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The masses of pseudoscalar and vector mesons and their radial excitations are measured in the 
quenched approximation to QCD by a 32nd-order numerical hopping-parameter expansion on a 
16 4 lattice. Scaling behaviour, finite-size effects and the influence of statistics are studied. 

1. Introduction 

The numerical evaluation of lattice QCD [1] offers the exciting possibility to do, 

for the first time, a calculation of the hadron spectrum from first principles [2-8]. 
Despite questions on the implementation of chiral symmetry on the lattice and on 

the suppression of the effects of virtual quark pairs ("quenched approximation"), 
this is a qualitatively new situation compared to earlier phenomenological hadron 
models. Of course, MC calculations include some approximation: the relatively small 
number of lattice points by which the infinite-volume space-time continuum is 
approximated and the limited statistics of Monte Carlo measurements result in a 

moderate accuracy. However, in this case, these approximations can be checked - and 
hopefully controlled - in a systematic way. 

In a previous paper [9] we argued that in the first hadron-spectrum calculations, 

the physical lattice volume was unacceptably small. Apart from some simple 

plausibility arguments and a comparison with a discretized, non-relativistic quantum 
mechanical example, our conclusions were based on a calculation at/3 = 6 / g  2 = 6.0 
on an 84 lattice. Subsequent spectrum calculations revealed similar problems [10-14], 

indicating that for a serious investigation the lattice volume should be increased 
significantly. 

In order to cure the finite-size problem we decided to do a calculation on a lattice 
with considerably larger physical size: we took a 16 4 lattice and lowered the/3-value 

* Supported by Bundesministerium ft~r Forschung und Technologie, Bonn, Germany. 
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to /3 = 5.7 and 5.4. The results of this calculation on the pseudoscalar and vector 
meson spectrum are presented in this paper. We hope to complete the measurement 
of the simplest baryon masses in the near future. 

In sect. 2 a brief description of the numerical procedure is given. Those readers 
who are less interested in these details might skip this part and start with sect. 3, 
where the results are summarized. The conclusion is presented in sect. 4. 

2. Numerical procedure 

The calculation is based on the hopping-parameter expansion [15, 5] for Wilson 
fermions [1,15]. The fermionic part of the action can be written as 

Sr = E ~xQxy~y, (1) 
x , y  

where the quark matrix Q is defined as 

Q =  I - K M ( U ) ,  

M ( U ) x .  x2 = Y'~ (r + ~.)V(x,~)~xx,x~x+~,x;. 
x,l~ 

(2) 

Here x denotes the points of a hypercubic, euclidean lattice,/~ = + 1, + 2, + 3, + 4 
are the directions, 3', = - ' / - ,  is a hermitian Dirac-matrix and U(x,  ~)  is the SU(3) 
gauge field variable on the link x--* x +/2. The parameter 0 < r ~< 1 removes the 
superfluous fermion states in the continuum limit a---, 0, and (for the case r = 1, 
which we shall consider) 

K = (8 + 2amq) -1 , (3) 

is the "hopping parameter" describing the dependence on the bare quark mass mq. 

The hadron propagators are constructed from the matrix elements of the quark 
propagator Q -1, which can be expanded in powers of K as 

Q - l =  ~ K " M ( U ) " .  (4) 
n=0  

Taking some initial quark state vector li), we have the simple iterative relation 

Iv,,) = M ( U ) I v , , _ I ) ,  

leo) ~ [i). 

n = l , 2  . . . . .  

(5) 
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This relation can be used for the computation of the hopping-parameter expansion 
coefficients of the quark propagator matrix element {fl Q-1] i )  • 

In the "quenched approximation" the effect of virtual quark-antiquark pairs is 
neglected, therefore the fluctuation of the gauge field is determined by the pure 
gauge field action (we use the standard Wilson action [1]). 

The first step in the calculation is to produce a sequence of gauge field configura- 
tions via a Monte Carlo procedure. We have chosen the coupling constant values 
f l  - 6 / g  2 = 5.4 and 5.7. On the 164 lattice the starting configuration was obtained by 
copying previously equilibrated 84 lattices 16 times over the large lattice. At fl = 5.7 
we created a sequence from a cold start (unit gauge matrices) too. After 500-800 
Metropolis sweeps* with 6-10 hits per link, we started to collect the configurations 
on magnetic tapes. 

In order to fix the physical scale we measured the string tension on these 
configurations in collaboration with Gutbrod and Kunszt [16]. The largest loop we 
were able to measure was 3 x 3 and 4 x 4 at fl = 5.4 and 5.7, respectively, therefore 
our result is presumably an upper bound for the corresponding lattice units [16] 

a ~< (1.68 + 0.03) GeV -1, /~ = 5.40, 

a ~< (1.05 +_ 0.08) GeV -1, fl = 5.70. (6) 

These numbers give an estimate for the physical size of our 164 lattice: - 5.3 and 
- 3.3 fm at fl = 5.4 and 5.7, respectively. 

At fl = 5.40 the background fields over which the quark propagator has been 
calculated, were separated by - 20 sweeps. A 32nd-order expansion was performed 
on 19 separated configurations. In order to increase the statistics of the lower-order 
coefficients an additional 12th-order expansion was performed on 50 configurations 
separated by - 10 sweeps in average. 

At fl = 5.70 the configurations were separated by 100 sweeps, but then a 32nd order 
and (from 12 randomly chosen initial points) 24th-order expansions were performed 
on the same configuration. Altogether 12 propagators of 32nd order and 144 
propagators of 24th order were obtained. 

For the gauge fields we used periodic boundary conditions, while the quarks were 
not constrained in their propagation over the copied background field: "copied 
gauge field method" [5, 9]. 

The advantage of the "copied gauge field method" is, that the quark propagators 
are defined for continuous four-momenta (unlike in a periodic box, where the 
euclidean momenta have discrete values). Therefore, it is possible to analytically 
continue the propagators to real energies. This allows us to look directly for the 
particle singularities (in the hopping-parameter variable) by a Pad6-approximant 

* It took a longer time to equilibrate the cold lattice. 
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technique. In the "periodic box" method of the hopping-parameter expansion [9] or 
in the iterative techniques [2-4] the hadron masses are identified by observing the 
exponential fall-off of the propagators in configuration space, therefore no direct 
information is obtained on the nature of the singularity and the separation of 
multiple poles (e.g. due to radial excitations) is more difficult. 

Our results for the quark propagator matrix elements were recorded on magnetic 
tapes. From these numbers it is possible to build up the Green functions for any 
multi-quark configuration. For the 0 -  and 1- mesons we used the local quark 
operators fx~'5~x and fx'h~Px. Here we are concerned only with mesons built up 
from equal mass quarks. 

Having the expansion coefficients of the meson propagators, one has to look for 
the poles corresponding to meson bound states. Following ref. [5], we first Laplace- 
transformed the amplitudes and then searched for the poles in the Pad6 approxi- 
mants to the series at different fixed meson masses. The series for mesons have only 
even powers of K, therefore the highest Pad6 approximants are 1 5 / 1 , 1 4 / 2  . . . . .  0/16.  
These extensive Pad6 tables are stable down to masses a m  -- 0.3 for 0 and a m  -- 0.7 
for 1 states. The pole position was estimated by taking the average of all Pad6's of 
order 14, 15 and 16. 

We had to invest a considerable amount of effort to bring our computer program 
to a form, where the limitation in going to still larger lattices and higher orders in the 
hopping parameter is mainly due to lack of CPU time. An additional problem, 
especially in high orders, is the large amount of data produced by calculating the 
quark propagators. 

The total amount of CPU time was - 250 hours on the Siemens 7.882 computer at 
the computer center of the University of Hamburg and - 300 hours zero-priority 
time on the CERN IBM machines. 

3. Discussion of the results 

Before turning to the quantitative results let us discuss a few general points. 
In our previous work [9] we raised arguments that the small lattices used in earlier 

calculations are unacceptably small for the purpose of hadron spectroscopy at 
fl = 6.0. Among the arguments we refer to two results obtained in a 24th-order 
hopping-parameter expansion on an 84 lattice at fl = 6.0. 

First, we compared the expansion coefficients obtained in a periodic 84 box with 
those obtained on an 0¢ 4 lattice, where 84 gauge field configurations were copied. 
The higher-order expansion coefficients were different (sometimes by orders of 
magnitude) in the two cases, showing that the periodically closed Wilson loops, 
present in the first case, dominate the higher orders of the expansion. It was 
expected [17] that these "fake loops" are mainly responsible for the large fluctua- 
tions found on small periodic lattices [6, 7]. This expectation was confirmed later by 
detailed studies on the rNe of polarized, periodically closed Wilson loops [11,12]. 
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We did not carry out a similar analysis on the 164 lattice at/3 = 5.4 and 5.7 since no 

similar problem is expected to occur. Even at/3 = 5.7, our lattice is much larger than 
the critical size (6 4 ) for non-zero expectation value of the Wilson lines closed by 

periodicity*. 
Second, we tried to check the overall strength of the singularity in the hopping- 

parameter  plane. We found that for small meson masses the series was similar to 
that of a free field theory showing a very weak (like x In x or weaker) singularity. 
This we interpreted as due to the tunneling of the quarks through the periodic 
potential acting between a quark and an antiquark in a periodic gauge field 
background. 

The ratio test of our new series at (m~ra) 2=  1.2 obtained on the 164 lattice at 
/~ = 5.40 is consistent with an overall crude fit ( K  2 - K 2) ~' where 7 -- 0.6-0.7. On 
the other hand at/3 = 5.7, (m~ra) 2 = 1.0, the ratio test gives ~, -- 0.1 at ~< 32nd order, 

and 7 is even smaller at ~< 24th order. These singularities are substantially stronger 
than the ones observed at/3 = 6.0 on the 84 lattice, nevertheless they are still far from 
a pure-pole behaviour. On our present lattices the tunneling is probably weak, the 
expectation value of the periodically closed loops is zero, therefore the result of the 
ratio test is most probably due to the fact that our series are still not long enough to 
identify the nature of the singularities. (This holds, of course, even more for ref. [9].) 
The situation is made more difficult by the fact that in all channels more physical 
poles are expected to occur due to the radial excitations. The Pad6 analysis based on 
any finite series can never exactly decide between a series of poles and a cut. It can 
only give some hints, according to which we think that one can actually interpret the 
singularity structure on our present lattice as due to two stable poles corresponding 
to the ground state and the first radial excitation (see below). 

Let us turn now to the quantitative results. The nearest poles of the Pad6 
approximants are identified with the lowest-lying pseudoscalar ("Tr ") and vector 
("0")  mesons. The results are shown in figs. 1 and 2 for/3 = 5.4 and 5.7, respectively. 
The dimensionless mass ma is given for the 0-meson, while (m~a) 2 is plotted for the 
pion. The values represent the average of the pole positions in the 28th, 30th and 
32nd order Pad6 approximants.  The indicated error is a sum of the uncertainty 
coming from the Pad6 table and of the statistical error. The statistical error was 
estimated by dividing the configurations into four subsets and considering the four 
different mass values as independent measurements. 

As the figures show, for small mass values (m~a <~ 0.8) the pion mass-squared 
(m,~a) 2 is - in a very good approximation - a linear function of Kcr - K (Kcr is the 
hopping-parameter  value corresponding to a massless pion). Additionally, the Pad6 
table is reasonably stable even at (m, ,a)  2=  0.1, which leads to a rather precise 

* Note that the critical size depends on the shape: for a lattice much larger in three directions than in 
the fourth one the critical temperature size for/~ = 5.7 is Nt~ - 4. This shape dependence was first 
noticed by E. Kovacs in the SU(2) lattice gauge theory [20]. The above estimate for the critical size is 
based on our own measurement on an 8'* lattice, where the critical B-value turns out to be ,8 = 6.0. 
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Fig. 1. The mass-squared in the pseudoscalar channel and the mass in the vector-meson channel for 
fl = 5.4 near the critical value of the hopping parameter (Kcr), where the pion mass vanishes. Horizontal 

errorbars represent the estimated statistical errors and the errors coming from the Pad6 analysis. 

estimate for Kcr: 

gcr  (fl  = 5.4) = 0.1934 + 0.0005, 

Kcr (fl  = 5.7) = 0.1690 + 0.0005. (7) 

At the critical value K = Kcr, we obtain for the p-meson mass: 

mpa = 0.77 _ 0.05, fl = 5.4,  

c~ c o + O  12  mpa = u . J 0 _  0106 , fl = 5.7. (8) 

The asymmetric error on mpa at fl = 5.7 is due to the last point  (am = 0.7) where 
the p-pole can still be determined. This point  has, in our  data, a peculiar behaviour:  
there seems to be a systematic shift upwards  if the statistics is increased. This is best 
seen in the central part  of the Pad6 table for the highest orders, where both  
nominator  and denomina tor  are higher than, say, 6th order. The shift in K can be as 
much as A K -  0.002, but  decreasing the statistics leads to an increase in the error of 

the Pad6 analysis, therefore we cannot  really tell, whether this is a real effect or it is 
just  an accident. N o  such effect is seen for the pion pole, and at fl = 5.4 the effect 
is much weaker (if present at all). Since the physical value of  (arn~r) 2 is small, Ku, d is 
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very close to Kcr. Therefore mpa is essentially the same at K = Ku, a as at K = Kcr. 
Using the experimental value m o = 0.78 GeV we obtain for the lattice spacing: 

a = (0.99 +_ 0.06) GeV-1 = (0.2 + 0.01) fm, ,8 = 5.4, 

+ 0.16 - 1 + 0.03 a = (0.74_0.o8) GeV = (0.15_o.02) fm, f l =  5.7. (9) 

The change in the lattice unit a(5.4)= (1.34+°'~6)a(5.7) is consistent with the 
one-loop renormalization group requirement a(5.4)= 1.4a(5.7), but the errors are 
too large to draw a conclusion. The uncertainty comes mainly from the p channel, 
where the statistical and Pad6 errors are larger than that for the pion. On the other 
hand, the quark mass can be extracted using the pion curve only, leading to much 
smaller errors for this quantity. According to figs. 1 and 2, near K = Kcr we have 

( a m , )  2 - 45 ( K c , -  K ) ,  /3 = 5.4, 

(am~) 2 - 56 ( K c , -  K ) ,  /3 = 5.7. (10) 

From the relation amq - ( K c r  - K)/2K2c~ we obtain 

a(5.4) 45 Kcr(5.4) 2 mq(5.4) mq(5.4) 
. . . .  1.05 1.07. (11) 

a(5.7) 56 Kcr(5.7) 2 mq(5.7) mq(5.7) 

(arn,O ~ a m ~ ,  
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Fig. 2. The same as fig. 1 for fl = 5.7. Fo r  compar i son ,  the results  of Bowler  et al. [14] ob ta ined  on  an 
83 × 16 lat t ice are also shown. 
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Here, in the last step, we used that fl4/llmq(fl) is a renormalization group invariant 
quantity, which is a one-loop perturbative result [18]. The ratio between the lattice 
units obtained this way is considerably less than the required factor 1.4. The 
dimensionless quark mass seems to change too slowly as the function of the 
coupling. A similar conclusion was obtained by Fukugita et al. [13] in studying 
meson spectroscopy in SU(2) on smaller lattices. There is, however, a possibility that 
the rather ad hoc definition of the quark mass used above does not lead to a 
well-defined physical quantity. 

The lattice distance as given in eq. (9) is smaller than that obtained by measuring 
the string tension on the same gauge field configurations, eq. (6), [16]. On the other 
hand eq. (9) is consistent (via the one-loop RG formula) with the result a(fl = 6.0) - 
1/2.1 GeV-1  obtained by Lipps et al. [19] in a recent work on a 103 × 20 lattice. 
Clearly, the question of scaring and the relation between the pure gauge theory 
results and the quenched approximation requires further careful study. 

For comparison, the results obtained by Bowler et al. [14] on an 83 × 16 lattice at 
fl = 5.7 are also given in fig. 2. There is a perfect agreement in the pion channel, 
while the P masses are shifted to somewhat smaller values on the smaller lattice. A 
similar effect is observed by comparing our hopping-parameter results on 84 and 164 
lattices at fl = 5.7 (fig. 3): no difference can be seen in the pion channel, while the p 
masses move downwards when the lattice size is decreased. 

(am=)2 
I 

1.o ~ ,  

0.5 

13 = 5.70 
16 4 vs. 8 4 

amp [164)=Q62 t 0.10 

amp (84 ) =0 50 ~- 0.10 

-~-  2 164lattice, 24thorder 

--o-p E2]~ 84 lattice, 24thorder 

I a I 

0.15 0.16 
I 

o.17 K 

Fig. 3. The size dependence of pseudoscalar- and vector-meson masses between 8'* and 164 lattices for 
/3 = 5.7 obtained in a 24th-order hopping-parameter expansion. 
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The good agreement of the pion curve with ref. [14] (where the quark propagators 
were determined by a different, iterative method) implies that our 32nd-order series 
a t /3  = 5.7 is long enough to determine the meson masses with good accuracy (the 
situation is, of course, even better at /3 = 5.4). The numerical hopping-parameter 
expansion is competitive also from the practical point of view: a 32nd-order 
expansion on a 164 lattice takes at least one order of magnitude less computer time 
than the usual (e.g. Gauss-Seidel) numerical methods. A particularly nice feature of 
the hopping-parameter expansion method is that the complete hopping-parameter 
dependence (that is also flavour dependence) of the quark propagator is determined 
in one calculation. The price one has to pay for this is the large amount of data (few 
hundred Mbytes), which one has to move in building up the hadron propagators 
from quark propagators. 

Most of the Pad6 entries have also a second pole in both the pion and the rho 
channels. Especially at /3 = 5.7 these poles show a consistent pattern and their 
position is satisfactorily stable under changing the analysis (like leaving out a few 
terms at the beginning or at the end of the series). In particular, the zero in the Pad6 
table between the two poles is roughly in the middle, showing that the two poles 
have roughly the same strength. These features are rather different from the situation 
observed at /3 = 6.0 in 24th order on the 84 lattice in ref. [9]. There the position of 
the second pole is changing if the first few coefficients are omitted from the series 
and, in addition, the zero is at least 10 times closer to the first pole than to the 
second one (i.e. the second "pole"  is 10 times stronger). On the basis of these 
qualitative differences we think that the best interpretation of the singularity 
structure seen in [9] is indeed a cut, but on our present lattices it is tempting to 
interpret the two stable poles as describing the ground states and first radial 
excitations. The result is shown in fig. 4. Using eqs. (7, 8) one obtains for p' 

1 2 +0.2 amp, = • - 0.1, 

rnp,/mp = 2.07 +_ 0.45, (experiment: 2.05). (12) 

Knowing the value of a, it is possible to determine the hopping-parameter values for 
strange and charmed quarks from the masses of the e? and J/~p mesons, respectively: 

,~K s = ( ' l  1 1 q ~  + 0 ' 0 0 2  ~ / ( c  = f l  1 1 ~  + 0 . 0 0 8  
v . l v J  0 . 0 0 6 ,  v . ~ J  0 . 0 1 6 "  (13) 

Comparing the positions of the first and second poles in the 1 channel this gives 

m~,/m~, = 1.85 _+ 0.15, (experiment: 1.65 or 1.81), 

m~,/m~ = 1.21 + 0.05, (experiment: 1.22). (14) 
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Fig. 4. The ground states and first radial excitations in the 0 - -  and 1- -channe ls  at fl = 5.7. The 
hopping-parameter values Ks(c) for strange (charmed) quarks are shown by vertical lines. 

Note that in fig. 4 the first radial excitations in the vector and pseudoscalar channels 
nearly coincide. This may be a property of the quenched approximation. 

4. Conclusions 

As is described in this paper, by using a well-organized input-output procedure, a 
high-order numerical hopping-parameter expansion can be obtained on large (164 or 
larger) gauge field configurations. For a 32nd-order expansion the required com- 
puter time is much less ( -  by an order of magnitude) than that required by direct 
numerical inversion methods. At the expense of CPU time, the order of the 
expansion can be increased, since the time increases as a power of the order and not 
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exponent ia l ly* .  At  t3 = 5.7 the 32nd-order  series is long enough for the accurate  

de t e rmina t ion  of meson masses.  I t  may,  however,  be that  at l a rge r /3  (e.g. /3 = 6.0) 

still higher  orders  are required.  

W e  have s tudied  the meson spec t rum at ]~ = 5.4 and  5.7 on a 16 4 lattice. As  the 

phys ica l  size of the lat t ice is large, no signif icant  finite size effects are expected in 

this case. 
In  the p ion  channel  the errors  (coming f rom the Pad6 analysis  and  f rom the 

s ta t is t ical  f luctuat ions)  are  small  and  the cri t ical  hopp ing  p a r a m e t e r  is de te rmined  

with  a good  precis ion.  In  the 0-meson channel  the errors are  larger which is ref lected 

in the uncer ta in ty  of the p red ic t ion  of  the la t t ice  uni t  a at /3 = 5.4 and 5.7. This  

p red ic t ion  is consis tent  with the one- loop  renormal iza t ion  group formula,  bu t  the 

errors  are large and  the values are smal ler  than  the str ing tension predic t ions .  

A t / 3  = 5.7 we observed  some sys temat ic  shift  in the centra l  value of the 0 mass  if 

the stat ist ics was increased.  W e  do not  unde r s t and  this phenomenon ,  it might  be  a 

numer ica l  accident .  

A t  B = 5.7 we c o m p a r e d  our  results  with those ob ta ined  on smal ler  (84 or  83 × 16) 

latt ices.  The  p ion  does  not  show finite-size effects, while the 0 mass  values are 

shif ted to somewha t  smal ler  values as the lat t ice is halved.  

A second s table  pole  showed up clearly in many  Pad6's  and  we a t t empted  to 

de te rmine  the first rad ia l  exci tat ions.  The  numbers  are be t te r  than  expected.  
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