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We investigate the structure of classical models of confinement by analytic methods. The 
models considered involve just one abelian gauge field and can be viewed as non-linear versions 
of Maxwell's theory. We study in detail the case of two opposite static point charges. A scaling 
law is found for small separations of the charges, while a perturbation treatment is developed for 
large separations. The results obtained for large separations include an exact evaluation of the first 
correction term to the linear potential and a classification of the asymptotic field configurations. 

1. Introduction 

For  some years there have been  a t tempts  to construct  classical models  as possible 

approximat ions  to Yang-Mi l l s  theory.  Examples  of such at tempts  can be found in 

ref. [1]. For  a recent  review see Ad le r  and  Piran [2]. 

Mot iva ted  by these authors,  we investigate with analytic methods  a class of models  

involving just  one abel ian  gauge field. Since we are primari ly in teres ted in the case 

of large separat ion of static charges, the approach consists mainly  of s tudying the 

asymptot ic  behaviour  of the classical field equat ions.  Because of the non- l inear i ty  

of these equat ions,  the first step is to derive a sui table ze ro th-order  approximat ion .  

Star t ing with this ze ro th -order  approximat ion ,  pe r tu rba t ion  calculat ion is then  

carried out. In  part icular ,  by this method,  we shall show that there are quali tat ively 

different asymptot ic  field configurat ions,  depending  on the parameters  of the model.  

The  models  can be considered as ord inary  electrostatics with a f ie ld-dependent  

dielectric constant  e. In other  words, the fields D and E satisfy 

V . D = p ,  

V x E = O ,  

where  D and E are related in a non- l i nea r  m a n n e r  by 

D = e ( E ) E ,  

(1.1) 

(1.2) 

(1.3) 
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with E = IEI. The special feature of this class of models is 

e ( E ) = 0 ,  for E~Eo,  (1.4) 

which implies that the electrostatic energy of two point charges + O increases linearly 
for large separations (see footnote 8 of ref. [2]). The model that was studied 
extensively by Adler and Piran [2, 3] corresponds to the choice 

e ( E )  =const  In (E/Eo), for E>Eo. (1.5) 

Another  model, which is distinguished by its simplicity, is obtained by the choice 

e (E )  = const ,  for E>Eo. (1.6) 

This case has been studied by Giles [4], who gave its exact solution for two space 
dimensions. 

For the general case, a more useful characterization of the models is to express 
E as a function of D: 

E = f ( D ) .  (1.7) 

The formulation of the problem and some general properties of the models are 
given in sect. 2, the limiting case of small separation between two static charges is 
treated in sect. 3, and the opposite case of large separation in the remaining sections 

of this paper. 

2. Formulation of the problem 

Consider the variational principle 

8L = 0 ,  

with 

where 

L = f d3x[~(E(x))- ~(x)p(x)], 

(2.1) 

(2.2) 

E(x) = - V ~ ( x ) .  (2.3) 

Eq. (1.2) of course follows from (2.3). In order to get (1.1) and (1.3) from (2.1) 
and (2.3), we must choose 

~(E) = f dEEe(E). (2.4) 

Throughout  this paper, we are interested in the case of two static charges of 

opposite sign, so that 

p(x) = Q [ 6 ( x -  xl)-  6(x- x2)]. (2.5) 
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Near  x~ and x2, D is necessarily large. Because of the feature (1.4) of the models 

under consideration, variation with respect to ¢ shows that there are two domains: 
in domain (I) (1.1) and (1.3) hold with E>Eo, and in domain (II) E<~Eo and 
e(E) =0 .  Furthermore,  both charges are located in domain (I). Let  B denote the 
boundary between these two domains, then variation with respect to B shows that 

~(E(x))  is continuous across B.  (2.6) 

Since e(E) is taken to be positive for E > E0, it follows from (2.6) with (2.4) that 

E(x) = Eo, D(x) = 0 ,  (2.7) 

for x on B. 

Let the two charges of (2.5) be located on the z-axis at z = +R. Because of 
rotational symmetry we introduce cylindrical coordinates z and p. Eq. (1.1)implies,  
for p > 0 ,  

OzDz +!0o( pD o) = 0 .  (2.8) 
P 

We can express D in terms of a flux function qt(p, z) as [3] 

1 1 
pDz = ~-~Op~, pDp = - ~--~ 0zq'. (2.9) 

The boundary conditions on 1/., are 

= 0  and 7 ~ = 0  o n B ,  

O, Izl<g 
q~(0, z) = 0, i z l > R ,  (2.10) 

~ 0 ,  a s  Z2+p2~O~.. 

Substitution of (2.9) into (1.2) leads to a partial differential equation for qt: 

O [ Oztltf(D) "] [ aogtf(D) ] 
(2.11) 

where f is defined by (1.7). Carrying out the differentiations gives 

g (a~ q,)(oo q')(oz, q,) - [ [(oz q,) 2 + (o, q,) 2] ooq" = o ,  (2.12) 2 
P 

where 

f(D) 
g(D) f , ( D ) - D .  (2.13) 
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Eq. (2.12) is elliptic if 

Dr(D)  > 0 
D ( D + g )  = f ' (D)  " (2.14) 

Eq. (2.11) is the Euler-Lagrange equation for the variational principle 

~ dz p dp £(D) = 0 ,  (2.15) 

where 

£,(D) = dD'  I ( D ' ) .  (2.16) 

As already mentioned in the introduction and to be discussed in more detail in 
sect. 4, for all models of this class the electrostatic energy between the two charges 
increases linearly for large separations. Therefore  the charges are said to be confined. 
Moreover ,  since D = 0 in domain (II), the electrostatic energy comes entirely from 
domain (I). For this reason we shall refer to domain (I) as the confinement 
domain [3]. 

3. Case of small R 

In this section, we investigate the behaviour of the field and the confinement 
domain for small R. In particular, we shall show that as R -~ 0 the linear dimensions 
of the confinement domain shrink as R 1/3 under a fairly general condition. 

The condition that we shall use is that 

In f ( D )  
lim - -  1,  (3.1) 
D~o~ l n D  

or equivalently by (2.13) 

lim g(D) /D- - ,O .  (3.2) 
O ~ o o  

Examples of f ( D )  that satisfy this condition are given by, as D ~ oe, 

f ( D )  ~ const • D(ln  D)  '~ , (3.3) 

with any real A. Eq. (3.3) is satisfied in the cases studied in [3] and [4]. 
Under  the condition (3.2), (2.12) simplifies greatly for large D to 

1 
o==~ + a ~ - - ~ a ~  =O , (3.4) 

whose solution is, with the boundary condition (2.10),  

_ _ ! 0 [  z z R  z + R  
llt-- 2 [ [ ( z_R)2+p2] l /2  [ (z+R)2+p2]l /2J"  (3.5) 
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For small R, z and p such that z and p are much larger than R, this becomes 

which implies 

209 

ORp2 (3.6) 
qs ( z2 + pz)3/2 ' 

O 2 R  2 4 z 2 + p  2 
(3.7) D ~ + D  2 4¢r2 (z2+pz)4.  

Thus D 2 is of order 1 when z and O are of order R 1 / 3 .  Therefore we introduce 

z = Rl /3 f i .  , p = R 1 / 3 1 3 .  (3.8) 

If ~ is defined by 

7S=R2 /3~ ,  (3.9) 

then we have from (2.9), (2.12) and (3.7) that 

13D~=2-~O~tP, p"Dp=-2-~02~, (3.10) 

/, A A 1 ^ g 2 " - 2 ~ ( 0 2 g e ) ( 0 ¢ ~ ) ( 0 s C g t ) - ~ [ ( 0 s q  ") + ( 0 ¢ ~ ) 2 3 0 ¢ g t = 0 ,  (3.11) 

and, for small 2 and t3 

O13 2 
~[¢" (~2 . . j_  1 3 2 ) 3 / 2  " (3.12) 

Since eqs. (3.10)-(3.12) no longer depend on R, they give the leading behaviour 
of the field and the confinement domain. 

For the case of small R in the logarithmic model, see Adler [5]. 

4. Case of large R 

4.1. ORIENTATION 

Consider two charges + Q  separated by a large distance. For any surface that 
encloses one of the charges but not the other, integration of the normal component 
of D must give 47rQ. How do we expect the distribution of D to be when the 
distances to the two charges are of order R?  

The qualitative argument follows closely the one for ordinary linear electrostatics. 
The distribution of D must be such that the total electrostatic energy as given by 
(2.16) is a minimum. Since f(D) is an increasing function,/~(D) is a convex function 
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of D. Therefore,  under the constraint of flux conservation, it is energetically unfavor- 
able to have large values of D. We therefore reach the conclusion that D is small 
far away from the two charges. 

The relevant quantity is therefore the behaviour of f ( D )  for small D. A fairly 
general case is that 

f ( D )  = Eo+ b,~D'~ + " " ", (4.1) 

for o-> 0, where b~ is a positive coefficient. In this case, (2.13) implies that 

g ( D ) = O ( D ' - ' ~ )  . (4.2) 

Let the scale for the coordinate p be R ~, that of z being R. Since a = 1 for ordinary 
linear electrostatics, we expect a < 1 for the present models. It follows from (2.9) 
and these scales that 

Dz = O ( R - 2 ~ ' ) ,  Dp = o ( e - l - ' ~ ) ,  D = O ( R - 2 ' ~ ) .  (4.3) 

Therefore,  the orders of magnitude for the various terms in (2.12) are R 4, R 2-2,, 
R -2-2~(1-~), and R -4~ because of (4.2) and (4.3). The last two orders are the 

largest; equating these orders of magnitude gives a determination of a 

1 
- . ( 4 . 4 )  c~ l + c r  

This implies in particular that the transverse dimension of the confinement domain 
increases as R 1/(1+~,) for large R. 

For the special case of or = 1 to be studied in more detail in this paper, 

1 a =~ .  (4.5) 

This scaling law (4.5) has been verified numerically [2] for the logarithmic model. 
The model studied by Giles [4] corresponds to ~r ~ oe and a = 0. Therefore,  the 

confinement domain in this case has a finite cross section, which may be the case 
in Q C D  apart  f rom a logarithmic quantum effect [6]. 

4.2.  Z E R O T H - O R D E R  S O L U T I O N  

In this paper  we shall concentrate mostly on the case cr = 1. In this section, we 
give the zeroth-order  solution for large R. It is the simplicity of this zeroth-order  
solution which makes the later developments possible. Since this simplicity is largely 
lost for the general case of arbitrary o-, generalization to arbitrary cr is technically 
not straightforward beyond the zeroth order. 

Let f ( D )  be expanded into a Taylor series 

f ( D )  = ~ biD j. (4.6) 
j = 0  
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Here  bo = E0. Since or = 1, bl is positive. By suitable scaling of the three vectors D, 
E and x, we choose units such that 

Eo = bl = Q = 1 . (4.7) 

Throughout  the rest of this paper, (4.7) is used except for the purpose of a comparison 
of the total electrostatic energy (see (4.18)-(4.20)). With (4.7), the first few terms 
of the Taylor series for f ( D )  are 

f ( D )  = 1 + D + b2 D2 + b3 D3 +" • • . (4.8) 

It turns out that the value of b2 is of great importance. There are two different 
cases depending on whether bz is equal to -½ or not. 

For the purpose of obtaining the zeroth-order  solution, it is sufficient to use 
f ( D ) =  I + D  and hence by (2.13) 

g ( D ) -  1. (4.9) 

Let g,(0) be the zeroth-order  approximation to qt. Because of (4.5), introduction 
of the variables z' and p' through 

z' = z / R ,  p' = p / ~ / R ,  (4.10) 

shows that the equation for qt(0) is 

l rl/ozv,o,v G,,/,(°'I 
OZ, + j =o,  (4.11) 

as a consequence of (2.11) and (2.9). If we express p' as a function of z'  and qz(0), 
the resulting partial differential equation for p' can be solved by separation of 
variables. Using the boundary condition (2.10), the result is 

{ ,  1/-- Rp2 ,~ 2 
gt(O)(p, z) = ~1 -~,~ ¢ r ~ z ~ _  z2,] , (4.12) 

and the boundary B is an ellipsoid of revolution 

2 2 z l / - - p  _ 
R--7+~V r r ~ - -  1,  (4.13) 

with semi-major axis R and semi-minor axis (2R/x /~)  1/2. 

4.3. ELECTROSTATIC ENERGY 

We proceed to calculate the total electrostatic energy V ( R )  

f r o  o V--  d3x dD' E ( D ' )  

f d3x(D+½D 2) , 
d 

(4.14) 
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using the zeroth-order  solution (4.12). To avoid possible problems in the vicinity 
of the charges, we integrate over z from - ( R -  e) to R -  e: 

V ( R ) - 4 r r  dz p dp - 0p~(o) - 1 (c)zqt(°))2 
ao 4"rrp O~,~ (°) 

- - J ' -  8 ~ 2 p  2 (001//(0)) 2] , 

(4.15) 

where 

p(b °) (Z) = (2R / ~ / -~ ) ' / 2 (1  - z 2 /  R2 )  1/2 . (4.16) 

The substitution of (4.12) into (4.15) gives 

+ 2  
V ( R ) = Z R  3~/¢r In R + O ( 1 ) ,  (4.17) 

for large R. 
This result (4.17) holds provided that the units (4.7) are used. In order to compare 

with the numerical result of Adler and Piran [3] who used the units 

Eo = K, bl = ~6rr2, O = 2~/~, (4.18) 

a rescaling is necessary. They obtained 

V ( R )  = 2QKR + CK 1/2 In (Rx/K) + O(1) .  (4.19) 

Using (4.17), rescaling to the units (4.18) gives 

C = 7 r l / 2 2 9 / 2 3  - 1 1 / 4  = 1.954908641 , (4.20) 

to be compared with the numerical result of 1.95 [3]. 
More generally, when the o- of (4.1) is less than one, then the correction to the 

2R term in V ( R )  is of the order R (1-'~)/{1+~). On the other hand, for ~r> 1 there 
is no correction term which is unbounded as R -+ oo. 

The conclusion (4.17) is actually not as obvious as it may seem. The question is: 
how can we get two terms respectively of order R and order l n R  from the 

zeroth-order  approximation? 
(a) The first term in the integral of (4.15) is 

- 2  dz dp apq t ( ° ) = - 2  dz [qt(°)(p(b°)(Z), Z)-- qt(°)(0, Z)]. (4.21) 
,J0 

If the exact qt is used instead of ~(o), p(b o) changes correspondingly such that, by 

(2.10), 

'I~(pb(z), z ) =  q'(°)(p(~°) (z),  z) = 0 ,  

~ ( 0 ,  z) = 1/'(°)(0, z) = 1. 

Therefore this integral contributes 2 ( R -  e) exactly. 
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(b) We have implicitly assumed here that the distance between the charge and 
the z-axis intersection of the boundary B of the confinement domain is of order 1. 
This is justified as follows. 

Since only the derivatives of ~ appear in (2.11), we can shift z to z - R  = Zl 
without changing the equation. In the limit R ~ oo the boundary condition (2.10) 
becomes 

1, for Zl<O 
qr(O, z l )=  O, f o r z l > O .  

Thus R has disappeared from both the partial differential equation and the boundary 
condition, and hence gt(p, Zl) exists in this limit. This implies in particular that Pb 
is finite for finite zl. 

4.4. FIRST-ORDER SOLUTION 

To obtain the solution to the order 1 /R ,  we use the following variables. Let Pb(Z) 
denote the boundary B, 

----P---P (4.22) r = pb(Z)/Pb(O) , r -= pb(O)r " 

In terms of the variables z' of (4.10) and this r, (2.12) becomes 

g ( O )  pb(O)2f - a 2 [ ~ f  r a3"J + (aNO2a='~'q~ r2D ~ l ( , q t )  a~qt+(a~gt)2 2 a~,q t - r a z ' ~ ' r  -1 

- 2(a,qr)(a z, qQ a z,~ q'} 

+ ( r  'O~g*)2 [1 ' pb(O)2/t-~U-~kra~,r- rO~'VIt'~2]{~rc~r(~)Or qt ] .] 

r a , ( r O , q ' ) - 2 r  r o~ ,~- r (a ,qs )a~ ,  +a~, ,qt = 0 ,  

with 

1 o.~r pb(0)2/ ~z,~)2] 'j2 
D =  27rOb(0) z J 

These equations are exact. Expansion to first order is of the form 

z.(c,) 
pb(0)2=&. I+4T~--R~R , 

(4.23) 

(4.24) 

(4.25) 
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qt(p,  Z) = (1 -- rZ)2+-7-~--l-- q,(1), (4.26) 
44~rR 

1 r= (1-- z'2)l/2 + ~ - - ~  r (1) , x/ (4.27) 

where  the ze ro th -o rde r  solution of subsect. 4.2 has been used. We then substitute 
(4 .25)- (4 .27)  into (4.23) and collect the 1 /R  terms: 

11 -- 7- 2 r2Z'2 
~ 8 b  2 _ _ Z , 2  121_---i-'~--(1-z'2) 1/2[(1--Z'2)2Oz,z ,r(1)+r(l)  ] 

(1-- g'2) 2 [" - '1 '  2Z' ] 
;- -2 ~ - -  --5- ] O ~,z, 7s, , _zT~Oz, g,(1) 

/_i.7. ( 1 - - 7 " ' ) [ _  1 J 

+ 2 C  1 + 4 ( 1 - Z ' 2 ) - l / 2 r ' l ) - l O r ( ! C ~ r l I - F ' l ) ~  
8 r  \ r  / 

8 z ' a ( 1 - - 2 r  2) 4 ( l + z ' 2 ) ( l - - r  2) 
+ l _ z ,  2 F 1 - - z '  2 - - 0 .  (4.28) 

Since all terms in (4.28) that do not involve qt(a) have r dependences  of the forms 
1 or r 2, and qt(i) satisfies the boundary  conditions 

qt(a) = 0 ,  at  r = 0 ,  

1/"f(1) -~- 0 z l / f ( l )  = 0 , at  r = 1 ,  

1/,(1) must be of the form 

qt(l) = rZ(1 _ r2)2k(z, ) . (4.29) 

The  substitution of (4.29) into (4.28) yields the two ordinary differential equations 

1_2,,2 + l _ z ,  2 ~(1 Oz,z,k- Oz,k + 3 k = O ,  (4.30) 

Oz,z,r(1)--3(1--z'i)-2r(X)+(1--z '2) 3 / 2 ( - 2 c 1 + k ) + 2 0 ( 1 - z ' 2 ) - S / 2 z ' 2 = O ,  (4.31) 

for  the de terminat ion  of the two functions k and r (~). 
With the variable 

u'  = t a n h  -1 z ' ,  (4.32) 

the solution of (4.30) is 

k = - ( 9 -  2b2) cosh 2u '  +2(7  + 2b2). (4.33) 

Let  

r (1) -~ (1 - Z ' 2 ) l / i w  (1) , (4.34) 
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then (4.31) is 

3u,u,W(1)--4W (1) = 2C 1 +4(4-- b2) - (1 +2b2) cosh 2 u ' .  (4.35) 

This equation has the interesting feature that the two cases of 

1 + 2 6 2 = 0 ,  1 + 2 6 2 ~ 0 ,  

are qualitatively different. In the latter case w(1)(u) has a term proportional to 
u' sinh 2u'. As z' ~ 1, such a term is of order In (1 - z ' ) / (1  - z'). On the other hand, 
in the case b2 = -½,  no such logarithmic factor appears to first order. These two 
cases are treated in more detail in the next two sections. 

The first-order solution is 

f 7. 2 

+ 2(2 b 2 + 7)]} ,  qt = (1 - 7.2)2 [ 1 + ~ [ ( 2 b 2 -  9) cosh 2u'  (4.36) 

with the boundary B given by 

1 { 1 } 
r - -  1 [ ( 2 b 2 + l ) u ' s i n h 2 u ' - ( 2 C l - 4 ( b 2 - 4 ) ( c o s h 2 u ' - l ) ]  • 

cosh u' 16x/~R 
(4.37) 

5.  C a s e  o f  large  R w i t h  b z = - 

5.1. PROPERTIES OF THE FIRST-ORDER SOLUTION 

When b2 =-½ ,  (4.37) for the boundary B simplifies to 

1 [ 1 + ~ 1 - -  ( c , + 3 ) ( c o s h 2 u ' - l ) ] .  (5.1) 
cosh u' k 8 4 ~ r R  

In terms of the original cylindrical coordinates, this is 

Z 2 

4 . , = .  

To the first order in l / R ,  (5.2) can be rewritten more elegantly as 

2 cl - ( R  " c a + 3 \  .2 2 "11/2 

Therefore  to the first order,  the boundary B remains an ellipsoid of revolution with 
semi-major axis 

• c1+3 
R + -~---~ , (5.4) 
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2 Cl 1/2 

The coefficient ci cannot be obtained by asymptotic methods. The reason is that 
the determination of c~ requires information about the solution of the partial 
differential equation near the charges +O,  while a necessary condition for the 
applicability of the asymptotic methods is that D is small. Note that the same 
combination R + Cl/4,/~ appears in both (5.4) and (5.5). 

5.2. CHOICE OF VARIABLES 

Since the first-order solution presented in subsect. 4.4 is already fairly complicated, 
the study of higher-order solutions entails a careful choice of variables. It is seen 
from the first-order expansions (4.25)-(4.27) and the results (5.4) and (5.5) that a 
convenient parameter  for expansions is 4x/TrR + O(1). With this in mind, we intro- 
duce the parameters  A, A' ,  and A" which differ f rom 4~/~R by order 1 and let 

= ( A ") 1/2 
Oh(0) \~--~] , (5.6) 

2 = 4 , / -~z /A ' ,  (5.7) 

= ( a ' / a " ) 2 ~ ,  (5.8) 

A = A'2/A " . (5.9) 

With this notation, (2.12) becomes 

8g(D){(Oe~b)20.,t ~ 2 [ Oer rOeer "l 
rZDa . + ( 0 ~ )  [ 2 7 a e 0 -  r 0,~0J +(0~0)20ee0-Z(O.qt)(Oe~9)O~.~} 

) 
L A t  a.q,/ J 

+--  r a . ( r o , e ) - 2 . r - - a ~ . q s - r ( a , t O ) a ~ l - - I + a ~ q ,  = 0 ,  (5.10) 
A r 

with 

o.+ r, +8 (rO.r-r°'4'l:] l'2 
D -  cr2A L A t  O,ql/ .I (5.11) 

Note that we are still at liberty to vary A' ,  and hence A, by an amount  of order 1. 
It is this freedom that enables us to absorb the unknown coefficient c~ and thus 
render the perturbation calculation more manageable.  
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Similar to (4.32),  let 

u = t a n h  -1 2. (5.12) 

The  pe r tu rba t ion  expansions  to be considered in this sect. 5 are 

qJ = (1 - '7"2) 2 + A - 1  i]/(1) ..{_ A-Z~0(z) + A - 3 1 ] / ( 3 )  -{-" • • , ( 5 . 1 3 )  

1 ~_A_lr(1 ) A_3r(3)+ . r = - -  + A  2r(2) + " ' "  (5.14) 
cosh u 

Note  that  the r (1) here  is not  quite the same as that  of subsect. 4.4, but  this should 

cause no confusion. 
The  present  r (1) and also ~0 ¢1) are  easily ob ta ined  by rescaling the f i rs t -order  

results of subsect. 4.4: 

if/(1) = (1 - 7"2)2[6+  7 " 2 ( - 1 0  cosh 2u + 4 ) ] ,  (5.15) 

r ( 1 ) = 0 .  (5.16) 

In writ ing down (5.15) and (5.16),  we have  chosen 

A = A " + 6 .  (5.17) 

This choice,  which we are  at l iberty to m a k e  as pointed  out  above ,  leads to a 
par t icular ly  s imple forms  for  q,(~) and r (1). Tha t  r ( 1 J =  0 shows that  the bounda ry  B 

remains  an ellipsoid of revolut ion  in first order .  

5.3. SECOND-ORDER SOLUTION 

W e  have  seen that  to first o rde r  in 1 / A  the boundary  B remains  essentially 
unchanged  for  one par t icular  value of the Tay lo r  coefficient b2 = - ½ .  As  we discuss 
in this section, the same p h e n o m e n o n  occurs to second order  if, in addit ion to 
b2 = -  1, we also choose  

b3 = ~2. (5.18) 

T o  second order  

~O = ( 1 -  ~'2)2{ 1 + 2 1 3 - , z ( 5  cosh 2 u -  2)]} + AI--5~b (2) , (5.19) 

1 + % ( 2  ) (5.20) 
r = cosh u 

g ( D )  = l + D +3(1 - 2b3)D 2 . (5.21) 

Expand ing  (5.10) to o rder  1 / A  2 and following the p rocedure  of subsect.  4.4, we 
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obtain 

~(2) = ~(1  - " / ' 2 )2{3 (163  - 12b3) 

- 2 r 2 [ ( 1 4 5 - 1 2 b 3 )  cosh 4u + 4 ( 1 3 3 -  12b3) cosh 2u - 3 ( 5 1  + 1263)] 

+ r4[(703 - 12b3) cosh 4u - 4 ( 1 6 1  + 12b3) cosh 2u + 3(155 - 12b3)]}, 

(5.22) 

r(2) = 7 - 1 2 b 3  (cosh 4u - c o s h  2u + 12u sinh 2u) .  (5.23) 
144 cosh u 

Note that, by (2.10), (5.8) and (5.9), (5.22) implies that 

1 
a"= a -  6 -~ -~ (163-12b3)  , 

o r  

1 
A = A"+ 6 +~A,,(163 - 12b3). (5.24) 

This involves the choice of a constant in the second order just like (5.17). That 
r ( 2 ) =  0 when (5.18) is satisfied proves our assertion that the boundary B remains 
an ellipsoid of revolution in second order  when b2 = - 1  and b3 = ~2. 

5.4. T H I R D - O R D E R  S O L U T I O N  

Having found that for a special choice of the Taylor coefficients b 2 and b 3 the 
boundary B remains an ellipsoid of revolution in the first and second orders, curiosity 
motivated us to look into the situation in the third order. 

Taking b2 = - ½  and b3 = 7 ,  we have to third order 

~ b = ( l - r 2 ) 2 { l + 2 1 3 - r 2 ( 5 c o s h 2 u - 2 ) ]  

1 
+~-5139-  r2(23 cosh 4u + 84 cosh 2u - 29) 

+ r4(58 cosh 4 u -  56 cosh 2u + 37)]} +~33~./(3) , (5.25) 

1 1 '3) 
= + ~ - - ~ r  ~ , r cosh u 

g( D) = 1 + D - ¼ D  "2- ( ~ + 4 b 4 ) D  3 . 

(5 .26)  

(5.27) 

Expanding (5.10) to order  1/A 3 and following the same procedure once again, we 
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obtain for  r ( 3 ) :  

1 
r (3) - [(27 cosh 6 u -  28 cosh 4u  + c o s h  2u)  

1200 cosh u 

-30(b4+~T~o)(cosh6u+16cosh4u-17cosh2u+12Ousinh2u)], (5.28) 

and for I~ (3) at ~" = 0: 

O(3)(u, 0) 265 103 = ~ 8(b4+ 120) • (5.29) 

The comple te  expression for 4¢ 3) is quite complicated and not  instructive. Therefore  

in the present  case 

A"=A-6  39A .4-1 [499-8(b4-1-120)] , 1 0 3  

o r  

39 1 
- -  8 ( b 4  + 1 ~ 6 ) ]  • A = A " +  6 + ~ + ~ - ; ; 7 1 2 6 5  103 (5.30) 

Once  again, this involves the choice of a constant  in third order.  
The  new feature is that, as seen f rom (5.28), the boundary  B is no longer  an 

ellipsoid of revolut ion no mat ter  what  the value of b 4 is. For  b4 = -120,1°3 both r (3) and 
0 ~3) are  e lementary  functions of z without  logarithms. In this case, 

1 / - ) 2 . . l .  - 7 /-,b3 103  /-~4 f(D)=I+D-~,.., -~,_., - 1 2 0 ~  + ' " .  (5.31) 

6. Case of large R with bz ¢ - ~  

6.1.  F O R M U L A T I O N  O F  T H E  P R O B L E M  

We have found that, for  b2 ¢ i and to the first o rder  in 1/R, the equat ion (4.37) 
for the boundary  B has a term propor t ional  to (u '  sinh u')/R. This implies that, in 

the nota t ion  of subsect. 5.2, r has a term propor t iona l  to (u sinh u)/A. This correct ion 

term becomes comparab le  to the leading order  when 

U e 2u 
- - - - - o ( 1 ) .  (6.1) 

A 

It is the purpose  of this section to study, for the case b2 ¢ 1 ,  the behaviour  of the 
boundary  B and the field in the region given by (6.1). For  this purpose,  it is necessary 

to sum the leading terms in the 1/A power  series expansion of r. These terms are 
of the orders  

U e u U 2 e 3u U 3 e 5u 
e u, A ' A2 , A3 , . (6.2) 
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Consequent ly ,  for  
function of 
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w = r cosh u, we expect  the sum of the leading terms to be a 

u e 2u 
= (6.3) 

A 

Inclusion of the subleading terms leads, in the region (6.1), to an expansion for w 
of the form 

W = W0(~) ..~-! Wl(~  ) _ [ _ . . . ,  ( 6 . 4 )  
/4 

and a corresponding expansion for qJ 

q' = q'0(~:, ~) + ! 4 ' , ( ~ ,  ~ ) + "  • • • u 

It is seen from (4.36) that  

(6.5) 

In o rder  to obtain w0(s~), we rewrite (5.10) in the form,  after  replacing both cosh u 
and sinh u by 1 u :e  , 

g(D)w4{l+2e2U[r(W_OuW)+WOU~]2 ~ 3/2 
a . g , j  j 

x{'r(1-O~w)+ou;;; o.~/°u"ro~°~"+~°uw~o~.,,, 
; w 

.0 O O,w /Ouw\ O,,w] 2 
= + 3 - 4  + 2 ~ - - ~ )  - ~ - J  0.~0+r0,g,  

+ (1  - ~ )  2 Tcg,,~0 + 2 (1  - ~ )  0 , ,~  +10~M0} , (6.7) 

where  

e 2u a T ~ o  + 2 e 2 U  .~(w-O.w)+ a~q,_l J 
D -  A 4Tw 2 1 A 

Taking the limit A ~ oo with fixed ~, we obtain from (6.7) 

Wo 1 -  s~O~O~Wo = 1. 

With the condit ion w0 = 1 at ~: = 0, the solution of (6.9) is given by 

Wo = (1 "+- A ~ )  1/2 , 

where the constant  A will be de te rmined  in subsect. 6.3. 

(6.8) 

(6.9) 

(6.10) 

~0o(~:, r)  = (1 - 2 ) 2 .  (6.6) 
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6.2. DETERMINATION OF 01 

In order to find the 4'1 of (6.5), we need to expand (6.7) to next order. It is 
sufficient to use g(D) = 1 - 2b2D with 

1 1 - - 7  -2 
D ~:, (6.11) 

u wo z 

from (6.8). Inspection of (6.7) to next order with reference to its z dependence 
shows that 4'1 is of the form 

4'1(~, T) = r2(1 - 7 - 2 ) 2 h ( ~ )  , (6.12) 

where the boundary conditions 

4'1(~, O) = 4 '1 (~  1) = 0,4'~ (~, 1) = O ,  (6.13) 

have been used. With these approximations, (6.7) reduces to 

w4[1 2b2 1-7- 2 ] [  u Es ej[1+2etw_oow)22]. 3j2 

× [ 7 - ( 1 - ~ )  -17-(1-7-2)~Oe~Oeh +lu Ouwr(1-'r2)'~Oeh 

=10 0;4' 1 1  { [  40uw+2(O,w) 2 ~.~]  + -- w2~: 3 -  - -  - -  ( - - 4 ~ ' ) ( 1 - -  7- 2) 
u w \ w /  

+ (1 - - ~ ) 2  (--47-)(1 -- 3 ,2)} .  (6.14) 

In all the correction terms, i.e. terms with the factor 1/u, w can be replaced by the 
wo of (6.10). Therefore, to the present order, the differential equation is 

w4['1 2b2 1 - - 7  -2 3 z 2 "] L u 1 + A ~ - 4 ~ : ~ - ~ J  

u u I+A~: 

=r+lr(_2+3r2)h 2r  1 _ 3~.2)  (6.15) 
u u I + A ~  :~:(2 " 

For the purpose of determining h, we study the coefficient of T3/U:  

AT•d•Oeh 3 (9-2b2)~: 
~Oe~Oeh 1±~¢ (1 + A~)-----------~ h (1  + A ~ : ) 3  . (6.16) 
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The only solution without fractional powers of ~: for small ~ is 

h( ' )=½~/~(9-2b2)(h2( , ) f fd , 'h l ( , ' ) ( l+A, ' ) -4-hl ( , ) f fd , 'h2( , ' ) ( l+A, ' ) -4) .  

(6.17) 

where 

hl(~) = sc'/~(1 +A~)-IF(4r3 - 2, , ,f3- 1; 2x/3+ 1; - A ~ ) ,  

h2(~:) = ~:-43( 1 + A ~ : ) - l F ( - x / 3  - 2, -x/-3-1;  -2x/3 + 1; -AsC), (6.18) 

are solutions of the homogeneous equation. Here F is the hypergeometric function. 
In particular, it follows from (6.16) that 

h(~) 9-2b2 1 
1 +A~[ln  l1 +A~:I+ O(1)] (6.19) 

4A 

for 1 + A~ near zero. 

6.3. DETERMINATION OF w 1 

In order to find the wl of (6.4), we set r = 1 in (6.15): 

w3(w-OuuW)=l+ h(~)+ 1 +A~ . (6.20) 

Let 

WI(~: ) (I+A¢)I/zV(¢), (6.21) 

then 

~(I+A~)v"(~)+(3+2A~)v'(~)=--~[h~ ----~)+ 1+A~:5 + A ( 2 + A ~ ) ] .  (6.22) 

Since v(¢) has a power-series expansion at ~: = 0, there cannot be a pole on the 
right-hand side of (6.22) at ¢ = 0. Since 

lim f(¢)/¢ = ½(2b2- 9) ,  (6.23) 
~:~0 

as seen from (6.16), this absence of a pole implies the condition that 

a = - J (2b2+ 1). (6.24) 

This could have been obtained by comparing (6.10) with (4.37). However, the 
present derivation does not depend on the 1/R perturbation calculation. 
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With this value of A, the solution of (6.22) is 

9 -2b2  I a " -A~: 1Aln(_A~:) (6.25) v(td)- -8~ [ ( -  ~)-I(-A~)143~-'/3]-Saln l + a ~  

where 

1 I I(x) - 2 ( 1 - ` / 3 ) ( 2 - ` / 3 )  x-1-'/3 ( 1 - x ) - l [ ( 5 - 2 x ) F ( - ` / 3 ) ' - 1 - ` / 3 ;  1 - 2 , / 3 ;  x) 

- , / 3 ( 3 - 4 x ) F ( 1 - ` / 3 , - 1 - - , / 3 ;  1 -2 ` /3 ;  x)] 

x dx' x '"~(1- x ' ) - S F ( - 2 + ` / 3 , - 1  + , /3 ;  1+2, /3 ;  x') 

+ dx' x ' - t (1 -x ' ) -VF(-2+, /3 , - l+ , /3 ;  1+2, /3 ;  x') 

x [(1-2x)x'2((2+x')F(-,/3,x2 -1  - , / 3 ;  1 -  2`/3; x') 

- , / 3 ( 1 -  x')F(1 - , / 3 , - 1  - , / 3 ;  1 - 2 , / 3 ;  x')) 

- ( ( 7 -  10x ' )F( - , /3 ,  - 1 - 4 3 ;  1 - 2 , / 3 ;  x ' ) - 2 , / 3 (1  - x ' )  

x ( 2 -  3x')F(1 - , / 3 , -  1 - , / 3 ;  1 - 2,/3; x')) / [ .  (6.26) 
3 J 

In (6.26), it is understood that 

I0 :dx ' = In x, 
1 

x p y0 *dx , ~3 X 1-~/3 x I 
1 - , / 3 "  

(6.27) 

other. The With this convention, all terms of the form In ( - A s  c) cancel each 
derivation of this solution of (6.22) is straightforward but tedious. 

For the discussion of sect. 7, we need the behaviour of v(~:) when 1 + A ~  is near 
zero. This can be obtained directly from the differential equation (6.22) with the 
help of (6.19). 

t~(~:) = - - 1 4 ( 9  - -  2 b2)[ln (1 + A~)] 2 + O[ln (1 + A~:)]. (6.28) 

7. Discussion 

7.1.  Q U A L I T A T I V E  B E H A V I O U R  F O R  b 2 ¢ - ½  

It is seen from sect. 5 and sect. 6 that the cases be = -½ and b2 ~ -½ are qualitatively 
different. In both cases there is a central domain where p b  = O(`/R). In the case 
b 2 ¢ - - ½ ,  we have learned from (6.10) that the boundary Pb is given approximately 
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by 
[ ~  -] 1/2 / 

pu= R(I+Ae)] /cosh. 

/ 2 )  1/2 [ -2 n 1+2" ]  1/2 
R(1-z  )+2-~lniz-~J , (7.1) 

where A is given by (6.24). Therefore the correction term becomes comparable to 
the leading term when 

Pb = O(x/~ R ) .  (7.2) 

It follows from (7.2) that the central domain for b2 ¢ - ~  is characterized by Pb >> 
(In R) 1/z. 

Next we repeat this argument for the second domain where (7.2) holds. For this 
purpose, we consider the correction term to (7.1) as given by (6.28) 

{ ' ~: [ ln ( l+A~ ' ) ]  2 } { 2 "~'/21[R(l+A,~)]1/2 l_64(9_2b2)u(l+A~) . (7.3) Pb ~--- k ~  ) cosh u 

This formula holds for 

A 
2 = 1 + 4~/~R In R + O \ - -~- - / .  (7.4) 

Therefore, the correction term 

1 ( 9 _ 2 b 2 )  ~: u(1 +a~:) [In (1 + AsC)] 2 , 

is comparable to 1 when 

+ a ~ z = o ( [ l n  (1 + a ~ ) ] 2 ]  _ / [ l n  In R]2~ 
1 

ln-/~ ]=u~ l nR  ] '  \ (7.5) 

and thus 

Pb = O(ln In R ) .  (7.6) 

In summary, we have found that in the case b2 ¢ - ½  there are at least three 
overlapping subdomains of the confinement domain: subdomain 1 (central domain) 
characterized by 

pb >> (In R) 1/2 ; (7.7) 

subdomain 2 characterized by 

In In R << pb<< R 1/2 " (7.8) 

and subdomain 3 characterized partially by 

pb<< (In R )  1/2 . (7.9) 
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7.2. QUALITATIVE BEHAVIOUR FOR b: = - 1  

We now discuss the results obtained in sect. 5 for the case  b 2 = - I .  Then to first 
order on 1/R the boundary B remains an ellipsoid of revolution. Moreover ,  we 
have found in subsect. 5.3 that this remains true to order 1/R: provided that the 
next Taylor coefficient b3 of f(D) is 72. (For completeness, we mention that, in the 
case  b 2 = i but b 3 ¢ 7 ,  the central domain is characterized by jo b ).> (In R)1 /4 . )  When 
b : =  _1 and b3 =72, to order I / R  3 the situation is as follows: 

(a) the boundary B cannot remain an ellipsoid of revolution no matter  what b4 is; 

(b) only for the special case  b4 = 103. --W6. both the boundary B and the field are 
given by elementary functions of 2 without logarithms. 

We do not know whether the elementary structure described in (b) remains valid 
to all orders in 1/R with an appropriate  choice of the higher Taylor coefficients of 
f(D). Inspection of the differential equations for qJ and r in higher orders leads us 
to suspect that logarithmic functions of g may appear  in certain orders in 1/R when 
a diophantic equation is satisfied. These dangerous orders are 8th, 49th, 288th etc. 
If such logarithmic functions actually do not appear,  then perhaps a unique function 
f(D) exists such that there are only two subdomains where p is respectively of 
order ~/R- and 1. This problem remains to be investigated in more detail. 

We are grateful to Professor Stephen Adler for a discussion of his work on models 
of confinement. One of us (T.T.W.) thanks Professor Hans Joos, Professor Erich 
Lohrmann,  Professor Paul S6ding, Professor Volker  Soergel, and Professor Thomas 
Walsh for their kind hospitality at DESY. 
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