), column (1) R{YLy (¢ =8=0) using the parametrization of eq
(212), (1v) R (=005, 6 = 26°), (v) R" (e =01, 8 = 26°), (v1) R%" (¢ =0 15, § = 26°)

with

A=30+03, B=+113+02, C=-82+09. (2.13)

The parametrization eq. (2.12) correctly takes into account the leading-log struc-
ture. We have fixed the leading-log coefficient which has been calculated for
x =180° in ref. [17] and which we have verified numerically. The leading-log
coefficient has also been verified in ref. [4]. In table 2 we show R™({) using eq.
(2.12).

Once we have the functions F(§) and G(§) (or equivalently R™(£)) we can
determine the asymmetric part of the EEC cross section as shown 1n egs. (1.10) and
(1.11). From now on we shall work with the fitted EEC function R®"(¢) and
compute all other functions related to it using the parametrization (2.12) and (2.13).
In fig. 2 we plot the functions F(§), G(§) and in fig. 3 the corresponding asymmetric
EEC functions A(£) and B(§). Note that the function B(£§) differs from our
published resulit in ref. [3] in the large-x region.

Just as we have done for the EEC cross section, we can define the asymmetric
EEC functions which are normalized with respect to the total hadronic cross section
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10007771771 T T 1
— € =00
--—--€ =010
G (cosX)
100
10
01 1 1 1 1 1 1 I\ 1 1
-10 00 10

COSX 36014

Fig 2 The O(«,) and O(a,)? EEC functions defined in eq (1 6) The solid curves correspond to the case
e=8=0 and the dashed curves correspond to using e =01 and 8 = 26° Note that ¢ = min( £, /Vs) and
8 = mn(4,))

in the MS scheme:

1 d34  oy(Q?) 2,(0°) ooy
5 doony = A1+ B Reg)) (2.14)
with
R*™™(§) = R™(£) + -t [R™(1 — &) — R"(¢)]. (2.15)

A(¢)

In fig. 4 we plot the functions R°7(§) and R*Y™(¢) and compare them with the
corresponding functions obtained by Richards, Stirling and Ellis in ref. [4]. The two
calculations are in fair agreement with each other*. Note that R®*Y™({) is a
monotonously decreasing function of the angle x and typically R*Y™(¢) = 3. Thus

* Qur values for R°"(x) though lie systematically hugher by ~ 1 umt The results for R*Y(x) are
closer and hence both the calculations should lead to similar values for a,
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Fig 3 The O(a,) and O( «,)? functions for the asymmetry 1n the EEC defined in eq (1 10) The notation
used 1s the same asn fig 2

the O(a,)? corrections 1n the asymmetric EEC are small. The determination of a (Q)
using the first and second order perturbative QCD calculations then would differ by
~ 15%, with a  [2] < a, [1].

The calculation of the perturbative QCD EEC functions reported in this subsec-
tion were done for the ideal case i.e. for infinite experimental resolution. Since the
BBEL EEC function F(§) is also defined with infinite experimental resolution, it was
logical to calculate radiative corrections to it in the same limit i.e. with ¢ = 6 = 0. The
idea was to show that calculating the radiative corrections a la ERT, the size of the
O(a,)? corrections depends on the measure. In the example of EEC, the corrections
are substantial for the correlation function 1itself but small for 1ts asymmetric part. In
subsect. 2.2 we study the effect of experimental resolution on the EEC and its
asymmetry. Strictly speaking, these are perturbative power corrections as we shall
presently see.
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Fig 4 The O(a,)? EEC functions R“"™(¢) and R*Y™(£) as defined 1n eqs (2 10) and (2 14) respectively
The solid lines are the fits using eq (2 12) The points denoted as O are the results from Ruchards, Stirling
and Ellis (second of ref (4], n; =5 case)

22 EEC WITH STERMAN-WEINBERG RESOLUTION

The 1dea is to define a resolution a la Sterman-Weinberg first and then calculate
the EEC cross section. This procedure gives an angular width to a parton, and 1t
defines when soft quanta are not resolvable. Since the effect of non-perturbative
fragmentation 1s qualitatively simuilar, 1.e. 1t gives an angular width to a parton, the
perturbative resolution criterion may provide us with a guide about the reliability of
a jet measure.

In order to avoid any misunderstanding let us state that we are making a
distinction here between the calculability of a measure and its reliability as a
precision test of perturbative QCD. The EEC function 1s calculable in perturbation
theory up to at least O(a,)” i.e. 1t is free of any mass singulanties and we have just
shown that in subsect. 2.1. There 1s an impressive list of cross sections and
distributions which have been shown to be free of mass singularities and hence by
definition calculable. This list includes in addition to the EEC cross section, thrust
distribution, the Fox-Wolfram shape parameters and many more. By reliably calcula-
ble we mean that a measure is not very sensitively dependent on the resolution of
soft and collinear quanta. Since QCD 1s a confining theory, such a criterion 1s
necessary to compare perturbative QCD calculations with data.
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We shall use the Sterman-Wemberg vanables ¢ = min(E,)/E, , and 8 = min(4, )
to define whether or not a certain kinematic configuration 1s to be taken into
account 1n the definition of genuine 3- and 4-jet events. We start by considering
again the O(a,) EEC function. Recall the definition of the EEC from eq. (2.1). The
sum 1n the definition of the function 7 runs over the pairs “12” (g-g), “13” (g-g) and
“23” (g-g) for x # 0°, 180°. Thus, the angular cut § can be implemented by the
modification

. EE
T(8)= 22 sz T()’n’ N3» )’23) 6(x - 011)0(011 - 5)- (2.16)
J

To avoid any possible confusion we state that eq. (2.16) is the definition of our
angular resolution 1n the EEC function. The resolution in energy for the 3-parton
state 1s defined as follows. If for a given event the scaled energy, E,/vs, of the least
energetic parton is less than a preassigned cut e, then the event is classified as a
2-parton event and its contribution is not included in 7(8). Later, we shall
generalize these (¢, §) prescriptions to a 4-parton state.

The e-cut can be imposed on the Dalitz boundary 1n a straightforward manner.
We explain 1t here for the configuration : = 1 and j = 3. In that case the integrals in
(2.1) can be transformed to the variables E,, E; and cos x by using the standard
Jacobian

dydy;3dyy a(1 — Y2 713 _}’23)

QZ— 2QE1
2(Ecosx+Q—E)) |’

=JdE,dE,dcos(x) 8| E; — (2.17)

where
_4E|E, 1
~Q* Q-E(1-cosx)’

and the variables y,, are given by
Y = 2E1/Q2[Q - Ej(1- COSX)] )
yi3=2E E;/Q*(1 —cosx),
yi=2E/Q*[Q - E (1 _COSX)] . (2.18)

The double-differential (Dalitz) distribution d®Z/d E| dcos x has the boundary
given by the argument of the delta function in (2.17),

E =(0?-2E;Q0)/[2(Q + Excosx — E;)] . (2.19)
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Our (&, 8) cut modifies this boundary as follows
i) x>3d,

y 1-2
(i) Em™=eQ, EF“2~——2Q(§—252))'

(2.20)
The cut on E{™* simply reflects that E5™" = ¢Q. Thus, a cut on (¢, 6) is simply a cut
on the allowed physical phase space for a given process. The other cases involving
the pairs “23” and “12” can be treated likewise.

With the definitions (2.16)—(2.20) it is a straightforward matter to calculate the
EEC function F(§, ¢) from eq. (2.1). Recalling the definition of F(£, ¢) from our
troduction

1 d=(e,8) _ e,(0?)
o, dcosy T

F(¢,¢), & <x<180° -6,

we quote the result for F(, €)

1 [3(1 —55)2(2§—1)+6(1—s§)(4£2—9§+4)+1—38—£

"I n-e

(U220 oy -og 0

+21n((1 - e£)?/(1— £))(48° — 1882 + 24¢ - 9)] . (2.21)

Note that the leading-log behaviour is independent of ¢ and 1n the limit ¢ — 0 one
recovers

lim F(¢,¢) = F(£),

where F(§) is the O(a,) BBEL function. It is worthwhile to do an expansion of the

function F(§, &) in &. Keeping up to O(e)? terms we find the result already given in
eq. (1.13),

1 e2(3—2¢)

=g " eea—g T O

F(§,£)=F(£)—%£§(

Thus, as remarked earlier the effect of imposing a cut on ¢ results in a power
correction which starts at order e = min E, / Vs . Not surprisingly perturbative power
corrections to the EEC function have a 1/Q dependence, just as in the Sterman-
Weinberg 3-jet cross section to the same order.
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However, as we have remarked earlier, the asymmetric EEC function A(§, ¢)
defined in eq. (1.14) receives contribution to order ¢ =min E2/s. Restating the
result 1n eq. (1.15) we have

- 52(25_1) &3
Al ) =A()+ T gy +O().

Thus, at least in the perturbation theory, power corrections to d=* /d cos x fall off as
1/Q%. This is in contrast to most other known jet measures and puts the asymmetric
cross section on a somewhat higher pedestal among a host of perturbative jet
measures, most of which have power corrections falling off like 1/Q. Certainly the
total hadronic cross section is better behaved, with power corrections to the unit
operator (I) falling off like 1/Q*. However, as is well-known the leading coefficient
n o is mndependent of a,(Q?), whereas in d=* /d cos x it 1s proportional to a (Q?).

In table 3 we present the numencal results for F(, &) for ¢ = 0.05, 0.10 and 0.15
for the angular range 0.05 < £ < 0.95. The result for F(&, e = 0.1) 1s compared with
the BBEL function F(§) n fig. 2. The large dependence of F(£, ¢) on ¢ 1s rather
uncomfortable. Based on this perturbative result we do expect that non-perturbative
power corrections to the BBEL function should also be large and this is in
qualitative agreement with the observations by experimental groups and our previ-
ous analysis [3].

TABLE 3
The O(a,) EEC function F(£, &) withe=005,01,015 and 8 = 26°

cos X e=05 e=010 e=015
- 090, -080 7782 6852 5938
-080,-070 3865 3296 2745
—070, -060 2576 2102 1698
-060,-050 1381 1535 1208
-050,-040 1515 1216 0937
—040,-030 1289 1019 0770
-030,-020 1141 0891 0662
-020,-010 1043 0 806 0590
-010, 000 0 981 0750 0541
000, 010 0945 0716 0510
010, 020 0933 0702 (493
020, 030 0945 0705 0490
030, 040 0983 0778 0500
040, 050 1055 0776 0527
050, 060 1180 0862 0 580
060, 070 1398 1016 0675
070, 080 1819 1314 0865

080, 090 2878 2067 1346
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TABLE 4
The O(a,) asymmetrc EEC function A(£, €) withe=005,01,015, and § = 26°

cos X e=005 e=010 e=015
090,080 4904 4785 4591
080,070 2046 1982 1 880
070,060 1128 1086 1022
060,050 0701 0672 0628
050,040 0 460 0440 0409
040,030 0306 0291 0270
030,020 0195 0186 0172
020,010 0109 0104 0096
010,000 0035 0033 0031

In table 4 we present the results for the asymmetric EEC function A(&, ¢) for the
same values of ¢ and 8 as in table 3. The result A(£, e = 0.1) 1s compared with the
BBEL function 1n fig. 3. Note the relative insensitivity of A(¢, €) to e. This 1s indeed
satisfying and we expect that the non-perturbative power corrections should likewise be
small. This feature is also strongly suggested by the data.

So much for the power corrections in the O(a,) EEC cross section. Next we
calculate the effect of the (e, §) resolution in order a? radiative corrections. First
note that the preceding discussion 1n O(a,) applies as such for the virtual EEC cross
section given by eq. (2.8) and appendix A. One again uses the transformations and
cuts defined through eq. (2.16)-(2.22). Again, the resulting expression involves a
one-dimensional integral, the himits of which take into account the e-cuts and the
d-cut is defined as before via eq. (2.16). Again, this contribution can be evaluated
with arbitrary precision.

Let us now concentrate on the real 4-parton contribution. Since one 1s now bound
to combine soft-partons, the results are specific to the prescription that one is using,.
We define below our recombination procedure.

If the partons in an event satisfy the e-cut, then the 6-cut 1s imposed as in the
3-parton case using the definition (2.16). If, however, min(E,/Vs) <e, then the
four-momenta of the partons having the smallest invariant mass are combined. The
EEC for the resulting equivalent 3-parton state is calculated exactly as described
before for the O(a,) case. Alternatively, one could have checked that if two of the
partons have energies less than &/s, then the event could be classified as a 2-parton
event and not included in the calculation of d2° at all. However, so long as & < 1,
the difference 1n the two prescriptions 1s small and we shall neglect it in further
discussions*,

* There 15 yet another prescription of combining partons, e g the FSSK scheme [12] They define an
“average” Sterman-Weinberg cross sectton by averaging the energy of the soft parton However, the
difference between this scheme and any other would lie 1n O(e, §) and O( y/?) terms which they have
neglected 1n, for example, the calculation of do/d x ),
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We present our results for the (&, §)-dependent EEC cross section analogous to the
case with no resolution dependence

;!1; di;f)ss,;) B aS(WQz) F(&,¢) +( aS(WQZ) ) G(¢,e), d<x<180°-34,
olodig’;):[%(f )A(& e)+(ﬁa(_7‘r2_)) B(¢, e)]@(x—8). (2.22)

The functions R®"(g, §) and R*Y™(e, &) have obvious definitions. The function
G(§, €) 1s given in table 5 for ¢ = 0.05, 0.1 and 0.15 together with the fit values using
the parametrization (2.12) for R*"(£, ¢). The values of the coefficients for the fit are
given in table 6. The values of R*"(&, €) themselves are given in table 2. The fitted
values of the O(a,)? asymmetric EEC functions B(&, €) are put mn table 7. In figs. 2
and 3 we plot the fitted function G(£, &) and B(&, ¢), respectively for ¢ = 0 and 0.1.

We would now like to discuss these results. Note that the dependence of G(§, ¢)
on ¢ is very similar to that of the O(a,) BBEL function F(§, ¢). Both of them have
power corrections starting in order . So quahtatively one could write

dcosy — m

0~ %0 (1) + o)+ (L)) 60y w0t (2

On the other hand, we see that the dependence of the O(a,)? asymmetric function
B(¢, £) 15 also of order €. Thus, one now has

=t «(0%)
dcosx T

(4(8)+0(e)") + ("‘—(WQ—Q) (B(§)+0(c). (2.24)

Amusingly, the perturbative power corrections to the asymmetric EEC functions
A(€) and B(§) go in opposite directions. This is easy to understand since the effect
of resolution on an initial 3-parton state is to promote 1t to a 2-parton state, thereby
reducing the asymmetry. The effect of combining the 4-partons with (e, §) resolution
works the opposite way, since a 4-parton state is in most cases more symmetric than
a 3-parton state. The result is that the asymmetric EEC cross section calculated to
O(a,)? has still small power corrections, which is mainly due to the fact that
(a/m)R™™ (&) is itself a small number ~ 0.1 compared to 1. The effect of the (&, §)
resolution on the asymmetric EEC cross sections is shown in fig. 4. We remark that
the perturbative power corrections to the asymmetric EEC die out much faster in Q
than 1n the correlation function itself or in the Sterman-Weinberg cross sections.
This, very probably, is one of the reasons of good agreement between perturbation
theory and the expenimental data in this quantity.
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TABLE 5
The O(a,)? EEC function G(£, ) with the same cuts as 1n table 3
(for each ¢, the fitted values are also given)
cos X e=005 e=010 e=015
-090,-080 7665+174 7653 62324178 6200 4559+173 4119
~080,-070 4398 +174 3749 3383+ 119 3046 2482+116 2292
—070, -060 2434+ 085 2447 19744+ 088 1978 1453+035 1552
-060,-050 1812+ 079 1839 1400+ 076 14.74 10734072 1169
—050,~-040 1487+ 036 1507 1143+083 1197 542+080 943
—-040,-030 1315+ 055 1311 1056 + 050 1030 787+048 800
-030,-020 1269+ 070 1193 992+069 927 719+064 705
-020,-010 1105+007 1124 5314059 864 665+035 641
-010, 000 1151 +037 1091 3574+035 830 618+078 599
000, 010 1038+ 031 1099 738+059 819 4934056 574
010, 020 1074+ 040 1112 854+034 829 576 +027 563
020, 030 1101 +040 1166 8494032 860 615+027 567
030, 040 1261 £+ 040 1257 925+040 918 617+035 586
040, 050 13771027 1398 10134+053 1012 6484049 675
050, 060 1639+043 1620 1145+ 041 1162 697+036 695
060, 070 2124+ 063 1988 14694+ 056 1413 8424052 819
070, 080 2774+ 068 2678 1807 +059 1887 941 4+051 1059
080, 09 4284+107 4386 2503+100 3063 1083+ 089 1666
TABLE 6
The parameters 1n the fits for the function R (¢, ¢) with the x*/d o f
Coefficient
¢ A B C x/dot
00 301 +031 1132+021 -819409 23/15
005 490+ 045 1603+ 029 —-1559+114 14 /15
010 406+ 045 1552+ 038 -1354+144 9/14
015 064+095 1255+055 -303+253 22 /13
TABLE 7

The O(a,)? functions for the asymmetric EEC B(£, &) with the same cuts as 1n table 3

cos X £=005 =010 £=015
090,080 32 661 31372 24532
080,0.70 10 706 11 591 12332
070,060 4587 5650 7335
060,050 2187 3127 4739
050,040 1088 1849 3180
040,030 0543 1122 2141
030,020 0263 0668 1383
020,010 0116 0355 0777
010,000 0032 0111 0251




290 A Al, F Barreiro / Energy-energy correlations
23 INCLUDING THE QUARK MASSES

We study in this section the effect of including the quark masses on the EEC
functions. We do this in the approximation of keeping the mass terms only for the
Born diagrams for the processes (1.4) and (1.5). In other words the cancellation of
divergences between the O(a,)? virtual 3-parton cross section and the soft 4-parton
real cross sections are still being done 1n the limit m, — 0.

Again, we consider the O(«,) EEC first. Our basic formula 1s eq. (2.1), where now
the density T is to be obtamned from the process (1.4) keeping the quark masses 1n
the calculation. The effect of heavy quark masses has been considered in the
one-gluon radiation process by loffe [18], who derived the differential energy
distribution for the heavy quarks. We have verified his calculations and merely quote
the relevant result. For our purpose, the relevant quantity 1s 7,

2EE,
= Z TH()’12»Y13’)’23)8(X , ) (2.25)
1y

where now the heavy-quark density is given by

22+ 2 4m? (1 1
TH(Yua)’m’)’zs): 1-2)(1-2) - 02 (l—z + 1_21)

22mr 1 1 _4m4( 1,1 )2
Q*\(1-z2 -z @*\l-z 1-2J~

(2.26)
where
2
m
z=1- 0 Va3
m2

It 1s straightforward to check that

nl1i210 Tu( 12, Y13 ¥23)=T(y12, V13 ¥23) s

where T(y,, ¥13» Y23) 15 given in eq. (2.2). We present the result in the form of a
double-differential distribution, the EEC function can then be obtained by calculat-
ing the one-dimensional integral. In analogy to (2.5) we now have

(Q?)

T

1 d’z
o, dzdcosx

1
-3 Crlg12(z, x) +2813(2, )] Tui» (2.28)
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where

Zfdz 222"%,0,8(1 =z +2m2/Q% = 2'(1 = Lz + Lzo,0c0s X)),

2-z-27)°

g13=22201 1—Z ’

21-2)

//=2_ _ ,
: z 2—z(1—vcosx)

v, = (1-4m?>/Q%?)"?,
= (1-4m?/Q%")"?,
z=2E/Q, '=2E/Q. (2.29)

It is again a useful check to obtain eq. (2.3) from (2.28) in the limit m — 0. We have
done the z mntegration numerically due to the presence of velocity factors which
render the analytic integration rather intractable*. Expressing the O(a,) result as
before

1d2(¢§,m) _ (Q )

o, dcosy

F(¢,m), (2.30)

we have tabulated the results for F(£, m) 1n table 8 for 5 = 34 GeV, where most of
the PETRA data 1s concentrated. Again, it is a straightforward matter to evaluate
the effect of the e-cut. The results corresponding to the values ¢ = 0, 0.05, 0.1 and
0.15 for the ratio F(§, m, €)/F(&, €) are given in table 8. Note that we have used
m.=1.8 GeV, m,=5.0 GeV and neglected the quark masses for the u, d and s
quarks.

It 1s clear that the quark mass effects in the EEC correlations are not entirely
negligible even at ys =34 GeV. The ratio F(&, m, e =0)/F(& e =0), for example,
varies from 0.91 for £=0.925 to about 0.84 for £ =0.0725. Thus, both the EEC
function F(§) and the asymmetric part 4(¢) have quark mass corrections which are
only decreasing as m/E,.,,. This has a perceptible effect on the determination of
the QCD scale parameter as we shall see 1n sect. 4.

Finally, we have used the massive-quark calculation for the process (1.5) reported
in ref. {14]. This is also part of the Monte Carlo program, generally referred to as the

* Alternatively one could calculate the EEC with masses from the Ali et at Monte Carlo [19], where
mass terms for both the processes (1 4) and (1 5) are taken into account However, we have used eq
(2 28) to check the accuracy of the Monte Carlo and the agreement 1s good
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TABLE §
The ratio F(e, m)/F(¢) at Vs =34 GeV fore=0,005,01 and 015 and 8 = 26°

F(e, m)/F(e) atys =34 cm
cos x £=00 e=005 =010 £=015

—090,-080 09088 + 00035 09201 + 00034 09294 + 00034 09397 + 00034
~080,-070 09281 + 00042 09433 + 00041 09550 £ 00041 09576 + 0 0041
-070,-060 09313 + 00047 09493 + 0 0047 09607 + 00046 09671 + 00046
—-060,-050 09387 + 00051 09546 + 0 0051 09627 + 00050 09693 + 00051
-050,-040 09284 + 00054 09461 + 00054 09518 + 00053 09642 + 0 0054
-040,-030 09348 + 0 0057 09494 + 00057 09583 + 00058 09659 + 00059
-030,-020 09352 + 0 0060 09501 + 00059 09552 + 00003 09608 + 0 0064
-020,-010 09294 + 0 0063 09469 + 00065 09597 + 0 0066 09717+ 00071
-010, 000 09408 + 0 0065 09566 + 0 0066 09677 £ 00071 09767 + 00074
000, 010 09290 + 0 0066 09424 + 0 0068 09554 + 00074 09642 + 00078
010, 020 09240 + 0 0068 09383 + 00071 09366 + 00075 09479 + 00085
020, 030 09311 + 00070 09481 + 00074 09581 + 00079 09715 + 00087
030, 040 09197 +£ 00071 09398 + 00077 09493 + 0 0081 09457 + 00090
040, 050 09218 + 00073 09356 + 00078 09359 + 00084 09425 + 0 0096
050, 060 09021 + 00073 09227 + 00090 09418 + 0 0088 09372 + 00093
060, 070 08850 + 00074 09012 + 0 0079 09124 + 00088 09139 + 00103
070, 080 08680 + 00075 0 8839 + 0 0081 0 8880 + 0 0089 09001 + 00106
080, 090 08438 + 00076 08540 + 00082 09609 + 00091 08786 + 00110

Ali et al. Monte Carlo [19]. We find that within our calculational precision (+4% on
the O(a,)? EEC function G(§, ¢)) the ratio G(§, m, &)/G(&, €) 1s very close to the
one for F(&, m,e)/F(&, ¢), i.e. both the functions F(&, m, e) and G(&, m, &) have
similar though not identical linear dependence on € and m/ Vs . So, to a very good
approximation, R°°"(&, m, ¢) 1s independent of m/ Vs *. Thus,

1 d2
o dcosx

(e.m)= ZF(E m, o)1+ ZR( 0)|

+0(em/Q)+0(m*/Q?), (2.31)

where R(¢, €) 1s the function with m = 0 (1.e the entries 1n table 2). The function
A(e, m) and R*™™(&, m, €) can be obtained from F(m, ¢) (table 8) and R*"(§, ¢)
(table 2).

Let us briefly summarise the results of this section before we move on to the
discussion of the non-perturbative effects in the EEC cross section.

(i) The O(a,)? corrections in the theoretical limit (¢ =& = 0) are substantial for
the EEC function F(£). Typical corrections are (7 — 10)a, /7, and so the second-order
corrections to F(£) can be as large as ~ 40% at vs = 30 GeV.

* 1t 15 very likely that R (£, m)/R°™(£) has O(m?/Q?) corrections, but we neglect such higher-order
terms here Again one could use the Al et al Monte Carlo [19] to exactly take them into account
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(1) The order a2 correction (in the limit ¢ =8 =0)) to the asymmetric EEC
function A(£) are small. Typical corrections are ~ 3a, /7 and so the second-order
corrections to A(£) can be as large as ~ 15% at Vs = 30 GeV.

(ii1) Imposing experimental resolution in the spirit of Sterman-Weinberg, we find
the following behaviour

F(e)=F(e=0)(1+0(e) + — - —),
G(e)=G(e=0)(1+0(e) + — ——),
A(e)=A(e=0)(1+0(e)*+ — — —),
B(e)=B(e=0)(1+0(e)+ ———), (2.34)

which leads us to conclude that at least in the perturbation theory power corrections
to d=Z* are small.

(iv) Quark mass corrections to all the functions F(§), G(§), A(§) and B(§) are
linear 1n m/ys. The effect at vs= 34 GeV is typically about 10%. Thus, it is
important to keep them for a quantitative determimation of the scale parameter A

3. Non-perturbative contribution to the EEC

In this section we evaluate the non-perturbative fragmentation contribution to the
EEC cross section. Needless to say that in the absence of a complete theory of
confinement this is bound to be model dependent. Before we embark upon a
detailed model of the quark and gluon fragmentation, we would like to discuss some
aspects of fragmentation that are quite general and deserve consideration.

The first point concerns the effect of longitudinal momentum distribution. It can
be easily proven that the EEC, 1n the first approximation, 1s independent of the
details of how quarks and gluons fragment their longitudinal momentum, so long as
the fragmentation products are almost collinear with the parent parton. This is
simply a consequence of energy-momentum conservation. Thus, the longitudinal
fragmentation functions 1n the first approximation can be neglected. Perhaps, 1t 15
worthwhile to remark that this property 1s specific to the EEC only. If higher powers
of the energy are used as weight factors, then the information on the single-particle
inclusive distribution (1.e. longitudinal momentum fragmentation functions) 1s essen-
fial to determine the normalization. Consequently, higher moments are more model
dependent.

Thus, the single most important feature for the EEC 1s the p profile of a quark
and gluon jet. However, 1t 1s now generally appreciated that only limited-p;
fragmentation models can explain the appearance of jets in e*e” annihilation and
elsewhere. Let us then take, for the sake of argument, the limited-p model of Field
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and Feynman [20] which has the following hadronic-p  distribution

1 - a
f(pr) = 7777, (3.1)
Og

where ¢, 15 a free parameter and has to be determined from the p distribution of
hadrons. (We stress here that the detailed features of the Field-Feynman model are
not relevant for our qualitative arguments.) It is worthwhile to look at the EEC in
the central region (1.e. near x = 90°). Now by definition sin x = p/p,. However,
since pr is cut off due to (3.1) but p, is almost scaling with energy (agamn a
phenomenological fact) we see that sin x falls off like ~ 1/vs with energy. Thus, 1n
all hmited-p ; models, the contribution to the EEC 1n the central region must fall off
like 1/vs if only the process (1.3) (i.e. e e~ — qq) 1s considered. Also at a given c.m.
energy the EEC itself should have an exponential behaviour approximately of the
form

dzec
dcos x

- evu|smx|’ (32)

where a 15 a function of o, and this again is a consequence of (3.1).

The behaviour (3.2) and the independence of EEC from the p; distribution is a
sumplified picture and it is certainly going to change as more realistic features of
heavy quark, resonance production and decays are taken into account. However, 1t is
satisfying that a realistic model [20] incorporating these features still maintains the
qualitative argument (3.2). This 1s shown 1n fig. 6, where we plot the contribution to
the EEC from qg — hadrons using the Field-Feynman model. Note the 1/ys
dependence of dX°/dcosx in the central region (60° < x <120°) as s increases
from 22 GeV to 60 GeV, and the almost exponential behaviour of eq. (3.2).

Another consequence of eq. (3.1) is that 1t predicts an exponential fall-off for the
asymmetric EEC cross section d=“/dcosyx with both cosx and ys. Again the
expectation of the Field-Feynman model is shown in fig. 7, where we show the cross
section d=“ /d cos x for ys = 22, 34, 45 and 60 GeV. Also shown 1s the behaviour of
the asymmetric correlation cross section at cos x = 0.925, and 1t falls down exponen-
tially with energy.

Thus going to sufficiently high energy, for example s > 20 GeV, the q@ — hadron
contribution to d=“ /dcos x becomes entirely neglgible for x > 30°. So, if one 1s
mterested in a study of the QCD processes (1.4) and (1.5), the cross section
d=4/dcos x at vs > 20 GeV provides a kinematic domain in x free of qq — hadron
contamination. Of course, all of this 1s well-known to our experimental colleagues.

Let us now turn to the fragmentation effects in the processes (1.4) and (1.5)
mvolving at least one-gluon radiation. The difference with respect to the qg
production 1s that now the perturbation theory 1tself provides a continuous distribu-
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Fig 5 The cross section d3* /d cos x 1n perturbative QCD calculated up to O(«,)* The solid hine 15 the
theoretical imut ¢ = § = 0, the dashed hne corresponds to a cut e =01, § = 26° The curves are drawn for
Awngs =100 MeV and vs = 34 GeV

tion for d2/dcosx and d=“/dcosx at all angles [1]. Thus, 1t is not possible to
separate the perturbative and non-perturbative components just kinematically. How-
ever, 1f the fragmentation of quarks and gluons involves a limited-p; phenomenon,
which 1s strongly suggested from the existence of 2, 3 and 4 jets in e "¢~ annihilation,
then the additional contribution to d=°/dcos x from the fragmentation should fall
down hke 1/ys with energy. This 1s exactly what happens in d2°/dcosy from
qq — hadrons, as we have already shown. Thus, here also the most important
parameter 1s the intrinsic p of the hadron. In fact, since the p; distributions of
hadrons from the quark and gluon jets are qualitatively very similar at PETRA
energles, the non-perturbative contribution to the EEC 1s essentially fixed from
inclusive p -distribution measurements.

Again, the correlation is itself more sensitive to the intrinsic p - of hadrons but the
asymmetry is relatively insensitive to 1ts precise value (much in the spirit of the
e-dependence of the EEC functions F(¢) and A(¢)).
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Fig 6 The EEC cross section d=“/dcos x for the process e "e ~— q using the model (21) for s = 22,
34, 45 and 60 GeV

To give a quantitative content to these arguments we show 1n fig. 8 the predictions
of a hmited-p; fragmentation model without any long-range colour correlations [19].
We see that such so-called independent-jet models (IJM) give rise to fragmentation
components in d 2 /d cos x which are very close to the perturbation theory distribu-
tions The fit to d="/dcosx shown in fig. 8 corresponds to the function (for
x > 25°)

dzﬁ'ag‘ o 2 a, 2
%dcosx(X): (WQ )%C A(§)+“’(7—TQ_)B(§) , (3.3)

where C (GeV)= —6.3 + 1.3. The coefficient C does not depend sensitively on the
pr of the hadrons. This 1s shown 1n fig. 9, neither does it depend on the fragmenta-
tion function of the gluon, which 1s shown in fig. 10 where we have compared two
realistic G — qg — hadrons functions. The first 1s the one due to Altarelli and Parisi
[21]

f3(z)=z22+(1-z)", (3.4)
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with

z=E/Eg,
and the other 1s a constant fragmentation function

13(z) = const. (3.5)

The error in the coefficient C takes into account all such dependences. Thus, we
emphasize again that the profile fof the fragmentation function in the EEC 1s not a
freely moving contour but 1s tightly constrained, once the inclusive-p 1 distribution is
fixed by an independent measurement.

The relative importance of the non-perturbative effects in d3* /d cos x, typically
at vs = 30 GeV, is of order 15% and decreases as ~ 1/ys with energy. This is shown
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mn fig. 10. Thus, despite being complicated models with strong correlations among
various input parameters, the independent jet models have a very definite prediction
about the distribution d=“/dcosx and its energy dependence. This 1s certainly
testable at PETRA energies.

Before we close this section we would like to reiterate what was first realised by
Ellis [22], and which was later confirmed by various independent experimental
groups, that long-range colour correlations, as for example in the LUND model {23],
lead to a quantitatively different non-perturbative estimate than is given in eq. (3.3)
for the independent jet models. Based on O(«,) considerations Ellis estimated [22]

dz?nn T4 (X) o Q2 1
‘ngOfS)g( = (77 )f smngA(g) (3.6)

with
C

strng

—16.6.
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Thus, the non-perturbative power corrections in the string model are substantial to
the O(a;) asymmetric EEC function A(£). This is in contrast to the expectations of
power corrections to A(§) in perturbation theory. What happens if O(a,)? effects are
also included and the fragmentation on the 4-parton states (1.5) are taken into
account & la LUND string? The qualitative effect of the string induced correlation
remains. Estimates vary from ~ 35% to ~ 70% about the relative contribution of
non-perturbative effects in the LUND model if second-order terms are included 1n
eq. (3.5). In any case, the non-perturbative contribution to d3“ /d cos x is discerna-
bly larger in models with strong colour correlations as opposed to the IJM estimates

given in (3.3). This difference again is testable experimentally at PETRA and
TRISTAN energies.

4. Comparison with experimental data

We would now like to make a comparison of the O(e,)? calculations reported 1n
sect 2 with the data. This will be done both at the parton level (ie. using only
perturbation theory results) and including the hadronization effects as discussed 1n
sect. 3. We recall that such a comparison was already made 1n ref. [3]. However,
since our theoretical calculations for the function B(§) have changed somewhat for
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large x, and we have included the quark mass and experimental resolution effects we
repeat this comparison. Recently the Mark-J collaboration [5] have analysed their
data using the calculations described in this paper and 1n ref. [19]; we will use their
determination of a,(Q?) and compare it with the ones here. See also ref. [4] for
similar phenomenological analysts

41 PERTURBATION THEORY VERSUS EEC DATA

We remark that testing the bare perturbation theory matrix element 1 “popular
jet measures” like (1 — T'), {sin*8), the average heavy jet mass {( My /s) or the EEC
itself 1s a formidable proposition at PETRA /PEP energies precisely because of the
large power corrections. This can be seen in fig. 11, which we are including here to
stress our point. The data come from the PLUTO collaboration [24]. The solid
curves are the fits using a In s + b /ys. It 1s clear that the coefficient b/a, which is the
measure of non-perturbative power corrections, 1s not small. In contrast, the asym-
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Fig 11 Energy dependence of some jet measures at PETRA energies The solid line 1s a fit aln@ + b
The dashed curve 1s the perturbative QCD prediction (O(e,)) The figure 1s taken from ref [24]
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metric EEC cross section

SA(x>35°) = / BSOdZ"/dcosxdcosx
x>

shown in fig. 12 indicates little (if any) energy dependence in the DORIS-PETRA
energy region 9.4 GeV < ys < 34 GeV. Though there are systematic errors mvolved
and the statistics of the data shown are not very high, nevertheless a certain
qualitative difference between the jet measures in figs. 11 and 12 1s clearly visible.

Based on our prejudgement of power corrections in perturbation theory on the
one hand, and the remarkable constancy of 34(x > 35°) on the other, we con-
centrate 1n this subsection on the asymmetric EEC at large angles.

In fig. 13 we show a comparnison of the CELLO and PLUTO data [5,2] and
compare the complete O(a,)? perturbative results including the quark mass terms.
The shape of the O(e,)? perturbation theory distribution 1s 1n good agreement with
the data for x > 30°. Thus, not only does the s dependence of Z*(x) but also the
differential distribution for x > 30° hints that at least in the EEC we are already in
the perturbative region. Fitting the tail of the distribution we find

Ays =1321 19 Mev,  PLUTO,

=160*% MeV, CELLO.

¢ PLUTO

a6 o CELLO ]
QCD  Agg=212 * 95 MeV

A(0)de

T/,

J

002— -

| 1 | I L
10 20 30

Vs (Gev)

Fig 12 The integrated asymmetnc cross section 34(x > 35°) from the PLUTO (2] and CELLO [5]
collaborations m the range 94 GeV < Vs < 34 GeV The solid Line 1s the fit using the complete O(a.)”
calculations and the fragmentation component from eq (3 3)
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These numbers are slightly higher compared to the ones reported 1n ref. [3], mainly
because of the inclusion of quark mass terms, but to some extent due to the change
in the B function*. Thus, we determine that Agyg = 146750 MeV. This 1s to be
contrasted with the world average Ayg = 16073° MeV, or from a recent analysis
[25] of the O(a,)* calculations of the J/¢ and T widths, giving Ay = 13673 MeV
from the J/y, and Ayg=13373 MeV from the T decays. The agreement 1s
remarkable! Nevertheless, we should point out that the value of Ayg so determined
1s a lower bound, since all non-perturbative power corrections have been 1gnored,
which if the data 1s taken on 1ts face-value are small. Thus, even modest statistical
data in the asymmetric EEC cross section hike the one used here provides a
non-trinal lower bound on Ayg, namely at 68% CL Ay > 73 MeV. This 1s a lower
bound since all non-perturbative fragmentation contributions are negative (see sect.

3), which reduce the asymmetry, consequently requiring bigger a, (Q?) and hence

kX
MS -

42 INCLUDING NON-PERTURBATIVE EFFECTS IN THE EEC

We now include the considerations of sect. 3 and evaluate the effect of fragmenta-
tion on the value of a,(Q). As mentioned earlier we use the Ali et al. model [19] to
implement quark, gluon fragmentation, and recall that in the x > 30° asymmetric
EEC cross section eq. (3.3) is a reasonable parametrization of this model for s > 20
GeV.

Reanalysing the large-x region now by including (3.2) with the O(e,)? perturba-
tive calculations, we get again a reasonable fit of the data with the effect that a (Q?)
1s now normalized upwards by ~ 10-15%. This is shown 1n fig. 13. We now obtain
the following values

Azs=16871MeV, PLUTO,
=278"% MeV, CELLO,

=140730 MeV,  MARK-J,

where we have used the published result of the MARK-J collaboration [5]. We
average™™™* this value taking into account the statistical weight of the data and thus

* The value of A at the parton level from the MARK-J data 1s very similar (private communication)
** The effect of the itrinsic p of the hadrons due to the fragmentation of quarks and gluons 15 to
reduce the asymmetry from the O(ay) process e* e ™ — q@G Quark mass effects and weak decays of
heavy quarks also reduce the asymmetry It 1s therefore very plausible that the non-perturbative
effects to the perturbative QCD asymmetry are negative though we are not able to formulate this
statement as a theorem
*** This averaging 1s legitimate since both we and the MARK-J collaboration use the O( «,)? calculations
reported here and 1n refs [3,4], and the Ah et al model [19] to include the fragmentation effects
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Fig 14 A companson of the PLUTO data for the integrated correlation cross section Z°"(x > x ) n
the range 94 GeV < Vs <34 GeV with the Ali et al model [19] Also shown 1s the fragmentation
component alone (broken line)

gives Ays = 16875 MeV. Thus, a,(Q*= 1225 GeV?)=0.13 + 0.01, which 1s con-
sistent with the result from other determiations of & (Q?) using, for example, the
cluster algorithms and shape analysis; using similar models like the ones used here
[27].

The value Ay = 168153 MeV determined from the EEC asymmetry, is consistent
with the EEC correlation cross section itself. This is shown m fig. 14 where a
comparison is made with the integrated EEC cross section in the range 9.4 GeV
< Vs <33 GeV measured 1n the PLUTO collaboration. That the model m ref. (19)
describes the EEC and the asymmetry for all measured angles x 1s checked by the
MARK-J collaboration and we refer to their papers [5] for detailed comparison.

We conclude this section by making a general remark that the value Ay = 16815
MeV determined from the EEC asymmetry is an estimate specific to independent jet
models, which do not take into account any long-range colour correlations. The form
given in eq. (3.3) for d=* /dcos x is a definite prediction and it should be a simple
matter to check or rule out this dependence, once higher energies at PETRA, HERA
e*e” or TRISTAN are available.

5. Summary and conclusion

The main motivation of the work reported in this paper was to understand
theoretically the experimental result that the measured EEC asymmetric cross
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section is remarkably energy independent in the entire PETRA /PEP range. The
only other quantity showing this feature is the total hadronic cross section but there
it 15 known that the power corrections fall off like ~1/0* and hence they are not
discernable in the PETRA /PEP data. The obvious nterpretation of the EEC data is
that the power corrections 1n the asymmetric cross section are likewise small. We
demonstrated that this indeed is the case 1n perturbation theory where the leading
asymmetric function A(£) has power corrections, which fall off ke ~ 1,02,

We have no theoretical dertvation of the non-perturbative power corrections but
we argued that limited-p fragmentation models with no long-range colour correla-
tions are very tightly constrained from the p distribution of hadrons. Given the p
distribution experimentally, the fragmentation contribution to d=“ /dcos x 1s well
determined. This component 1s also small in stringless models at PETRA energies
and decreases as 1/Q. Thus, the hmuted-p; fragmentation models with small
long-range colour correlations naturally explaimn the data. Unfortunately, the quality
and close proximity (in energy) of the present data makes 1t difficult to check the
1/Q behaviour of eq. (3.3), but we do hope that such a test should be possible at the
PETRA /PEP energies in the not-too-distant future.

We conclude by stating that the energy-energy correlation provides an excellent
ground for perturbative QCD to confront data. At the same time 1t provides a rather
definitive check of the power corrections in a way which 1s particularly sensitive to
the presence or absence of long-range colour correlations.

We are grateful to our colleagues at DESY and Siegen for useful discussions. We
particularly thank S. Brandt, G. Kramer, S.C.C. Ting, T. Walsh, R.Y. Zhu and
members of the Mark-J collaboration for help, discussions and support. Finally we
would like to acknowledge correspondence with S.D. Ellis and W.J. Stirling on the
subject matter of this paper, and we thank them for sending us a copy of their paper
prior to publication.

Appendix A

We write here the function T, (w, y) which appears 1n eq. (2.8) of the text for the
virtual corrections to the EEC.

Tv(w,y)=T12V12+F12+2(T13V13+F13). (A-l)

The functions T, and T} are the same that occur 1n the order a, calculations and
are given 1n egs. (2.4) of the text. The functions Vi,, V5, F, and F, are given
below.

1-y 1—-y
Vi,=Cg| —In?—= — 21n( )Inw
12 F ¥ ¥

—In? — %ln-l—;—y —3Inz—2Li,(v/y) —2L1,(1—z)



308 A Ah, F Barreiro / Energy-energy correlations

+NC[—ln2(1—§—Xz) — Sz —-2Li,(u/y) - %ln———1 ;y

[SE—")

+TR[§lnl;y + 2In z], (A2)

Vis = CF[—ln21 — 2 ——21n( L _y)lnz
y v

9 d ;y —3Inz—-2Li,(u/y)—2Li,(1 —z)]

+ N,

<

[—lnzl—;—y —2ln( 1 ;y)lnw

—2Li,(v/y)— %ln(ly;yz) — UIn z]

+Tx %ln(l;yz)+%lnz}, (A.3)

z=1-(14+w)(1—-y),

u=y—(1-y)z,
v=y-(1-y)o,
Li, (x)= —fo"“‘“f‘” ar, (A4)
5
F,= gf,(ws)’), (A.5)
10
Fi3= Zf,(‘*”)’)- (A.6)
1=6

The functions f, needed for the F,, are given below:

fl(w’y)=CFl(l;y)(1iz)_y+ P +%]

fH(w, y)= (ln1 )—/y +1nw)

1-
Z

x[cefa -0+ 120 e nat 2.
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Cr {2(1_)’)22(2_)))

(1—2)2 y?

fi(w, y)=In(z)

1—-y z
+ 4-— -
Zw y2 ( 3y)}+NC1—Z:|’

fa(w, y)= _2(CF— %Nc)[m{R()ﬁZ’ V23)

x(22(1=y) +y*(1 = 2)") + R(yp, yiu)(22(1 = p)* + 22)
+y/(y=(1=p)z) (@ (1 -y)" +2%?))

- nt—)i nz (1_y)2zz 2(1-y)z
2(1 y ! ){(y——(l—y)z)er()’_(1—}’)2)}

b

1_
fs(w, )= —NCR(yn,yza)[—ylw/H 1 {yZ/w+2/w], (A7)
where
R(x,y)=InxIn y—InxIn(1 —x)—In(y)In(1 - y), (A.8)
1-— 1-
Y= yyZ, N3 = yy‘*’a Ya3=2. (A.9)

The functions f, (1 = 6,...10) for the F,; are given below:

o) = (B2 )12 )+ 0 -ne/-( 1))

+y/(1 —y)z+1/z—2],

fr(@, )= (((1 =) /y) +1n 2)[ Cey?/u2{2((1 — y) /y) (20 + 2)
+((1=y)/p)z(d0+2) ) + N.(1 - y)z/u],
folw, y) =1n(2)[Cr/(1 = 2)*{4w(w + 2)((1 =) /y)’

+((1=2)/9)2Qe +2)] +N,z/(1 - 2)],

folw, y)= _2(CF_%NC)[1/(y(1 —Y)ZZ){R()’us ¥23)

X(‘*’z(l _Y)2+)’2(1 _2)2) +R()’12, }’13)(‘*’2(1 -)’)2+ “2)}
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+1/[(1=y)(y - (1 =y)((1=y)* +»?)

—2(In((1 = y)/p) +le)((1 - p)’w?) /[y - w(1 - )]
+2(1-y)o/[y - w1 -y)]],
flo(‘*’v J’)= ‘Nc[((l _)’)/)’) +)’/(1 ‘)’)+2w/zz]R()’13a )’23)- (A-IO)

The function R(x, y) is defined in (A.8). However, note that the varables y,, for
fs — f1o are defined as

ya=wl-=y)/y, ys=z0-y)/y, yn=z. (A.11)
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