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We apply the Dirac-KNaler formalism to the two dimensional Wess-Zumino N = 2 model. On the hamiltonian lattice 
the model exhibits invariance under a lattice subalgebra of supersymmetry. We also describe the euclidean space-time lat- 
tice version of this model with the action invariant under the supersymmetry transformations which have the correct con- 
tinuum hmit. 

The problem of constructing a supersymmetric 
theory on the lattice has been the subject of some re- 
cent articles [1-4]  ,1,2 with the special attention to 
the two dimensional Wess-Zumino theory. The auth- 
ors of refs. [2 -4 ]  make use of the Nicolai mapping as 
a tool for the formulation of supersymmetric euclidean 
actions on the space-t ime lattice, while in refs. [1,4] 
use is made of geometric fermions, in the sense of 
Dirac-Kghler formalism, in order to obtain hamilton- 

ians on the space lattice. 
The purpose of the present letter is to write down 

an explicit Dirac-K/ihler ( D - K )  model for the super- 
symmetric N = 2 Wess-Zumino (W-Z)  two dimen- 
sional theory. We shall write down the lagrangian and 
the corresponding differential equations in differential 
form. From these we obtain the conserved supersym- 
metric currents and extend these considerations to the 
space-t ime lattice. For this purpose we shall use ex- 

1 Supported by the German Academic Exchange Service 
(DAAD). 

2 Supported by FINEP (Brazil) and FAPESP (S'ffo Paulo-Brazil). 
,1 For the earlier attempts see the references quoted in ref. [ 1 ]. 
,2 Ref. [2] has a rather complete list of references. 

tensively the differential approach to the Dirac equa- 
tions developed in ref. [5]. 

We have found that, in our D - K  model, it is pos- 
sible to have an action in the space-t ime lattice which 
is invariant under the supersymmetric transformations 
(as defined below) with some harmless additional lat- 
tice terms. In the continuum limit the action repro- 
duces the correct continuum action. The role of the 
additional terms is merely restricted to preserve the 

invariance under supersymmetry transformations 
without violating the Osterwalder Schrader positivity 

condition. 
In the hamiltonian approach (with time contin- 

uous) the hamiltonian operator can be introduced as 
the square of the discretized supercharges. This leads 
however to the additional, surface lattice terms which 
become total derivatives in the naive cont inuum limit. 
This feature is typical for the so-called lattice sub-alge- 
bra of the supersymmetry algebra [1,2]. 

We shall firstly formulate our model in the two di- 
mensional Minkowski space with the mapping [5] 

7u ~ d x U v  (1) 

(v = Clifford product), where we choose 3, 2 = o 2 and 
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T 1 = io 1 (Ol, a 2 are the Pauli matrices; our time index 
is denoted by 2). We will assume that in our D - X  
model the fermions are described by the differential 
forms: 

(d - 8 )~  = -14/"* I f '  

- - i ~ o [ q ~ * v d x 2 v ~ v ( d x 1 2 - 1 ) v d x  2] W"'* , (8) 

q~=fo  + ( f u v / 2 ! ) d x U A d x V = f o  + f l 2 d x l 2 ,  (2) ( d - 8 ) t P ' = ~ d x 2 v q 2 v ( d x l 2 +  l ) W  " 

~ij* * f ~  * * = f 0  + ( v / 2 O d x  u A d x  v = f O + f l 2  dx12 ,  (3) 
/ 

with/2, v = 1,2,  dx 12 = dx 1 A dx 2 a n d f ; , f l 2  denot- 
ing the complex conjugates of  the Grassmann variables 
f0 , f l2"  We will impose the following equal t ime anti- 
comutation relations: 

{ f o ( X ) , f o ( y ) )  = * • { f l 2 ( x ) , f l 2 ( Y ) )  = "~8(x - y ) ,  

{ f0 , f l 2}  = { f 0 , f l 2  ) = { f0 , f l 2}  = { f 0 , f l 2  ) = 0 .  
(4) 

The boson field is assumed to be described by the 
differential forms: 

g,---soudxU cb* = * , soudxU (5) 

where 

SOu = 3uso , SOu = 3uso (6) 

and SO* is the complex conjugate of  the complex scalar 
field. 

We shall propose the following lagrangian density: 

O =  5% [gp* v cI,+2i~* v ( d - 8 ) d x Z v ~ - W ' * W  ' 

- i ~ * v  d x 2 v  ~ v (dx  12 + 1 ) v d x 2 W  '' 

- i@*V d x 2 v  ~ v ( d x  12 - 1 ) v d x 2 W  ''*] , (7) 

where W depends only on the scalar field SO and W* 
only on so • 

5~ 0 projects zero form components from the above 
Clifford products, and W' = dW/dso, W" = d2W/dso 2, 
W'* = dW*/dso*, W"* = d2W*/dso .2  etc. 

It is easy to see that, by  making the identification 
X1 =f0  +f12,  X2 =f0  - f 1 2 ,  which are the compo- 
nents of  a spinor in two dimensions, our lagrangian (7) 
corresponds exactly to the usual N = 2 Wess-Zumino 
model in two dimensions. Let us observe that these 
two components,  in the notation of ref. [5],  have dif- 
ferent flavours. 

From (7) we obtain the following D - K  equations: 

1 - 1 ) W " *  , + ~dx 2 v • v ( d x  12 (9) 

where we have introduced q / =  dx 2 v ~ v d x  2 = qsqJ 
=f0 - f 1 2  dx l2 ,  ~ being the antiautomorphism de- 
fined in ref. [5]. In components,  eq. (9) write as: 

(~1 + ~2)( f0  +f12)  = - - ( f0  - f 1 2 )  W''* ' 

(oj - ~2) ( fo  - f~2)  = - ( ; 0  +; j2)w".  (10) 

Consider now the 1 scalar product of  K~hler [5],  
constructed from the boson and fermion differential 
form (~,  ~ ' )1" By making use of  the identity [5] : 

d(xl', xI/)l = [ ( d -  6)q~, xP']0 + [ ~ , ( d -  6)xP']0 (11) 

it follows after use of  eqs. (8) and (9): 

½d [(~, ~ ' )1  + ( ~ ' ,  ¢~)1] 

[-w"*WTo ' = + ~(~ + ~2) ( fo  +I~2)  w' '  

1 
+ ~(SOl -- SO2)(f0 - / 1 2 )  W"* ] e ,  (12) 

1 where e = -~euvdxU A d x  v denotes the volume element 
(our convention is el2 = -e21 = 1). 

Now our lagrangian (7), or the corresponding equa- 
tions (8) and (9) are invariant under the "dual trans- 
formations": 

xP-+ ~ = qJ v d x  2 (or fo "~,/12) , 

W" -+ - W '' W"* -+ - W"* SO -+ -SO "~ -SO , 

W'-+ W' , W'* -+ W'*. (13) 

Therefore we obtain the dual relation of (12) by 
making the substitutions (13): 
1 ~ t - ' - - - .o  

[O', ,I, 31 + ('I", ~')i 1 

[W"* W'f l  2 1 = + ~(SOl + SOz)(f0 +/12)  w' '  

1 (14) -- ~(~01 -- SO2)(f0 - f12) W'* ] e .  

Adding expressions (12) and (14) we obtain: 
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d[~(~b,q/) l  ' , , ~ " ~ ,  , + ~(@', qb)l +~(dp, @ )1 + ~ ( ~ ,  ~)  6 * 9 = - i ( f ~ - f ~ 2 )  , 8 * 9 * = 0 ,  

5 9 = 0 ,  

~f0 = 0 ,  

8fl 2 = 0 ,  

By Q': 

~ t  - W'(xI,' - ~ ) v d x  2] = O, (15) 

where use was made of  the relation: 

d(W'@'v dx 2) - d(W"~' v dx 2) 

= ( f 0  + f 1 2 ) ( ~ l  + 0 2 ) W '  - W'W"*(fo - f 1 2 )  , 
(16) 

which follows from the equation of  motion (10). 
From the expression (15) it follows that we have a 

conserved supercurrent with components: 

/1 = (91 + ¢P2)(fo - f12) + ( f o  +f12) W'' 

-/2 =(91 + 92) ( f0  - f 1 2 )  - ( f 0  +f12) W' '  (17) 

If instead of  ~ in expression (15) we use q~*, we 
shall obtain in a similar way a conserved supercurrent 
with components: 
, t  

]1 = (9~ -- 9~)( f0  +f12) + ( f0  -- f12) W'* ' 

• ? ~ * f t *  ]2  - - (91  --  ~0~) ( f0  + f 1 2 )  + ( f 0  -- 12)  W • ( 1 8 )  

The complex conjugates of (17) and (18) also give 
• , *  . *  

conserved supercurrent with components] l  ,I 2 and 
, t *  . ? *  

]1 ,]2 • Integrating over the space the time compo- 
nents of  these currents we obtain the corresponding 
charges Q, Q', Q* and Q'*, which will induce on the 
field components (after the use of expressions (4) and 
the corresponding equal time commutators for the 
boson field) the following transformations: 
By Q: 

&P* = - - i ( fo  - f12 ) ,  

' ' w '  =~(~q+~o 2 ) - ~  , 

8fl, 2 1 • 0 9 )  

8'9 = - i ( f  0 + f 1 2 ) ,  ~'9" = 0 ,  

8 , f 0 = 0  8,f~ = 1 * *) iRt,* , - ~ ( 9 1 - 9 2  + 2 -  , 

1 • • 1 W'* * * ~*fo =~(~Pl + 9 2 ) - - ~  , 8 f o  = 0 ,  

= 1 * * 1 W'* 8*f* 6"f12 - ~ ( 9 1  + 9 2 ) - ~  , 12 = 0 '  

By Q'* : 

fi'*9 = O, 8'*~.0" = - - i ( f g  +fl*2), 

(21) 

6'*)c0 = 1 I W' ,  '* * , - - ~ ( 9 1 - - 9 2 ) + ~  5 f 0 = 0  

12 ~(q01 --tpZ) - 1 W '  8 '*f* --  , 12 = 0 ( 2 2 )  

69 = [Q,9] , 8 f0=  {a,fo), etc. 
Now let us go to the euclidean formulation. Corre- 

sponding to (7) we find the following euclidean 
lagrangian density: 

~ Z  = 90  [~* v ~I, + W'* W' + 2,I,* v (d  - 8 )  d x  2 v q,  

+ '~*v d x 2 v  xI, v(1 - idx'2)vdx2W" 

+ ~ I ' * v d x 2 v @ v ( 1  +idx'2)vdx2W ''*] . (23) 

Here the mapping (I)  corresponds to the following 
choice of  the hermitian euclidean matrices: 3 '0 = 02, 
3" = o l .  Now we can write the euclidean action defined 
on a space-time discrete euclidean lattice: 

S E G + * + = (Au9 A~¢ + W'* W' 
X 1 , X 2  

+ 2f~( -A~-f l  2 + A2f0)  + 2fl*2(A~f 0 + A~f12) 

+ [f*ofo --f;2f12 + i f~ f12  + i f ; 2  f0] W" 

+ [f~fo -- f ;2f12 -- i f ~ f l 2  --ifi*2f01 W"*}. (24) 

This expression was obtained from (23) after the 
substitution d --> A +, 5 -+ A - ,  where A + corresponds 
to the boundary operator 2~ and A -  to the cobounda- 
ry operator ~ of  ref. [5].  

The equations of motion which follow from (24) 
are 

1 

A2-f0 -- A l f l 2  = -- ~ [(f0 + if l2)W" + ( f 2  - i f l 2 )  W"* ] 

8'fl  2 = 0 , 

By Q* : 

~'f;2 = 1 * * 1 14/'* - -  5 ( 9 1  - 9 2 )  - ~ • ( 2 0 )  (25a) 

+ + _ 1 -  
Alf0  + A2f12 - -- ~l[(f0 + i f l2)W"-(fo -i.f12)W"* ] , 

(25b) 
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- + * = W ' *  W "  W ' "  , A u zXuS 0 + [ ] (26a) 

+ = W"* W' W'"* . a~ AuS O + [ ] (26b) 

Where the [ ] which multiplies W"' in (26a) is the 
same which multiplies W" in expression (24). Corre- 
spondingly the [ ] which multiplies W .... in (26b) is 
the same which multiplies W"* in (24). 

These equations of motion are free from the prob- 
lem of energy doubling. 

In order to obtain the euclidean lattice version of 
supersymmetry transformations (19)-(22) we first 
transcribe them to euclidean metric by making the 
substitution A 2 -+ --iA 2,f12 -+ ifl2, 

W ' + i W ' ,  fl*2-+--ifl*2, W'* ~ - i W ' * ,  (27) 

and then discretize by requiring the kinetic part o rS  E 
to be invariant. This procedure leads uniquely to the 
following supersymmetry transformations 

8SO* = i ( f  0 i l l2)  8 f ~ - 1  - " W ' ,  - , --~(k 1 - iA~-)SO -- 7x 

8 s ; 2 =  , .  + iA )So I , --71(A1 -- +sW ; (19') 

, * = 1 -+IA2)SO _ l i w , *  6'SO = i ( f  0+i/12) ,  6 f  0 - ~ ( A  1 

t * = 1 - + + * 1 i M t *  . 
6f12 - ~ l ( A  1 +iA2)SO - 7 _  , (20') 

• * * * I • + * 
6 S o = i ( f o + i f l 2 )  , ~ f0=~(al -1A2)SO +1iW'2 

• _ 1 - + * 1 I A ] ~ *  . T12-21(AI --iA2)SO + 2 -  ' (21') 

• * t *  _ 1 - -  + .  + 1 • t 

8'*SO* = i ( f ; - - l f l 2 )  , 8 f 0 - - - ~ ( A 1  1A2)SO+~IW , 

, *  - -  1 . + 1 W; 6 / 12  -'ia(A1 + iA2)SO - 7 ; (22') 

where only non-zero terms were written. It turns out 
that the new euclidean action defined as 

SE+ ~ [iW'*(-Af+iA~)SO+iW'(Af+iA~)SO*] , 
Xl ,X2  

(28) 

where S E is given by (24) and A A = 1 + ~ ( a  I - A1) 
1 + - (a lattice spacing), is left invariant under =a~AiA 1 

all four supersymmetry transformations (19')-(22') .  
Clearly in the limit a -+ 0 the action reduces to the cor- 
rect continuum action for the N = 2 Wess-Zumino 
model. 

Moreover (28) possesses invariance under the parity 

and time reflection and therefore satisfies the 
Osterwalder-Schrader positivity condition [6]. 

We note, that for the continuous time and discrete 
space the supersymmetry transformations (19)-(22) 

_ + 
with SOl = Ai-~° when multiplied by f0 and SOl - AlS° 
when multiplied by f12, will follow from the form of 
the charges Q, Q', Q* and Q'* and the equal time ca- 
nonical commutation relations for the boson field and 
the relations (4) for the fermion field. In this case it is 
possible to define a hamiltonian corresponding to the 
lagrangian density (7) given by: 

H = ~  9g = ~ B  + ~ F ,  (29) 
X X X 

where the sum extends over the lattice points and 
where 

~B  = (AIA)2+(a2A)2 +(A~B)2+(a2B)2 + U2 + V2,  
(30a) 

6U 
9@ = --4ia0Alal2 -- 4i/30~1/312 + 4i ~-~ a0c~12 

~ . 6 V  _ . . S U  8 V  
- ,+1~- a0/J 0 + 41 ~-~/312c~12 - 4i ~/312/30 , (30b) 

where we introduced the definitions: SO = A + iB, f0 
= %  + i30,f12 =a12 + i/312, W'= U+ iV. The hamil- 
tonian (30) is not any more invariant under the super- 
symmetric transformations (19)-(22) on the space 
lattice, giving rise to the different lattice surface terms. 
Separating the supercharges Q, Q', Q*, Q'* into its 
real and imaginary parts Q = Q1 + iQ2, Q' = Q1 +iQ~, 

t t 

and defining ql = Q1 + Q1, q2 = Q2 + Q2, q3 = Q1 
# t . 

- Q1, q4 = Q2 - Q2, it is possible to show that 

2q 2 =2q2 = ~  ( ~ + U A - ~ A  - V A 1 B ) ,  (31a) 
X 

2 q 2 = 2 q 4 = ~ ( g d - U A 1 A + V A + I B  ) . (31b) 
X 

We see therefore that in expressions (3 la) and 
(31 b) we have two different classes of hamiltonian on 
the space lattice, differing in the surface lattice terms. 
Going to the space continuum these hamiltonians coin- 
cide. 

In the space lattice it holds: 
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{ q l , q 4 ) = - - { q 2 , q 3  } 

= [V(x)A]A(x)  + U(x)A]B(x)] 
x 

' "  ~ )  (W'A~ W'*A]~o*), (32) = -:I ~o - 
X 

s I + with A 1 = ~(A 1 + A1)  which goes to zero in the con- 
t inuum limit. In this limit we also have 

{ q l , q 3 }  = (q2,  q4} = P  (33) 

where P is the momentum operator of  the system. In- 

troducing now Q1 = q l  - q3 '  Q1 = ql  + q3 '  Q12 
= q2 - q4 '  Q2 = q2 + q4 '  in the continuum s p a c e -  
t ime, (31a), (31b),  (32) and (33) can be written as: 

{Q2, Qb } = 26ab(6c,3H _ ( o 3 ) ~ p )  ' (34) 

a, b = 1 ,2  and a,  13 = 1 ,2 .  Finally, in a way similar to 
ref. [2] ,  we can consider the operator  

T = ~ [ao(X)/30(x ) + Oqz(X)/312(x)] . 
x 

It is simple to see that [T, q l ]  = ~q2,  [T, q2] = q l ,  
and therefore T is the generator o f  an 0 2 group in the 
space (q l ,  q2)" Similarly T is also a generator of  an 0 2 
group in the space (q3, q4), since [T, q3] = - q 4  and 
[T, q4] = q3" Therefore the two classes (q l ,  q2) and 
(q3, q4) are on the same footing, although on the 

space lattice we cannot consider them simultaneously 
because of  expression (32) and (33). Since T makes 

the changes a 0 ~ 3 0 , 3 0  ~ - a 0 ,  °q2 ~/312 and/312 
-+ - ~ 1 2 ,  we see that it leaves the lattice hamiltonians 
(30a) and (30b) invariant. 

In conclusion we have succeeded in constructing a 
D - K  model,  for the two dimensional Wess-Zumino  
N = 2 lagrangian, which when extended to the s p a c e -  
time lattice presents some nice features. Evidently oth- 
er D - K  models can be constructed for the N = 2 two 
dimensional Wess-Zumino lagrangian and which will 
present similar interesting properties. 

We thank Professor H. Joos for the suggestion of  
the topic o f  the present research, for his constant 
advice and interest. To the Desy Theory Group our 
thanks for their kind hospitali ty.  
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