Remarks about the Counting of $\overline{\boldsymbol{v}} \boldsymbol{v}$ Generations Using the $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma Z^{0}$ Process

J. Bartels ${ }^{1}$, A. Fridman ${ }^{2} \star$, A. Schwarz ${ }^{3 \star \star}$ and Tai Tsun $\mathrm{Wu}^{2 \star \star \star}$
1 II. Institut für Theoretische Physik der Universität D-2000 Hamburg, Federal Republic of Germany
2 Deutsches Elektronen-Synchrotron DESY, D-2000 Hamburg, Federal Republic of Germany
3 I. Institut für Experimentalphysik der Universität D-2000 Hamburg, Federal Republic of Germany

Received 28 November 1983

Abstract

In the present note we further explore the possibility of measuring the number of $\bar{v} \gamma$ generations by means of $Z^{0} \rightarrow \bar{v} v$ decays. We investigate in particular the case where the radiative transitions $e^{+} e^{-} \rightarrow$ γZ^{0} are studied on the Z^{0} resonance itself. The various background reactions are discussed as well as the statistical significance that can be obtained for an additional $\bar{v} v$ generation.

I. Introduction

The suggestion to determine the number of existing neutrino generations using the $Z^{0} \rightarrow \bar{\nu} v$ decays from the $e^{+} e^{-} \rightarrow \gamma Z^{0}$ transitions has been widely discussed [1-3]. Let us recall that the width Γ_{z} of the Z^{0} gauge boson can be expressed in terms of the number of fundamental fermions. In the standard model [4] with massless neutrinos it is given by:

$$
\begin{aligned}
& \Gamma_{z}=\frac{G_{F} M_{z}^{3}}{24 \sqrt{2 \pi}}\left\{2 N_{v}+\left[1+\left(1-4 \sin ^{2} \theta_{W}\right)^{2}\right] N_{l}\right. \\
&+3\left[1+\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right)^{2}\right] N_{2 / 3} \\
&\left.+3\left[1+\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right)^{2}\right] N_{-1 / 3}\right\}
\end{aligned}
$$

where G_{F} is the Fermi coupling constant, M_{z} is the Z^{0} mass and θ_{W} is the Weinberg angle [4]. Here, N_{v} is the number of neutrinos, N_{l} is the number of leptons and $N_{2 / 3}\left(N_{-1 / 3}\right)$ the number of quarks of charge $\frac{2}{3}\left(-\frac{1}{3}\right)$. Clearly only fermions having masses smaller than $M_{2} / 2$ contribute to the above expressions in which phase space effects have been ignored. For three

[^0]generations and $\sin ^{2} \theta_{W}=0.23$ one obtains $\Gamma_{z}=$ 2.6 GeV whereas additional fermions will lead to an increase of:
0.08 GeV for an additional lepton
0.16 GeV for an additional neutrino
0.27 GeV for an additional charge $\frac{2}{3}$ quark 0.35 GeV for an additional charge $\frac{1}{3}$ quark.

Radiative corrections increase these values and the Z^{0} mass by a few percent. These radiative corrections are not considered here.

As already pointed out [2], the detection of an additional (fourth) neutrino as a three standard deviation effect would require the measurement of Γ_{z} with an accuracy of about 2%. Such a precision is not easy to obtain as one expects to measure the Z^{0} excitation curve with a point to point uncertainty of 5 to 10%, yielding thus an error of typically 6% on the determination of Γ_{z} [5]. In the following we will consider the values of 5% and 7%.

The method of counting the number of neutrino generations by means of the radiative transition $e^{+} e^{-} \rightarrow \gamma Z^{0}$ has also been envisaged [1-3]. The idea is to sit at a center-of-mass energy well above the Z^{0} mass and to search for $e^{+} e^{-} \rightarrow \gamma Z^{0}$ events where $Z^{0} \rightarrow \bar{v} v$. Initially it was proposed to carry out this study at a c.m. energy of about 14 GeV above the Z^{0} mass [2]. Integrated over the photon momentum spectrum in the range of 12 to 16.5 GeV , the cross section for the $e^{+} e^{-} \rightarrow \gamma \bar{v} \nu$ process was found to be $\sigma \simeq 0.025 \mathrm{nb}$. Apart from the inconvenience of dealing with such a small cross section, the running at 14 GeV above the Z^{0} does not allow the simultaneous study of the gross features of the Z^{0} boson. It was therefore suggested [3,6] to run at the Z^{0} itself and to detect the $e^{+} e^{-} \rightarrow \gamma \bar{\nu} v$ processes with photons of low momenta, i.e. $k \lesssim 3 \mathrm{GeV}$. In fact benefiting from the $1 / k$ behavior of the bremsstrahlung spectrum a
counting rate about 10 times higher than in the former case can be obtained.

The aim of this note is to further explore the possibility of neutrino-counting while carrying out the experiment at a c.m. energy corresponding to the Z^{0} mass. We will in particular discuss the feasibility of such an experiment taking into account the various backgrounds as well as the errors made in the determination of the Z^{0} width. The background reactions which will be considered are $e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}, \gamma e^{+} e^{-}$, $\gamma \gamma \gamma$ where one photon is recorded in the detector and where the other outgoing particles escape detection.

2. The $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\gamma} \overline{\boldsymbol{v}}$ Process

In order to calculate the $e^{+} e^{-} \rightarrow \gamma \bar{v} v$ cross section [$\sigma(\gamma \bar{v} \nu)]$ we used the differential cross section derived in [1] in the framework of the standard model, i.e.
$\frac{d^{2} \sigma(\gamma \bar{v} v)}{d x d \cos \theta_{\gamma}}=$
$\frac{G_{F}^{2} \alpha s(1-x)\left[(1-x / 2)^{2}+x^{2} \cos ^{2} \theta_{y} / 4\right]}{6 \pi^{2} x \sin ^{2} \theta_{\gamma}} \cdot F(x)$
with
$F(x)=\frac{N_{v}\left(g_{v}^{2}+g_{A}^{2}\right)+2\left(g_{v}+g_{A}\right)\left[1-s(1-x) / M_{z}^{2}\right]}{\left[1-s(1-x) / M_{z}^{2}\right]^{2}+\Gamma_{z}^{2} / M_{z}^{2}}+2$.
Here \sqrt{s} is the c.m. energy, α is the fine structure constant, g_{A} and g_{v} are the axial and vector-coupling constants given by:
$g_{A}=-\frac{1}{2}$
$g_{v}=-\frac{1}{2}+2 \sin ^{2} \theta_{W}$
θ_{γ} is the angle between the outgoing photon and the incident beam direction, and x is the ratio of the photon energy to that of the beam. Taking for the Z^{0} mass $M_{z}=89 \mathrm{GeV}$ we integrated the above expression in the domain defined by $\left|\cos \theta_{\gamma}\right|<0.7$ and $0.25<k<$ $(\sqrt{s}-89+2.45) \mathrm{GeV}$ using $\sqrt{s}=89$ and 90 GeV . The $\left|\cos \theta_{\gamma}\right|$ range was chosen to allow a good detection efficiency of the photon in any detector whereas the highest $(\sqrt{s}-89+2.45) \mathrm{GeV}$ limit is such that the endpoint energy of the γ spectrum corresponds always to the same position on the Z^{0} resonance curve (left tail). The calculated cross sections are plotted in Fig. 1 as a function of Γ_{z} for $N_{v}=3,4$. One sees from these plots that $\sigma(\gamma \bar{v} v)$ is strongly dependent on Γ_{z}. By comparing the minimum value of the cross section for $N_{v}=4$ within one standard deviation of Γ_{z} and the maximum value for $N_{v}=3$, we obtain Table 1, which gives the precision required in the measurement of $\sigma(\gamma \bar{v} v)$ in order to detect an additional neutrino generation as a 3 or 5 standard deviation (s.d.) effect. To this end we use errors in Γ_{z} of 5 and 7%. In both cases the high precision required for the measurement

Fig. 1. The $\sigma(\gamma \bar{v} v)$ cross section as a function of the Z^{0} width Γ_{z} for c.m. energies of $\sqrt{s}=89,90 \mathrm{GeV}$. Here, N_{v} represents the number of neutrinos and Δ is the error on $\Gamma_{z}(7 \%)$ at the value of $\Gamma_{z}=2.6 \mathrm{GeV}$

Fig. 2. The $\sigma(\gamma \bar{\nu} v)$ and $R_{v}=\sigma(\gamma \bar{v} v) / \sigma(\mu \mu)$ quantities as a function of Γ_{z} for a γ reduced momentum spectrum ($1.0-2.45 \mathrm{GeV}$)
of the absolute $\sigma(\gamma \bar{v} v)$ cross section makes the neutrino-counting difficult if the luminosity is only known within a point to point uncertainty of 5 to 10%. For comparison we also give in Fig. 2 the variation of $\sigma(\gamma \bar{v} v)$ as a function of Γ_{z} for $1<$ $k<2.45 \mathrm{GeV}$ (see also Table 1).

To diminish the influence of the luminosity it is desirable to use the cross section ratio
$R_{v}=\frac{\sigma(\gamma \bar{v} v)}{\sigma(\mu \mu)}$
instead of $\sigma(\gamma \bar{v} v)$ itself. Here the luminosity will only enter in the background subtraction (see below). The $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$cross section $\sigma(\mu \mu)$ is simply obtained by integrating in the $\left|\cos \theta_{\mu}\right|<0.7$ range the following differential cross section [7]:

$$
\begin{aligned}
& \frac{d \sigma(\mu \mu)}{d \Omega}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta_{\mu}\right) \\
& \cdot\left(1+2 g_{v} \operatorname{Re}(X)+\left(g_{v}^{2}+g_{A}^{2}\right)|X|^{2}\right)
\end{aligned}
$$

Table 1. Precision (\%) with which $\sigma(\gamma \bar{v} v)$ or $R_{v}=\sigma(\gamma \bar{v} v) / \sigma(\mu \mu)$ have to be measured in order to detect an extra neutrino as a 3 or 5 standard deviation effect. The calculations were made by assuming two values for the errors on Γ_{z}, namely 5 and 7%

measured quantity	$\begin{aligned} & \sqrt{s} \\ & (\mathrm{GeV}) \end{aligned}$	$\begin{aligned} & \sigma(\gamma \bar{v} v) \\ & (\mathrm{nb}) \end{aligned}$	momentum limits (GeV)	$\Delta \Gamma_{z} / \Gamma_{z}=0.07$		$\Delta \Gamma_{z} / \Gamma_{z}=0.05$	
				$\begin{aligned} & 3-\sigma \\ & \text { eff. } \\ & \% \end{aligned}$	$\begin{aligned} & 5-\sigma \\ & \text { eff. } \\ & \% \end{aligned}$	$\begin{aligned} & 3-\sigma \\ & \text { eff. } \\ & \% \end{aligned}$	5- σ effect \%
$\sigma(\gamma \bar{v} v)$	89	0.130	0.25-2.45	3.1	1.8	5.1	3.1
	90	0.150	0.25-3.45	2.4	1.5	4.9	2.9
	89	0.028	$1.00-2.45$	7.1	4.3	8.3	5.0
	89.5	0.163	0.25-2.95	1.8	1.1	2.5	1.5
$\sigma(\nu \bar{\nu} \nu)$	89		0.25-2.45	8.7	5.2	9.7	5.8
	90		0.25-3.45	9.2	5.5	9.5	5.7
$\overline{\sigma(\mu \mu)}$	89		$1.00-2.45$	6.0	3.6	7.7	4.6
	89.5		0.25-2.95	11.9	7.1	11.9	7.1

Fig. 3. For $N_{v}=3,4$ the cross section ratio $R_{v}=\sigma(\gamma \bar{v} v) / \sigma(\mu \mu)$ as a function of Γ_{z} for various c.m. energies
where

$$
X=\frac{G_{E} M_{z}^{2}}{2 \sqrt{2} \pi \alpha}\left[\frac{s}{s-M_{z}^{2}+i M_{z} \Gamma_{z}}\right]
$$

The term odd in $\cos \theta_{\mu}$ has been omitted as it does not contribute to the integrated cross section $\left(\theta_{\mu}\right.$ is the angle of the outgoing muon with respect to the beam
direction). The ratio R_{v} is less dependent on Γ_{z} (Figs. 2,3) than $\sigma(\gamma \bar{v} v)$. This latter fact in conjunction with the smaller influence of the luminosity measurement makes the R_{v} ratio very convenient for the determination of the number of neutrinos. Fig. 3 also shows that, for $\sqrt{s}=89 \mathrm{GeV}, R_{v}$ increases slightly with Γ_{z}, whereas at $\sqrt{s}=90 \mathrm{GeV}$ the situation is opposite. This indicates that one may find a \sqrt{s} value where R_{v} ($N_{v}=3$,4) does not depend on Γ_{z} at all. For the $0.25<k<2.45 \mathrm{GeV}$ range this occurs at $\sqrt{s}=$ 89.5 GeV (Fig. 3c). In Table 1 we also indicate the precision which should be obtained on R_{v} in order to detect an additional neutrino. The errors tolerated are now higher than in the case of the $\sigma(\gamma \bar{v} v)$ measurement.

3. The Background Reactions

We now examine the importance of the various background reactions. Clearly the $e^{+} e^{-} \rightarrow \gamma e^{+} e^{-}, \gamma \gamma \gamma$ reactions may simulate the process under study if the final state is such that only one photon in the required momentum range is detected. Moreover at the center of mass energy corresponding to the Z^{0} mass one has also to consider the background induced by the $e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}$reaction which has a sizeable cross section (see below). The above reactions are considered as contributing to the background if they also fulfill the following conditions:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-} \\
\left|\cos \theta_{\gamma}\right|<0.7 & \theta_{\mu}^{ \pm}<\theta_{\max }
\end{array}\right.} \\
& {\left[\begin{array}{ll}
e^{+} e^{-} \rightarrow \gamma e^{+} e^{-} \\
\left|\cos \theta_{\gamma}\right|<0.7 & \theta_{e}^{ \pm}<\theta_{\max }
\end{array}\right.}
\end{aligned}
$$

$\left[\begin{array}{l}e^{+} e^{-} \rightarrow \gamma \gamma \gamma \\ \text { One photon having its momentum in the }\end{array}\right.$ chosen momentum range and being emitted with
$\left|\cos \theta_{i}\right|<0.7$ whereas the other ones have an emission angle $\theta_{j \neq i}<\theta_{\text {max }}$ (θ_{i} is the angle between the outgoing particle i and the beam direction).
For the veto angle limit $\theta_{\text {max }}$ we considered two values $\theta_{\text {max }}=20^{\circ}$ and 30°, beyond which the outgoing particles can be detected easily. In practice, $\theta_{\text {max }}$ can be made much smaller by the addition of veto counters.

As already stated above, the $\left|\cos \theta_{\gamma}\right|<0.7$ limit was chosen to allow a good detection efficiency for the $e^{+} e^{-} \rightarrow \gamma \bar{\nu} \nu$ reaction. Furthermore the background reactions decrease more rapidly than the $e^{+} e^{-} \rightarrow \gamma \bar{\nu} v$ reaction for increasing θ_{γ} [8].

In order to estimate the background cross sections we used existing Monte Carlo programs [9]. For the $e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}$case the contribution of the Z^{0} was taken into account, while for $e^{+} e^{-} \rightarrow \gamma \gamma \gamma$, the diagram of Fig. 4 was not included as its contribution was found to be small. For radiative Bhabha, to the best of our knowledge, no Monte Carlo program exists yet that includes the Z^{0} contribution. However, most of the $e^{+} e^{-}$background events are expected to arise from the t-exchange diagram contributing to the $e^{+} e^{-} \rightarrow$ $\gamma e^{+} e^{-}$reaction (no Z^{0} influence apart from interference terms). The utilisation of the $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$ Berends/Kleiss Monte Carlo program requires, however, a great deal of computer time. We have therefore only estimated the inclusive photon cross section by using the, Williams-Weizsäcker approximation*. The background cross sections obtained from the $e^{+} e^{-} \rightarrow$ $\gamma e^{+} e^{-}$reaction (Table 2) are thus overestimated as no tagging condition has been applied to the outgoing $e^{ \pm}$.

All the background cross sections used for the cases which will be considered below are given in Table 2. Because of the uncertainties and to be on the conservative side, we will use in the following a total background cross section $\left(\sigma_{b}\right)$ which is twice as much as that given in Table 2.

4. Discussion and Conclusions

In order to investigate the feasibility of the neutrino counting experiment at the Z^{0} we will consider two limiting cases concerning the luminosity (\mathscr{L}) and the running period (T):
$\mathscr{L}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \quad T=6$ months,
i.e. $\int \mathscr{L} \mathrm{dt} \simeq 15.6 \mathrm{pb}^{-1}$
$\mathscr{L}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \quad T=1$ year,
i.e. $\int \mathscr{L} \mathrm{dt} \simeq 3.1 \mathrm{pb}^{-1}$

[^1]

Fig. 4. Diagram which was not taken into account in the $e^{+} e^{-} \rightarrow 3 \gamma$ background calculation. Here the 3 photons are coupled to the Z^{0} via a quark or lepton loop

We consider these cases where the luminosity is known with a precision of $2.5 \%, 5 \%$ and 10%. We study here the measurement of the R_{v} ratio taking into account the various backgrounds as well as the errors made on the luminosity and on the determination of the width $\Gamma_{z}\left(\Delta \Gamma_{z} / \Gamma_{z}=5 \%, 7 \%\right)$.

We give in Tables 3 and 4 the number of standard deviations (s.d.) with which a fourth neutrino will be observed for the various cases. One sees from these tables that at $\sqrt{s}=89 \mathrm{GeV}$ an additional generation can be easily detected with the method outlined if $0.25<k<2.45 \mathrm{GeV}$ for the detected photon. This remains true if the background cross sections are twice those given in Table 2 even in the case of the low luminosity ($3.1 \mathrm{pb}^{-1}$). For the same γ momentum range the number of standard deviations is significantly increased when the c.m. energy is 0.5 GeV above the Z^{0} mass. In the framework of our assumptions this corresponds to the position where the results do not depend on the precision reached in the Γ_{z} measurement. By carrying out an experiment at this c.m. energy one has also the opportunity to study the properties of the Z^{0} boson (for $\Gamma_{z}=2.6 \mathrm{GeV}$, the ratio of the peak cross section $\sigma\left(\sqrt{s}=M_{z}\right)$ to that obtained at $\sqrt{s}=M_{z}+0.5 \mathrm{GeV}$ is about $1 / 0.87$).

In order to extract from the experimental R_{v} value the number of neutrinos one has also to take into account the c.m. energy dispersion of the $e^{+} e^{-}$collider. In other words, the experimental R_{v} values have to be compared with the theoretical ones folded with the energy resolution of the machine. This is a rather trivial procedure as long as the dispersion σ_{E} (in fact the energy resolution function which we assume to be gaussian) is known. An additional error will of course occur if σ_{E} itself is only known within a given precision. In order to appreciate the importance of this effect let us consider the case where σ_{E} is known to within 10%. Even for a large energy dispersion [3] of $\sigma_{E}=0.04 \sqrt{s}$, the theoretical R_{v} value at $\sqrt{s}=M_{z}$ will suffer an uncertainty of only 0.7%. This uncertainty (which is almost entirely due to the $\sigma(\mu \mu)$ cross section) will not change significantly the number of standard deviations given in Table 3 and 4. For instance, in Table 3 the value of 5.9 s.d. corresponding to $\sqrt{s}=89 \mathrm{GeV}$, $\sigma_{b}=59 \mathrm{pb}, \quad \Delta \Gamma_{z} / \Gamma_{z}=0.05, \Delta \mathscr{L} / \mathscr{L}=0.05$ and $0.25<k<2.45 \mathrm{GeV}^{2}$ will be reduced to 5.2 s.d. The present example shows that the knowledge of σ_{E} within

Table 2. The background cross sections for $\theta_{\max }=20^{\circ}, 30^{\circ}$ (obtained with the help of the Monte Carlo programs) which will be used below

	$\sqrt{s}=89 \mathrm{GeV}$		$\sqrt{s}=89 \mathrm{GeV}$	$\sqrt{s}=89.5 \mathrm{GeV}$		
background	$0.25<k<2.45 \mathrm{GeV}$	$1<k<2.45 \mathrm{GeV}$	$0.25<k<2.95 \mathrm{GeV}$			
	$\theta_{\text {max }}=20^{\circ}$	$\theta_{\max }=30^{\circ}$	$\theta_{\max }=20^{\circ}$	$\theta_{\max }=30^{\circ}$	$\theta_{\max }=20^{\circ}$	$\theta_{\max }=30^{\circ}$
$e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}$	4.2 pb	10.0 pb	1.3 pb	3.5 pb	4.8 pb	10.4 pb
$e^{+} e^{-} \rightarrow \gamma \gamma \gamma$	6.0 pb	6.2 pb	2.2 pb	2.2 pb	7.5 pb	8.5 pb
$e^{+} e^{-} \rightarrow \gamma e^{+} e^{-}$	43 pb	43 pb	17 pb	17 pb	47 pb	47 pb
Total	53.2 pb	59.2 pb	20.5 pb	22.7 pb	59.3 pb	65.9 pb

Table 3. Statistical significance (in standard deviations) with which a fourth v will be observed for various cases. The values were obtained with an integrated luminosity of $\int \mathscr{L} d t=15.6 \mathrm{pb}^{-1}$ corresponding to a six month running period with $\mathscr{L}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. Note that with our assumptions the calculated values do not depend on Γ_{z} at the c.m. energy of $\sqrt{s}=89.5 \mathrm{GeV}$

\sqrt{s}	γ spectrum	$\sigma(\gamma \bar{\nu} v)$	σ_{b}	$\Delta \Gamma_{z} / \Gamma_{z}$	Statistical significance for a 4th $\bar{v} v$ generation (s.d.)		
					$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.10$	$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.05$	$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.025$
89	0.25-2.45	0.13	53.2	0.07	3.9	5.6	7.2
				0.05	4.3	6.2	8.0
89	0.25-2.45	0.13	59.2	0.07	3.6	5.3	6.9
				0.05	4.0	5.9	7.7
89	$0.25-2.45$	0.13	2×53.2	0.07	2.3	3.7	5.2
				0.05	2.6	4.1	5.8
89	0.25-2.45	0.13	2×59.2	0.07	2.2	3.4	4.9
				0.05	2.4	3.8	5.5
89.5	0.25-2.45	0.163	59.3		6.0	8.6	11.0
89.5	0.25-2.45	0.163	65.9		5.6	8.1	10.6
89.5	0.25-2.45	0.163	2×59.3		3.6	5.7	8.0
89.5	0.25-2.45	0.163	2×65.9		3.3	5.3	7.6
89	$1.0-2.45$	0.028	20.5	0.07	1.3	1.8	2.2
				0.05	1.7	2.3	2.9
89	$1.0-2.45$	0.028	22.7	0.07	1.2	1.7	2.1
				0.05	1.6	2.2	2.7

10% appears to be acceptable. In any case in order to determine the number of $\bar{v} v$ generations one has to know the energy resolution function of the collider and eventually its evolution as a function of time.

To summarize we have shown that the measurement of the number of neutrinos can be carried out by means of the $e^{+} e^{-} \rightarrow \gamma Z^{0}$ transitions studied on the Z^{0} resonance itself. We used rather pessimistic estimates for the background induced by the reactions
$e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}, \gamma e^{+} e^{-}, \gamma \gamma \gamma$. A more accurate estimation of the back-ground cross sections will be one of the most crucial problems to be solved. This could be done for instance by using the theoretical work of [11] as the starting point.

The present note has also shown that one has to detect photons of low momentum, preferably in the $0.25-2.45 \mathrm{GeV}$ region. The extraction of the number of neutrinos from the data is based on the comparison

Table 4. Same as in Table 3 but with a one year running period using a luminosity of $\mathscr{L}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ corresponding to $\int \mathscr{L} \mathrm{dt} \simeq 3.1 \mathrm{pb}^{-1}$

\sqrt{s}	γ spectrum	$\sigma(\gamma \bar{\nu} v)$	σ_{b}	$\Delta \Gamma_{z} / \Gamma_{z}$	Statistical significance for a 4th $\bar{v} v$ generation (s.d.)		
					$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.10$	$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.05$	$\frac{\Delta \mathscr{L}}{\mathscr{L}}=0.025$
89	0.25-2.45	0.13	53.2	0.07	2.6	3.3	3.8
				0.05	2.9	3.7	4.2
89	$0.25-2.45$	0.13	59.2	0.07	2.5	3.2	3.7
				0.05	2.8	3.5	4.1
89	0.25-2.45	0.13	2×53.2	0.07	1.8	2.4	3.0
				0.05	2.0	2.7	3.3
89	$0.25-2.45$	0.13	2×59.2	0.07	1.6	2.3	2.9
				0.05	1.8	2.6	3.2
89.5	0.25-2.45	0.163	59.3		4.0	5.1	5.8
89.5	0.25-2.45	0.163	65.9		3.8	4.9	5.7
89.5	0.25-2.45	0.163	2×59.3		2.7	3.8	4.7
89.5	0.25-2.45	0.163	2×65.9		2.5	3.6	4.5
89	$1.0-2.45$	0.028		0.07	0.8	1.0	1.1
				0.05	1.1	1.3	1.5
89	$1.0-2.45$	0.028		0.07	0.8	1.0	1.1
			22.7	0.05	1.0	1.3	1.4

of the experimental $R_{v}=\sigma(\gamma \bar{\nu} v) / \sigma(\mu \mu)$ value with the theoretical predictions. As a further cross check it is also essential to study the photon spectrum shape and to compare it with the theoretical prediction in order to verify the validity of the underlying assumptions. The detector chosen for a neutrino counting experiment should thus have a good energy resolution for low momentum photons.

Acknowledgements. It is a pleasure to acknowledge helpful discussions with Professor Elliott Bloom, Dr. Donald Coyne, Professor R. Gastmans and Dr. Ronald Kleiss. One of us (T.T.W.) thanks Professor Hans Joos, Professor Erich Lohrmann, Professor Paul Söding, Professor Volker Sörgel and Professor Thomas Walsh for their kind hospitality at DESY.

References

1. K.J.F. Gaemers, R. Gastmans, R.M. Renard: Phys. Rev. D19, 1605 (1979)
2. G. Barbiellini, B. Richter, J.L. Siegrist: Phys. Lett. 106B, 414 (1981)
3. Proceedings of the SLAC Workshop, SLAC 247 Report, March 1982, D. Coyne: private communcation
4. S.L. Glashow: Nucl. Phys. B22, 579 (1961); S. Weinberg: Phys. Rev. Lett. 19, 1264 (1967); A. Salam: Proceedings of the 8th Nobel Symposium, p. 367, May 1968, Ed. N. Svarthorm. New York: Wiley 1968
5. This is the type of error obtained for Γ_{z} by fitting a Breit-Wigner function (without radiative corrections) to an experimental Z^{0} excitation curve made from 9 data points where each of the 9 cross sections have an error of 5 to 10%
6. Crystal Ball letter of intent for the SLC, October 15, 1982; BGO Ball letter of intent for the SLC, September 30, 1982
7. R. Budny: Phys. Lett. 55B, 227 (1975)
8. See for instance [3]
9. For the $e^{+} e^{-} \rightarrow \gamma \mu^{+} \mu^{-}$reaction: F.A. Berends, R. Kleiss, S. Jadach: Leiden Preprint (1982) For the $e^{+} e^{-} \rightarrow \gamma e^{+} e^{-}$reaction: F.A. Berends, K.J.F. Gaemers, R. Gastmans: Nucl. Phys. B57, 381 (1973): B63, 381 (1973); B68, 541 (1979); the Monte Carlo program is described in F.A. Berends, R. Kleiss: Leiden Preprint (1983) For the $e^{+} e^{-} \rightarrow \gamma \gamma \gamma$ reaction: F.A. Berends, R. Kleiss: Nucl. Phys. B186, 22 (1981)
10. A similar approach has been taken in [2], J.L. Siegrist: private communication
11. P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu: Phys. Lett. 105B, 215 (1981); Nucl. Phys. B206, 53 (1982)

[^0]: * Permanent address: DPHPE, Centre d'Etudes Nucléaires de Saclay, Gif sur Yvette, France
 ** Work supported in part by the Bundesministerium für Forschung und Technologie
 *** On leave from: Harvard University, Cambridge, Mass., USA. Work supported in part by the U.S. Department of Energy, Contract No. DE-AS02-76ER03227

[^1]: * T. Walsh, private communication: The photon inclusive cross section in this approximation is given by:
 $\sigma=\frac{48}{\pi} \alpha \sigma_{0} \ln \left(\frac{E_{B}}{m_{e}}\right) \ln \left(\frac{k_{\max }}{k_{\min }}\right) \frac{\left|\cos \theta_{\gamma}\right|}{1-\cos ^{2} \theta_{\gamma}}$
 where $k_{\max }\left(k_{\min }\right)$ is the maximum(minimum) photon momentum, E_{B} is the beam momentum and m_{e} the mass of the electron. Here, σ_{0} is the point like $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$cross section at the considered c.m. energy

