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The 0-  and 1 - meson masses are calculated in SU(2) lattice gauge theory at 13 -- 2.3 with Wilson fermions on a 104 lat- 
tice. The calculation is based on a 32nd order hopping parameter expansion. The fermion determinant can be taken into 
account for quark masses heavier than ~600 MeV. For lighter quarks only an estimate is given due to the limitations of 
statistics. 

An important  step in the numerical evaluation of  
latt ice QCD [1 ] is the calculation of  hadron masses. 
In the first at tempts of  hadron spectrum calculation 
[ 2 - 4 ]  the effect of  dynamical  (virtual) quark loops 
was neglected ("quenched- or "valence"-approxima- 
tion). From the point  of  view of  numerical computa- 
tion this is an important  simplification, because the 
virtual quark loops are contained in the "fermion de- 
terminant"  which is very hard to take into account 
in the Monte Carlo updating procedure. It turned out 
that the results in the quenched approximation are 

quite reasonable, especially in the recent calculations 
done on larger lattices [5,6]. This implies that the ef- 
fect o f  dynamical quarks on the hadron masses can- 
not  be very large. Nevertheless, it is obviously impor- 
tant to check this point  in a calculation taking into ac- 
count the fermion determinant.  A first step in this di- 
rection was a recent calculation at negative flavour 
numbers (that is, replacing fermionic quarks by boson- 
ic quarks in the determinant)  [7], which showed only 
small changes in the hadron mass ratios, indeed. The 
extrapolat ion to the physical flavour number is, how- 
ever, non-trivial and was, up to now, not at tempted.  

The quark determinant can be taken into account 
by several methods like the pseudo-fermion method 
[8], stochastic method [9] or the method of  hopping 

1 Supported by Bundesministerium for Forschung und Tech- 
nologie, Bonn, Fed. Rep. Germany. 

parameter expansion [10,11]. In fact, in the 10th or- 
der hopping parameter expansion of  ref. [11 ] the 
quark determinant was included. Its effect on the 
hadron masses was shown to be small, but a 10th order 
expansion is obviously too low for drawing a firm con- 
clusion. By the use of  the iterative method [ 12,6] the 

hopping parameter expansion can, however, be extend- 
ed to much higher orders. 

In the present letter a first calculation of  meson 
masses is reported including the effect of  virtual quark 
loops in a high (32nd) order hopping parameter expan- 
sion. For dealing with the fermion determinant the 
experience gained in a recent calculation of  the screen- 
ed quark-an t iquark  potential  [13 ] was important .  In 
fact, the 20 SU(2) gauge configurations on 104 lattices 
are identical to those used in ref. [13] for the measure- 
ment of Wilson loops. 

The hopping parameter  expansion coefficients of  
the meson propagators were determined in the "perio- 
dic box"  as described in ref. [12], that is, imposing 
periodic boundary conditions on both the gauge- and 
quark fields. This does not allow to search directly 
for particle poles at real energy values as in the "copied 
gauge field method"  [11,12], because the periodicity 
of  the quark fields is strongly reflected in the expan- 
sion coefficients and this restricts the momentum val- 
ues to discrete euclidean points. Therefore, I first cal- 
culated the values of  meson propagators for euclidean 

momenta  aPl,2,3 = 0, aP4 = rill5 (l = 0, -+1 . . . . .  -+5) 
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corresponding to periodicity. At a given hopping pa- 
rameter (K) the Pad6 table obtained from the expan- 
sion coefficients was used to calculate the amplitude 
and the resulting values were Fourier transformed to 
configuration space in order to determine the time 
slices of  meson propagators. The masses were then ex- 
tracted, as usual, from the exponential fall-off at the 
largest distances. Because o f  the statistical errors on 
time slices, it turned out necessary to average first 
order the 24th to 32nd order Pad6 approximants and 
determine the masses from the averages. (A similar 
method was used also in ref. [14].) The hopping param- 
eter expansion coefficients of  meson propagators were 
calculated upon 32nd order from 5 initial points on 
each of  the 20 configurations and, in order to increase 
the lower statistical accuracy of  the low order coeffi- 
cients, up to 24th order from another 20 initial points. 
These 25 initial points per configuration were select- 
ed randomly from the points of  the 104 lattice. The 
SU(2) gauge configurations themselves were created 
by the Metropolis updating method. In 5 independent 
streams of  configurations the consecutive ones were 
separated by 50 sweeps with 3 hits per link. 

The calculation of  the quark determinant in the 
32rid order hopping parameter expansion was done in 
the same way as in ref. [13]. Let us recall that the 
quark part of  the Wilson action is 

Sf= ~x ("~x~x -K ~_l'~x+~aU[x, Id](l +"f#)~x) 

x,y 
Here fix, ~x denote the anticommuting quark fields. 
on the lattice pointx,  U[x,/a] is the gauge field variable 
sitting on the l inkx ~ x  + ~ (/a = -+1, +2 . . . . .  +4) and 
"Yu = -~/-u are hermitian Dirac-matrices. Writing the 
"quark matrix" as Q-= 1 - KM, the hopping parameter 
expansion of  the quark determinant can be written (for 
one quark flavour) as 

det Q = det(1 - KM) 

e ~  

= exp -7-- 

Here the trace-sum over lattice points is explicitly writ- 
ten out, therefore Tr(. . .)  means only colour-and Dirac- 
traces. The hopping matrix Mxlx2 is according to eq. 
(1) 

Mx,x2 = ~ (1 + "y~)U[x, u]8~,,x+~Sx, x2 (3) 
X, bt 

The first non-vanishing term (j  = 4) in the hopping 
expansion of  the effective action Sq ff parameter 

~- - I n  det Q has the same form as the pure gauge 
Wilson action. After performing the Dirac-trace calcu- 
lation this term looks like 

Sq ff (j = 4) = - 1 6  K 4 ~ Tr Uc3 . (4) 
[] 

Here ~[] denotes a sum over plaquettes. Sq ff (j = 4) 
can be included in the pure gauge action by a shift AI3 
= 32 K 4 (13 = 4/g2). The Monte Carlo updating of the 
gauge configurations was done in our case at a fixed 
value 13 = 2.3, therefore the omission of  t h e / =  4 term 
in S eff means, that the calculation is performed at a 

K-dependent value of  the gauge coupling constant 

/~K = 2.3 -- 32 K 4 . (S) 

At {3 = 2.3, ~q"eff~ .~.l = 4) takes into account a substantial 
of  the quark effective action Serf. (A further im- part 

provement in this direction would be to include also 
the ] = 6 term in eq. (2) in the updating.) 

The sum Y'x over the lattice points for the rest 

s e f f  - • S q f f  ,-,eft - • q U~>6)  - - - ' )q  (1 =4 )  (6) 

of  the effective action is evaluated only approximately 
by choosing a random sample of  300 points (out of  
the 10 000) on every configuration. As noted in ref. 
[13 ], in the expectation values only the deviation of 

S q  f f  (1" ~ 6) from its average [S-~ f f  (]" ~> 6)] appears, 
therefore one has to determine the expansion coeffi- 
cients of  

ASq ff ( / ~  6) -- _qS eff ( / ~  6) _ -q'~eff ( / />  6) . (7) 

On a given configuration these are then used to calcu- 
late, for different hopping parameters, the value of  

det 6 (AQ) -= exp [-zSS~ ff (/"/> 6)]. (8) 

In the interesting range K ~< 0.15 usually a good value 
is obtained for AS~ ff (] ~ 6) already from the 32nd 
order series. This can, however, be further improved 
by taking, instead of  the series, some of  the highest 
order central Pad6-approximants. The expectation val- 
ue of  some quantity F is then given as a weighted aver- 
age over the configurations: 
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EU F[U] det 6 (AQ[U])  

( F ) =  ~]U det6 (AQ[U])  (9) 

The main l imitat ion of  the present method comes 
from the fact that the range of  values of  det6(AQ ) 
becomes larger for increasing hopping parameters (and 
hence for lighter quarks). Therefore, in eq. (8) at large 
K only very few configurations give a substantial con- 
tr ibution.  As a consequence, the statistics become 
very poor.  In the present case this limits the hopping 
parameter  values to K ~ 0.145, where the pion mass 
is greater than ~1 (in latt ice units). 

Before discussing the effects of virtual quark loops, 
let us consider the 0 -  and 1-  meson masses for/3 
= 2.3 in the quenched approximat ion (that is, replacing 
det Q by 1). The 20- 5 = 100 32nd order initial points 
plus the 20" 20 = 400 24th order initial points repre- 
sent, in this case, a very good statistics. The obtained 
masses are shown in fig. 1. For  the critical value of  the 
hopping parameter  (Kcr), where the pion mass vanish- 
es, a linear extrapolat ion o f  (am~r)2 to zero gives 

Kcr = 0.156 + 0.002 . (10) 

am 

SU(2) 
quenched 

2.C ~= 2.30 

P 

' I% 

1.0 

\k 
amp =0.62 "-0.12 ~ \ ~  -~ 

+ 
(am~) \\ 

\\ 

i i i i I , I i 

Q12 0.13 0.1/. 0.15 Kcr 0.16 ~- 

Fi B. 1. The lr- and p-meson masses as a function of  the hopping 
parameter K in the quenched approximation at/3 = 2.3. The 
dashed line with open squares is the linear extrapolat ion of  
(am~r) 2 to zero. The p-meson mass is extrapolated linearly 
f rom the last measurable points to K = Kcr. 

At this K-value the p-meson mass is 

amp = 0.62 -+ 0 .12 .  (11) 

From the physical p-meson mass it follows 

a(Nf = 0,13= 2.3)= (0.80_+ 0.16)GeV -1 ~ 0.16 f m .  

This value has to be compared to the one obtained 
from the string tension: a ~ 1.1 GeV -1 [15,16]. There- 
fore, the meson masses give a smaller physical lattice 
spacing than the string tension, similarly to the recent 
calculations in SU(3) on large lattices [5,6]. (Note 
that the correlation length at ~3 = 2.3 is roughly equal 
to la,  similarly to/3 = 5.7 in SU(3) considered in 
ref. [6]. An earlier SU(2) calculation on a smaller (53 

+ 0 002 × 10) lattice [17] gave at ~ = 2.3 Kcr = 0.162 0.'001 
and amp = 0.80 -+ 0.08.) 

The result for the 7r- and p-meson masses, which is 
obtained by applying eq. (9) to the hopping parameter 
expansion coefficients, is shown in fig. 2. As discussed 

aITi 

10 

SU(2) 
~ N~,=I 

8K =23-32K4 

~ ~  p(Nt =0 ' 13=13K) 

"",C\ 

(Nf=l, 13 = IBK) 

0.13 0.14 0.15 K 

Fig. 2. The 7r- and o-meson masses for one flavour (Nf = 1) in 
the quark determinant at a K-dependent 0-value j3 =/3 K ---- 2.3 - 
32 K 4 (full lines). For comparison, the curves in fig. 1 are 
shown by dashed lines (Nf = 0 and/3 = 2.3). The dashed-dotted 
line is an estimate of the o-meson mass at ~3 = 13 K. (The shift 
from/3 = 2.3 is estimated by using the H-dependence measured 
in ref. [ 17 ].) 
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before, the gauge coupling constant depends on the 
hopping parameter  according to eq. (5). In order to 
see the net effect of  the quark determinant one should 
compare the results to the masses in the quenched ap- 
proximat ion at the same coupling constant value, that 
is at/3 = 2 . 3 - 3 2  K 4. This can be done by shifting the 
/3 = 2.3 curves in fig. 1 by  an amount corresponding to 
the small shift in/3. A possibility is to use the results 
at/3 = 2.2, 2.3, 2.4 obtained by Fukuta  et al. [17]. 
(See fig. 2.) 

The present method does not allow to go with the 
quark determinant calculation to K-values above K 

0.145. This roughly corresponds to a bare quark 
mass mq ~ 0.6 GeV. The only possibility is to try some 
extrapolat ion.  An (ad hoc) linear extrapolat ion of  the 
deviation from the Nf = 0,/3 = 2.3 curve gives for the 
critical K-value 

Kcr (N  f = 1,/3 =/3K) "~ 0 .154 .  (13) 

The O-Tr mass splitting (in lattice units) is in the mea- 
sured points almost equal to the quenched O-Zr mass 
splitting at/3 = 2.3 (see fig. 2). This gives for the ratios 
of  lattice spacings (extrapolated to zero quark mass): 

a(Nf = 1,/3 =/3K)/a(Nf = 0,/3 = 2.3) = 0.9 + 0 .4 .  (14) 

Using the perturbative ratios of  SU(2) A-parameters 
[18,19]: 

Am(Nf 0) /A(Nf = 0) A (Nf = 1 ) tA (Nf = 1 ) = 61.4 
om /~,latt = 57.4 , --rnom /L~latt (15) 

Eq. (14) impiies, with large errors 

A(Nf=I)/A (Nf=0) ~ 0.7 (16) 
morn ," "room 

The direction of  shift o f  the critical K-value given 
by  eqs. (10), (13) is opposite to the one observed by 
Daffy et al. [7] a t N f  = - 2  [in SU(3)]. This is, there- 
fore, consistent with the simplest flavour extrapola- 
tion, although a linear extrapolat ion in Nf seems gener- 
ally not allowed [13]. The other observation in ref. 
[7] is the antiscreening of  the wave functions at the 
origin for negative flavour numbers. The expected 
screening for positive Nf would mean that,  for in- 
stance, the vector meson coupling constant fv - I  , defin- 
ed by 

( 0 1 " ~ ( 0 ) 7 ~ ( 0 ) [  v ( p ,  o)) = (m2/fv)e~(p, o), (17) 

should become smaller. This tendency is confirmed by 
the present calculation, although the measured effect 
(for K ~< 0.145) is not large. For instance, at Nf = 0,/3 
= 2.3 and K = 0.145 we have f - 1  ~ 0.19, whereas for 

Nf = 1,/3 =/3 K and K = 0.145 the result i s f S  1 ~--0.16. 
Due to the increase O f f v  1 as a function of  K, if 
extrapolated to K = Kcr, this value is still somewhat 
(about a factor 1.3) larger than the measured one: 
fo -1 (experimental) = 0.19. 

All the above estimates apply, of  course, to the 
theoretical world with SU(2) colour and Nf = 1 light 
flavour. Using the experience gained during these cal- 
culations, the physical case with SU(3) colour and Nf 
= 2 or 3 seems, however, entirely within reach. I hope 
to complete this calculation in the near future. 

It is a pleasure to thank P. Hasenfratz and H. Joos 
for discussions. I am grateful to the DESY computer  
division for kindly support ing this calculation, which 
took about 150 hours CPU time on the IBM 3081. 
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