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Wilson loops are calculated to one-loop order using lattice actions including 6-link loops The
static potential 15 extracted and 1ts small-a expansion performed using coefficients determined at
tree level The .1-parameter for Symanzik’s improved action 1s thereby obtained and constraints
placed on the coefficients appearing i the action at order g°

1. Introduction

Monte Carlo techniques applied to lattice regularised quantum field theories
present possibilities to explore non-perturbative phenomena. To extract quantitative
physical information, in asymptotically free theories, the continuum limit must be
approached, in which case the bare coupling must a priori be chosen sufficiently
small and the lattice size sufficiently large such that the constraints

lattice spacing ‘““‘a’ « correlation length ¢ « lattice size L, (1.1)

are fulfilled. Unfortunately, practical limitations, often force us, at present to violate
these restrictions, and this leads to expected systematic errors. It has, however, been
discovered by Symanzik [1, 2] that the corrections to the continuum theory stemming
from finite lattice spacing can be systematically diminished by the use of a judicially
chosen lattice action.

Symanzik has described the construction of the improved action for both ¢3 [3]
theory and the non-linear o-model 1in 2 dimensions [4]. The improved action for
the non-linear o-model was completely specified to 1-loop order [4] and used 1n
Monte-Carlo calculations [5-7], and dramatic improvement in the scaling behaviour
and other properties was claimed. There have been also some studies [8] involving
an mmproved Gross-Neveu model lattice action which also idicates the merit of
using such actions.

The initial success of Symanzik’s programme for the above models encourages
the pursual of the programme for Yang-Mills theory and to the full QCD. For the
Yang-Mills theory the following motivated ansatz for the improved action was
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made [9]

2
Simp=—"3 L Re{cao(gz)gtr(l—uR(D))

g Repts R

+cri(8?) é tr (1—-ur((LJ))
+cra(g”) g tr (1= ur( QD))+ cralg?) % tr (1= up( () ))}- (1.2)

Monte-Carlo calculations have already been carried out [10] using tree-level
improved coefficients. The topic of this paper is to place some constraints on the
coefficients to 1-loop order.

We want first to take this opportunity to clarify a misconception introduced by
one of us in ref. [9] (referred to as (I), in the following). In (I) it was incorrectly
implied that to tree level ¢,(0), ¢3(0) (¢, =Y 2trcr,) satisfied ¢»(0) + ¢;(0) =0 but
were separately undetermined. The correct statement is that the constraint c,(0) +
c3(0) =0 is the maximal information that one can extract from consideration of the
Wilson loops at lowest order, but

c2(0)=¢;(0)=0, co(0) :%, ¢, (0)= —1]7 > (1.3)

1s obtained by consideration of the improvement of the full classical action. A clear
form of these considerations due to Liischer is presented in sect. 2. Curci, Menott:
and Paffuti [11] were the first to correctly determine the tree-level action, although
their derivation followed calculation of corrections to the static potential at 1-loop
order.

In sect. 3 we calculate Wilson loops with the improved action (1.2) on an infinite
lattice to 1-loop order. In sect. 4 we extract the static potential and perform its
small-a expansion. We thereby obtain a value for the ratio of A-parameters of
improved and umimproved actions, and also place constraints on the 1-loop
coefficients, c!(0). Again, not all the coefficients are determined since the Wilson
loop 1tself contains insufficient information at this order. However our result shows
that bent plaquettes will be required at 1-loop order. The results are discussed
briefly in the conclusion. Sect 5 deals with a definition of an improvement of the
x-variable, mtroduced by Creutz [14] to extract the string tension.

2. Improvement of the classical action

This section, which deals with the improvement of the classical action and hence
of the quantum effective action to tree level, is due to Liischer, who kindly permitted
us to include his clear exposition in our paper.

Consider SU(n) gauge fields U(n, u), ne Z2° w=1, ..,d,d=2. An admissible
classical lattice action S is required to fulfil the following.
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(a) S 1s local,

S=) L(n), (2.1)

where L(n) depends on a finite number of link variables in the neighbourhood of .

(b) L(n) is real and a scalar under translations of the fields. $ is invariant under
cubic rotations and reflections.

(c) L(n) 1s a gauge mvariant polynomial in the link variables.

(d) S has the correct classical continuum limit i.e. let A, (x) be an arbitrary C™
gauge field with compact support. For every a > 0, define

U(n, u)=Pexp [a J:Jl th‘L(an+a;2—ta;2)] . (2.2)
Then we require
Iim a’*s=1 J d‘xtr F,F,,, (2.3)
where
F,.=0,A,-3,A,+[AL,A]. (2.4)
Remarks.

(i) Because of the classical nature of the consideration the coupling constant
plays no rdle.

(1) The idea associated with (2.2) is that a lattice with spacing “a” is embedded
n space-time. The U(n, u)’s are then just the parallel transporters from an + af
to an determined by the A,’s. The construction is thus gauge covariant: when A,
is transformed by a gauge transformation then U(n, u) is transformed by the
corresponding lattice gauge transformation. (a)—(d) imply that

a“s=5J d’x tr (F,.F,,)+0(a"), (2.5)

where, in the usual case, p=1. In the special case that p=1, we call the action an
mmproved classical action. In the following it is the aim to determine such an action.
Consider first the case d =2. Define for each closed path ¢ on the lattice

W) =tr U(¢), (2.6)
where U(¢) 1s the product of U’s along ¢. Further define
Ly(n)=N-—Re W(¢,), (2.7)
L,(n)=2N—-Re W(¢,)—Re W(¢)), (2.8)
where €, ¢, € are the paths in fig. 1.
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Fig 1 Loops appearing in the action (2 9)

The action

S==2{aLy(n)+BLi(n)}, (2.9)

fulfils properties (a)-(c). The constants a, 8 should now be determined such that
also (d) holds in the form of (2.5) with p=2 Consider then A, a classical field as
in (d), and define ly(x, a) and [,(x, a) analogously to Ly, L, except that the corre-
sponding paths ¢ start at x instead of at an. In particular then

L(n)=I(an,a). (2.10)

It then follows from the theorem proved in appendix B that

4 v
a’$=y —a"™ J d*x a(l,,{alo(x, a)+Bl(x,a)}a-0+0O(a*). (2.11)
The integrands (8”/3a”) {aly(x, a)+ Bl,(x, a)},—o m (2.11) are polynomials in A, (x)
and their derivatives. The dimension of each contribution 1s exactly v and only
gauge invariant combinations occur. The sum extends over only even v since terms
with odd v would violate panty. One immediately establishes that the integrands
vanish for » =0, 2. It then follows that

2
a’S= J’ dzx{ro tr F°+a’r, ¥ tr (D#F)z} , (2.12)
p=1
with
F=8,A,—0:A+[A}, A3], (2.13)
D.,F=4,F+[A,, F1. (2.14)

To determine the coefficients r, and r; we consider an abelian field

A,(x)=a, ()T, a,(x)eR, (2.15)
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Then we have
F(x)=f(x)T, f=d&a—da,
D,F(x)=8,f(x)T,
tr F’==3f*,  tr(D,F)Y’=—3,f),

lo(x,a)=2{1—cos<§a2J’ J dzzf(x+az))},

1 2
l(x,a) =2{1 —cos <£a2 I J d’zf(x+az)

)

+2{1—cos <%a2J2J1 dzzf(x+az)>}.

Expanding for a0

lo(x, a) =}‘a4{f2—ﬁa2 D (8Hf)2+dlvergence+0(a4)} ,
m

Li(x,a)=%a*8f*—a*3 ¥ (8,f)*+divergence + O(a®)},
"

i

and mserting this in (2.11) together with (2.17) yields (2.12) with

Iy = %a +48,
= 7146! +EB .
To get the improved classical action we chose
ro=1, r=0

and hence require

_ 10 1
a=73, B=—5s.
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(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

For dimension d = 2, for u # v, define L§"(n) and L{"(n) as Ly(n), L,(n) above
with the loops in the w, v plane. It then follows from the theorem in the appendix

and the considerations for the case d =2 that the action

S=Y ¥ {BL&"(n)—&Li" (n)}

n p<v

(2.26)

1s an mmproved classical action for arbitrary d. Now if one takes the classical
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continuum limit of the classical action

s=—a°““i2 i Y Yo tr (1-Ugr(€)), (2.27)

g 1=0 €T, R
with the sum going over 4 and 6 link loops (see (1)) one obtains
3
S= J ddx{k050+a2 Y k,S,} , (2.28)
=1,
with
So=tr ¥ F.., (2.29)
MV
and the S, operators are of dimension 6 (see (I)). The coefficients k, are linear

functions of the c’s. Since every operator S, can be projected out, the system of
equations

ko =%g2 > k=0, (2.30)

has exactly one solution. As shown above then

()

? C2=C3=0, (231)

-3 [
=3, € =1

(¥

is a solution and hence unique.
In the quantum case, the classical action equals the effective action to order g™°.
To improve the quantum action at tree level one then needs 1n particular

In the following sections we will set a=1, “a” can always be remtroduced by
dimensional analysis. For any undefined notation the reader 1s requested to consult
paper (I).

3. Calculation of the Wilson Loop to second-order perturbation theory

Define the coeflicients w,z(€) by

o 2n
8

”:1(2—n)lwnR(f) (31)

In i {(tr Ur(€)) =~

These are expressible in terms of correlations U involving products of n A fields
defined through

n

(U -1y= 3 Eupiep), (3.2)
R n=2H
with

, 1
UR' (€, 8)=—tr R“Rb<2 A?,AZ>, (3.3)
R

I
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1
U (¢, g)=—1-tr R“R”Rc< Y AfAPAL+3 T
R h<ly<iy

hda,ls

1
U&{”(f,g)=—d—trR“RbeRd<z4 Y  ALALALAL
R

h<iy<iy<iy

+12 3,

L<bh<ly

+ Y (6ATAPASAL+4AL AL AfAL+AALALALAD)

<l

+¥ A?Af’A,‘Af>.
i

(ALALALAL + AT AL AL AT + AT ALALAY)
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(AL AL a—A;’,AzAf,>>,

(3.4)

(3.5)

The sums are over links [,€¢ and [, <[,<--- denotes path ordering starting at

some arbitrary point on €.

Expanding
U’ (¢,8)= % grUR(£),
=0
p+n£() mod 2
we have
—w = 512) ’

—w,=(US =3(UP P +4UP + 12U .

w, for an L, T loop 1s given by

wlR(Ls T) = CRF(L5 T) 3

with

B sin (3k,L)\?/sin (%kd'l‘))2
iL, T)_L< sin (3k,) ) ( sm (bkg) ) Drarah)-

The numerical values for the lowest /’s are

an=fh fora=
’ 0.366262, for ¢;=—15,

0.862251, for ¢, =0
1
(1,2)= 4#(1,1)+§—C—(%—ﬂ(1,1)), a#0
1
0.662624 , for ¢, =—15.

(3.6)

(3.7)
(3.8)

(3.9

(3.10)

(3.11)

(3.12)
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The expression for w, 1s rather more involved. We use covariant gauge fixing with
Feynman rules given mn detail in the appendix and find,

Ugg (fLT) - 3( ng) (fLT))2

=—6NCR{%I1(L, T,4) J D, (k)

K

1 { _ .| . N A
'*'J [[—Dll(k)Dll(k,)—ZT(sjz[s%s/lz “%(S;& +5 2)(%__1> :I
Kok 51S s St

1 1

-+ -
_ _ . N S
+152 (s — sT)(3] +357 )(—l—-‘—))
S1 5

N2/ =1\2
+ Dy (k) Dya(k") cos (kiL) cos(kﬂ“)(?) (S_:’)

1 Sa

1 e 7§
+2D11(k)D1d(k’) 7 5:12(1(57'*‘31 )(51 -5 )(—i_—>
5181S 1

19d

7]

+cos (de)[—s’%(l 38+ 457 '+§1‘)<s_+51 +S%ST):|>
1

+Dyy(k)Dy (k') —— ( 51515354
§151845a
158785, . __
4 s— é(slsr — 5787 (sa8i —$452)
=2 512 52 1 S‘-;- 517 +2 -2
+5357 | =25t 4+ = — (1P +s ) | H(LeT) (¢, (3.13)
287 5,
where s; =sin (k,), §, =sin (3k,L), s, =sm (3k,), 5, =sin (3k,T) and similarly for
k', k"=k=xk'.
Further

Uﬁﬁ(fLr)=6iNCRj (2m)*8(k+k'+ k")

k.k'.k
in (bk7L
<E GV (kK KD (KD, (k) Dy (1 i i) S
H 1
in (4 in (3kiL
x (————S‘“ (;le) cos (ki Lye, - S GKIL) oo (%le)c’1>
1 1

(@_@> , Boa_sinGK,L) sin (GkiL)
Sll, SZ SZ M S{

X cos (%k’{L)(sin2 (3k,T)—sin? (%kﬁ,T))] +(LeT), (3.14)
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in Gk, L)\?/sin Gk, T)\* A R R R
U;%2<m>=—cRJ (S‘“ (zky )) (S‘“ (zka )) (80— Kb (R1Bao — Kby )
k

$ 4
X D, (k)m,,(k)D,; (k) ,
with
= Tmeas T T+ 7' + 7w + 0 o+ 73,

where

i (k) =—13N8,, ,

k

& (k) =—55N8,, +iN .L' 2m)*8(k+k'+ k") =375 k’zk"z

B, — (K — k") (KT,

Lo(k) = (K38, — £,8,,) KA[(ch — ch— (K2 + K3) + (ch+ ch) k2T,

T (K) =152 26(6C,~ N)(K,8,., — k,8,.) Kk,
X J’k’ D14,14(k,){(cs()+ 8¢,0)+ 166}1(0/2\ + C;ZL)C,lz

ten Y (kP4 D+12(crtcs) ¥ c§2c2}

PFEA pFE A

vaz(k)=§Nj Dy (k)T e Vi (k' =K' b, —k) = Vi, (K, k, =K',
k' 1

Appy

=N L' D,\p(k’)|[ [8“, (1202 12 +Z (k2c? +k'2c2)>
— 48,k k¢ —28,,(6—3k? —312;3+1€il€'3)]
— ke ke [48,,8,, kL K, +28,,(8,,.¢% +8,,¢2)]
+c1{ [6AP5M<12cﬁcf(—212f—212i+I€il€f)
+§(12(k3+1€;2)—(1€:+12;4)—7(1€i1€3+1€;212;2)—12E312;2

—3(K2E2+ k122 + 22612 (k2 + k2 + 3k k12 (k2 + k12)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(320)

—k)

(3.21)
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+88,,kL, K, (—9¢2 +3k2 +3k2 +1k)7 -3k
Rk -3 —3R)
— 88, (—9(k2 +k'2) = Hk2 + k2)+ (k2 K2 + k12k2)

F3RE R 3R + A K22 +6k2 k2
~ k3K (K + k) — kR (k23 +l€ic:3>>]
ke, ([80,8, k0 K (=9 +12(K2 + K12)— K2 K2)
+ 8,00, (—36¢2 +14K2 + 18Kk +2k2 - 3k2 k/?
—3k2k = SkLk el 2kl — 2Kk ]+ [wo v])}
+termsx ¢,, C5 , (3.22)
mhi =—3N J (27)*8(k+k'+k") D, (k') D, (k")
k' k"
XY e, VO, (k k', kY VD, (kK k") (3.23)
L]

In Formulae (3.19)—(3.23) the coefficients ¢, appearing are understood to be evalu-
ated at g>=0. One can check that the condition =, (0) =0 holds as it should.
Numerical evaluation of w, for finite L, T for the improved action remain to be
done. For the Wilson case we agree with Di Giacomo and Rossi [13] for the value
of w,(1, 1) and find only small corrections [14] to the estimates for the x’s quoted

by Hattori and Kawai [15].

4. The limit 7-> © and the small-a expansion

To extract the static potential we perform the limit T —»co. To first order

lim —% wir(L, T) = Cxr J sin® 3k, LYD(K)|i,=0 » (4.1)
k

T
where we have introduced the notation D(k)= D,,;(k). Note
D7 (K)|xy=0= k—c, 3 k?
=k*+0O(k%), for ¢;=—1s. (4.2)

The behaviour of D™!(k) for small k noted above ensures the improvement of the
cutoff dependence of the static potential in lowest-order perturbation theory. In
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second order we find

Im —(U“” (URP) = —6NCR[§J- D(k'") J‘ksinz(%le)D(k)lkfo
o

—J sin’ (%kTL)D(k’)D(k)’kfké
Kk’

170
_4J %lzkd){sin2 (ki L) D (k) g0
kk' Sa

0
—sm’ (%ka)D(k)hd:k:,}‘—ak, D(k')] ,
d
;1m — U(IR =-6iNCg J 2mw8(ky) sin® Gk, L)D(k)
=00 k,k’

Ccos
. cos (3k)

d

D, (k")D,4(k* )chVﬁz’A’p(k k',—k")
and

lim %U(Z) =—4Cg '[ 278(ky) sin® 3k, L)D?*(k) (k) .
k

T

Hence summing (4.2)-(4.4) we have

_}lm %WZR(L’ T)=48Cy J‘ sin” (%le) Wz(k)Dz(k)’kFO
00 x

with
Wz(k)=[77dd(k)+%ND‘l(k)J’ D(k')—%ND_Z(k)J D(k")D(k")
K’ K’

—%ND_'(k)J (1-D7 (k) D(k™ )) ,D(k)

ok,

!

ZIND l(k) J’ S’ pd(k )D’rd(k )Z CIVEil;Z'r(ks k’, —k+)] .
kg=0
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

It can be checked that w,(k) is indeed independent of the gauge parameter a as

required. Rewriting (4.7) we have
Wwak) = x(k)+Ny(k)+z(k),
with
x(k) = dok?1(1, 1) +4d,(2k> -1 ¥ k)1, 2)

(4.8)

(4.9)
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where

d=%Y2t(6C,—N)cy,. (4.10)

For the case where just the fundamental representation is included one has d, =
(2N?-3)¢,/12N. Further

2(k)=(c} —ch—ch) T kP +(ch+cs) (kD2 (4.11)

y(k) =15k JW $SPYDWY+ [ 1Dy (D)
+c,{(84—-6012—2712 +1012+ 22 12)D(1) + (36 — 1412 D, (D [, [,

— e Yk J (25100362 + 21212 + 1) D(D) + (4— P Dy (D 1 14]
i !

+[D_1(k)%J'D(1)—5D_'(k)‘[ (1-D (k) D(k")) <~ ——,—D(k)
! k' d 8k

1212
_1lp-2 + n_ | Cdka 7—1 —71—)
SD (k) J’k, D(k )D(k ) Jk’ er <k+2 k12

71D (k) J %Dpd(k’)Drd(k+) YV, (k k', —k™)

d

-3 J ([Dpa(k')Dm(W) Y a6, Vi (k k', =k ) Vi (k, K, —k+)]
L)

—[k=0]>]k:0, (4.12)

with
Y Vi (k k' =k )0

=18y (k— k'), +26,K148,— 80 (K" + ),
184 (— ki (8,ak = K3kT) — (k= K (K2 + K2 +2K12))
+28, k0 (K28,4—2¢,k? — KLk} (1-4k2)—2¢,k2)
+ 84—k (8,0k 2= k) + (K 4K, (K2 + K2 +282)].  (4.13)

For the Wilson case ¢; =0 our expression reduces to that first obtained by Miiller
and Riihl [16] in the axial gauge,

IN?=-3 o,

x(k)‘c,=0= 24N ’

(4.14)
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. 1 5 . K2\ ¢ 1
o At B " 2J’ ( ) d k2 2v|’ *
y(k)|61—0 k (4 J’k’ k/2 96) [Zk o 1- k+2 (k/2)2 8( ) » krzk 2
12 12112
Cd (2 12 [2 12 cakiy ( 1 1 )]
- + — x5 X AT T A S
+ J-k’ k/2k+2<2k Cd ; k' kl ) 4 J-k' klz k+2 kr2 k=0

(4.15)

To carry out the improvement programme we require the expansion of W, up to
terms ~k*. x(k) is of no problem

x(k)=k*(dof(1,1)+8d,(1,2))— Zk“(doﬂ(l 1)+20d,0(1,2)) +O(k°) .

(4.16)

The expansion of y(k) is complicated due to the horrible algebraic form of the
propagator and vertices. The procedure we followed was as follows. We first broke
y(k) into three pieces

(k)= )’(k)lcl otcr— ac, k)‘cl 0+C1R(k ). (4.17)

The Wilson part y(k)|., -, contains all the terms k* In k*. Each additional factor of
¢, carries with 1t additional powers of momenta in the integrand. Hence the second
and third have logs starting at order k* and k°® respectively. The expansion of the
first two pieces was performed by hand and the resulting coefficient evaluated
numerically. The third piece was evaluated by performing a Taylor expansion of
the integrand using ‘“‘Reduce’” and then integrating numerically. Our final result 1s

y(k):—BOkzln K+ ay(c) k2 +(4 S(1+120) In i
[1(,(k2)2+ 2y k“:' +a,(cy) z k* +as(c)(k32+0(k°In k%),  (4.18)
with

By = 11N (4.19)

07 3(4m)?’ '
a,(0) =P, +<P 28 10108435 (4.20)

1 342 3641 9(471’)2 48 . ’ -
a,(—)=a,(0)—0.031381, (4.21)

02(0) = P2+2160P1+576+(4 )2{ 105 ln 2— 12 600

=-0.015470, (4.22)

a(—12) =—0.002002, (4.23)
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1

a3(0)=—15*3P3+%P2—%P1+—5{%ln2—%
(47)
=-0.002188, (4.24)
as(—%) =0.003695 , (4.25)
where
[ 1
P = 73=0.1549334, (4.26)
JI
[ dY1 [ 1 1 1 ]
Po=| ——|=s0(n—|L) s+ 57—
2 J_w (271_)4_ l)zl’:[ (7T Ilﬂl) (12)2 (l2+1)2
=0.0240132, (4.27)
(* a1 [ 1 1 (1 1 )121“]
Pi=| — 6(m—|L)— - - e
S Nl o R T T T PR e
=0.0022482 . (4.28)

The coefficients of the k* In k* terms for ¢, =0 agree with those calculated by Stehr
[17]. The important result is that the k*In k* terms vanish for ¢, =—7 as first
pointed out by Curci et al. [11]. Setting ¢,(0) = —¢5(0) #0 would introduce an
unwanted (k*)* In k” term and hence we must have ¢,(0) = ¢;(0) =0, thereby repro-
ducing the result in sect. 2. In fact it has been proven by Symanzik [18] that for
scalar field theories, the inclusion of next-nearest neighbours to achieve improvement
to the tree level, also ensures the absence of all a®In a terms 1n the 1-loop graphs.
The above result indicates that the proof also extends to lattice gauge theories.

Comparing the result of Fischler [19] for the static potential in the continuum
minimal subtraction scheme with the O(k?) terms in w(k) obtained above, one
obtains the ratio of the lattice to continuum A’s. For the Wilson case one recovers
the Hasenfratz and Hasenfratz [20] result [21]

AL Wilson ~1 [ ]. ]}
—= -+ ———=N, 4,
A exp{J +Bo 16N P, (4.29)
where
J=XIn47—v)=0.9769042 , (4.30)
1
P=%P1+%P2+ﬁ—m=0.0849780 . (4.31)

For the ratio of the A’s for the improved Wilson action we obtain

A 1
Mesmp Wison _ o /oy { By [N(0.043300) —N(o.o41414)] }

A L,Wilson

_{4.133i0.004, for N=2

(4.32)
5.294+0.004, for N=3.
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These values agree with those obtained independently by Bernreuther and Wetzel
[22] but lie outside the range mitially estimated by Curci et al. [11]. A-ratios for
other improved actions (e.g. mixed action) are easily deduced from the above
formulae.

Finally the improvement of the action requires the absence of k* terms in w,(k).
Hence, combining the results above we demand

¢y +c¢3=—N(0.003695), (4.33)
c1 =—N(0.001693) + dy(0.030522) + d(1.104373),

1
= —N(O.OO8553)+—N(O.010290) , (4.34)

Wilson case
¢y +8ci+16¢, +8c5=0. (4.35)

We note that our corrections are numerically very small for all reasonable g°N,
similar in order of magnitude to those found by Symanzik [4] for the non-linear
o-model.

5. An improved y

To implement the improvement programme consistently it 1s necessary to check
that the observables measured have sufficiently weak ntrinsic cutoff dependence.
For example, looking forward to the theory with fermions, local currents defined
via point-splitting would in general have to be improved. An example of a non-local
expression 1n the pure gauge theory which requires improvement, and which we
will briefly discuss in the following, is Creutz’s y [12], often used in Monte Carlo
calculations to extract the string tension. y is defined by

a?x(R,a)=a *(V(R,R,A,a)-2V(R—a,R,A,a)+ V(R—a,R—a, A, a)),
(5.1)

where V is the logarithm of the R X T Wilson loop
1
V(R, T, A, a)=—In (N (tr U((RT)>) . (5.2)

In the continuum limit (a » 0, R, T, A fixed), V approaches a finite value v modulo
linear and kink divergences. A possible definition of the string tension is

. Jd 0
X —R,hTrEm R aTU(R, T,A). (5.3)

a”*x in (5.1) defined by Creutz, has the merits that firstly it 1s absent of the perimeter
and kink divergences mentioned above; and secondly, in the continuum limit, it
approaches (3/0R)(3/3T)v(R, T, A)|r-g, which for large R gives the string tension.
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Suppose now, we consider the situation from the point of view of the improvement
programme, and suppose that Symanzik’s improved action has been constructed
and observables such as V have diminished cutoff dependence. Then for small a/R
it follows that

2 (R, @) == L (R, T, )|y — (— )L R T A
R oT oR "3T/3R oT

+‘2(62+388+62)68(RTA| +-
—— 5T - - t—5 ) ——V0
aR% 2 0R oT 8T/ 4R oT =K

(5.4)

In other words, x as defined in (5 1), has corrections O(a?) to the continuum
expression and its use would theoretically not be in the spirit of the improvement
efforts made so far. The corrections arise because of the explicit dependence on the
cutoff in the definition of y. We can, however, easily find a modified y (which we
call ¥) so that the corrections are O(a*),

a *%(R,a)= E—T-U(R T, M|r-r +0(a%). (5.5)

It just imvolves a slightly more involved sum
aizXA(R’ a)= Z em,nV(R+m7R+n’ A’ a)’ (5'6)

with coefficients e, ,, satisfying

Y enn(m+n*)=0, for k=0,1,2,3,4, (5.7)
1 for k=0
“+nt ={ ’ 5.8
mz,n Cmmnrmn(m”+ 1) 0, for k=1,2, (5.8)
Y e,.mn’=0. (5.9)
Define
Ern =3(€mnt Crm). (5.10)

A reasonably practical solution can be found involving just e, , with —2<m, n<1
and |m —n|<2. There are nine such e"’s and given any one of them (apart from
e5_,) the others are determined thus:

=y+%, eoo 3)""4’ ef1-1=1-3y,
etz.—2=_}"ﬁ, e1,0=_2y_%’ eil,—2=2)’,
el 1=y, €52 =—y+iz, es—=—1. (5.11)

X 1s, in theory, an improved observable. But we are faced with practical problems,
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and whether or not it is better to work with such a x is a delicate question. Since
we want to exclude loops of “too small” a size we would require good data on
larger loops (e.g. 5% 5). Here we will discuss these difficulties no further; we have
merely touched on the problem concerning whi¢h more should be understood.

6. Conclusion

By calculating the small-a expansion of the static potential in 1-loop order we
have, (a) verified the result of Curci et al. [11] on the form of the tree-level improved
action and (b) placed some constraints on the coefficients of the improved action
at 1-loop order. We still require a further calculation to specify ¢, c5, c5 separately,
either by calculating the effective action completely to 1-loop or calculating the
Wilson loop to 2-loops (such a calculation 1s under way). It would also be satisfying
to have consistency checks of the ansatz by ensuring that other physical quantities
are also improved. We see no reason at present why ¢5 (or c¢3) could be chosen
zero despite the fact that the currents J§ = D, F}, are classically zero and that the
composite operator | J4J% formally acts as a trivial perimeter-measuring operator
on Wilson loops. However if we set ¢5 =0 by hand n our constraints (4.33)-(4.35)
we obtain corrections which have a slope consistent with the trial values found by
Wilson [23] in his renormalisation group studies. It has been suggested to us by
Symanzik that ¢,(g?) or c;(g”) could possibly be set identically to zero at the cost
of systematically altering the definition of the observables.

There are many difficulties still to be overcome. One type of problem is associated
with the definition of improved observables, touched upon 1n sect. 5. Further, simple
methods to obtain bounds on the glueball spectrum used for the Wilson action, e.g.
use of the positivity of the transfer matrix, will have to be reviewed in the improved
case. Also some studies of the phase structure, e.g. mean field studies, would be
appreciated.

With the appearance of parallel processors the extra complication of the action
does not present a major problem, as long as enough effort is spent in optimising
the programmes. We would like to stress that Symanzik’s programme is not an
alternative to the use of larger lattices but rather complements these advances. As
for the results we would also like to repeat that although observation of scaling-like
behaviour for physical masses is a necessary condition for the relevance of the
continuum limit, the thereby individual mass/ A ratios extracted in practice have
large uncertainties due to perturbative corrections. A better test of improvement
is the smoother behaviour of the ratios of physical masses.

Many situations may occur 1 practice — perhaps tree-level or 1-loop improved
actions show scaling windows where the standard action did not really show any
(as 1n the o-model). But there is no a prior: reason that the improved 1-loop actions
should have dramatic success over the standard actions in regions where the coupling



414 P Weisz, R Wohlert | Improved lattice action

is not too small. In the latter case the improvement coefficients as functions of g
must be found by trial and error [2]; the 1-loop forms just aid the search.

We have many colleagues to thank for various contributions. Firstly K. Symanzik
for numerous helpful discussions and constant encouragement. We thank M. Liischer
for allowing us to include his notes in sect. 2 of this paper, and also for helpful
comments. We greatly appreciated the time and effort invested by J. Stehr in
checking some parts of our calculation. All numerical integrals were evaluated using
an excellent programme of 1. Montvay, who kindly made it available to us. Finally
we thank F. Gutbrod for patiently introducing us into the use of “Reduce”.

Appendix A

FEYNMAN RULES FOR THE IMPROVED ACTION

We employ covariant gauge fixing and thereby end up with the following total
action to perform perturbative calculations

Stotal(A’ C) = Smeasure(A) + Sghost(A’ C) + S(A) + ng(A) ’ (Al)
with

Smeasure(A) =—§%Ngzj AL (AL(—k)+0(g", (A.2)
k
Sghout(A, €)= —J- 5“(k)5"(k’)[(277)46(k +K') 6k + igfiap
k,k’
X J (2m)*8(k+ k' +p) AL (p)k, cos (2k},)+ 158" frae fate
p

xj ,(2w>46<k+k'+p+p'>/i;(p)/ii<p')l€ul€;+0<g3>], (A.3)

n—2

g
n!

S(A)+ng(A)=—§2 S.(Ag), (A.4)
where
Sx(A) = J [As(k)As(—k) D, (k)
—38fa. () fa, (=K)((ch —ch—eh) (K +K2) +(ch +c5)kD],  (AS)

Si(A,g)= J‘ (2m)*6(ky+ ky+ k)

ki,kz,k3

X A (k)AL (ko) AS(k3) fabe ¥ €. VD, (ky, ko, k3) (A.6)
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Sa(A, g>=j (2m)*8(ky+ky+ ks + k) A% (k)AL (ky) AS(k3) A% (ky)

kika, k3, ky

XZ [cxfabefcde( Vf\lp)‘ra (kl’ k27 k31 k4)_ Vﬁ:/\)'ra' (k2a kl’ k3’ k4))
_E CRlSaRb‘d Wf\';)n-o'(kl’ k27 k3’ k4):l . (A7)
The propagator D,,,(k) in (A.5) was discussed in detail in (I) and is given by
D,.(k)= (122)*2[0112“12” +Y (kb — iéya,w)la,Aw(k)] , (A.8)

Aw(k)=Am(k)=(1—8,W)A(k)1[(122)2—c1122(2212‘;+1€2 ) Ef,)
+cf<(zk4) +k? %Eﬁ k2+(k»% ] 123)],
where
A(k)=(1€2—c1§E;)[Ez—q((léz)%gé‘:)
ei( ey g k- )] -ac sGTR B (a0

(A corrected version of (A.16) in paper (I)).
The coefficients ¢, appearing in (A.5) are defined by

c/(8) =g *c(g)—c(0)). (A11)
The three-point vertices in (A.6) have the property
V. (ky, ko k) =— VO (ky, ky, k3) = — V) o (K3, koy kq) (A.12)
and are given by
p,(kl, ko, ky) = 1[6,\p(k, k;). s, +2 cyclic perms] , (A.13)

Vf\lp)'r (kla k27 k3) = 8V£\(:7)'r (kl, kZ’ k3)
+l[5Ap{Cn((k1 ko)x (8r,k3 = ksaks,) — (k1 ky). (K3, +k2,))
+(k1 k). (k“ku 2c1,\c2Ak3A)}+2cyclic perms], (A.14)
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VS\Z,)T (kla ks, k3) =16 VE\(:))T (kb ks, ks)

—1[5@(1—&7)6“ T (k= k) (3, + k3, +K3,)

a#EX,T

+k3'r(k1(r AZu))+’(]~—6,\ﬂ)(]ﬁ_8/\1,)
X(1- 5p7)kuk2p(k1 k,). +2 cyclic perms (A.15)

Vo (ky, ko, k) =8V, (ky, ko, k) — [5@(1 sen(ki—k), ¥ (B, +£2,)

o#EAT

+11-8,,)(1-8,,)(1—8,) (ks — ko),

X {kiykay ~2(ka— k), (Ka— ko) }+2cycllcperms] (A.16)

where we have introduced the notation
Car =08 (2K, ) - (A17)
Finally the four-point vertices in (A.7). The V)., have the properties
Vo (ky, ko ks, ka) = V3 (Ko, ks, kay ki) = V0 (Kay ks, kay ki) . (AL18)

They are given by the following unwieldy expressions (which we have not attempted
to reduce to an optimal form),

Vi (ki ko, ks, ks)
=28,,8x. c0s 3(ki — k3), cos 3(ko— k4).
—[8,,8,-(cos 3(k; — k3), cos (ks — ki), —3k, ey kan ko) +1 cyclic perm]
6[8Ap6A7k4A(klak2¢k3a +c15(ky— 3)(, + c3‘,(k2 ky)-)+3 cyclic perms]

+f—26ApsA,am[2 % Kyoa K+ 20+ )2 = (s + )= ( m)] :
u (A.19)
VS L (ky, ko, ks, Ky)
= 88,,8,0[C12C3x €O (ka— k), cos3(ky—k3), + (A ©p, ky o ky, ky o> ky)]
—2[8,,8,-4(cos 3(ki+ k3), cos (ki + k3), cos 3(ky+ k),
+c0s (ky+ Kp) sCiaConkrKar 2 €08 3Ky + k), cos 2(ky + ka) 1€1,€2,K1 Ko,
+cos Sk, + k,), cos2(2k, —2k,— ks +k,).,)
+(A e ko ks, ko k)t + 1 cyclic perm]

+ [5)\,;5,\1—{(% 124,\ 1240'(6"2‘0 + C‘zu) + 2’24)\ Eluclcrcttu cos (k; +k,),
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+4kirki5C12Can COS %(kl + k), cos %(kl +ki)o

e T — T T T —
+ia(2kg+ ks—k3) (ki — ky— k3) o)+ (ky <> k3)} + 3 cyclic perms]
+ 6Ap5)\76/\0[z (—%1’2%1/{6%1) + C%A }+§1 Sin2 (k] + k2)y

— 1k o) 2Ky + k)2 = 261,k cOs (Ky K,

— 4K, ks, c0s Mk, + ks) 1o €08 (ks ko), +3(Ky + K) 2Ky + Ka)2)
+3= 3k + ka)3 +30k; + k)t —cos (et ko), cos (ks + ko)
—cunll— ko= k) (Teat ks —Fa), — €1 (s — bea— K3, (ks + ks — o),
+2 cos 3k, + k1), cos $2ks—2k,+ ky— k),

—4¢14C3, €OS %(kl —k3), cos (ka—ky)s

+ (3 cyclic permutations of the momenta)} , (A.20)

Vf\zp)'r(r (kl7 k27 k3’ k4)

4 A
= 45)\760;1(1 - 5/\p) cos %(kl - k3)p CcOos %(kZ— k4)/\ Z (4_% 2 k?l/.l.)
a=1

m#EAp

4 A
+4[6)\p6¢71(1_5)\7){cos %(kl+k2)/\ Z ((—1+‘]1 Z ktzzy.

AT

~ 4k + k)2 — N, + k) i) cos 3(ky + ky), = k1, K102, cos 3k, + kz)u)
+(Aon kok, ko k4)} +1 cyclic perm]

+[5A96M(1~6m>1€“ Y (G+5k3, +1k, kK, cos ik, +ky) ) Kyo

mFEAC

2 7 1 1 37
+2c;5, ki, cosz(ky+ky),+ Cyq, COS 22k, + k4)u(2k1 +ka)e

+ (k< k3))+ 3 cyclic perms]

8,000 Y [BkI,(2—1k3,)— (ki +k)2(1 -1k, + k2)2)

-
+ 3 permutations of momenta]

+[8,(1= 8,,)(1— 8,,)(1—8,,) cos 2(k, — ky) (2ks ks, cos(k,— k),
+(2ky + k) (Zhs + o), +(p o> 0, ky o ki) + 1 cyclic perm]
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84, (1= 8,,)(1 = 8,,)(1— 8,,)(cos 3k + ka) Kn{—cos (ks — ka) K3,

+cos 3k + ko)y Bkt k) } 3 kankanka, (Zka+ k).

+cos 3k, + ko)r (2K, + Ka) A(Zha+ 7). — 2(Tha+ )}

+(re 0, ki o ks, kyo ky))+3 cyclic perms] , (A.21)

Vﬁ}m (ky, ky, k3, ka)
=88,,8,,(1—8,,) cos 3(k; — k), cos 3(k, — ku)»
X Y cosi(k,— ki), cos3(k,— ki),

AP

+2|:6)\p8(7'7(1 - 5;\7){(305 %(kl +ky), X cos %(kl + kz)#

= AT

X (cos %(kl + kz)u Cos %(kl +k,),—2cos %(kl - kz)u Cos %(kl —k2).)
+(ro 1, kioks, ke k4)} +1 cyclic perm]

A

+[6A,,8M(1—6M,)EM Y (—3+5k3) k.

+ ¢4, cOs 3(2ky + k4)“(ﬁ)” + (k, < k3))+3 cyclic perms]
Foudby, Y BRL(-3) - (T k)G -k k)Y
+ 3 permutations of momenta]

[0, (1= 8,0 ) (1= 8,,)(1 = 8,,,) cos 3(ko = ka)
x{(3k, + k3) (Zky + k3), + (k, <> k3)}+ 1 cyclic perm]

180, (1= 80,)(1— 8,)(1 = 8, cos 1(ky + ko) = ks, (Zhs ko).
(K4 K)o Tk, K2 o)+ cos (ks = ko) a (ks ks,

+(2k,t kz) (2k5+ k4),,}+ (1o 0, k< ks, ks ky)) +3 cyclic perms] .
(A.22)

The tensor appearing in (A.7) is totally symmetric and defined by
Seed = tr (R R"HRS, RI+{R, RUR", R} +{R*, RHR", R} . (A.23)

Upon contraction one obtains

Y §gebe = 554 (Cr—sN) . (A.24)

a
The vertices W&‘,ﬁm are totally symmetrnc (have no continuum analogue),

W, (ks ko, ks ka) = WSO e (Ko Ko Kons ko) = (A25)
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They are given in terms of the V{,,, by

W()\l;-ra' (kla k2a k37 k4) =4( V(Al;-ru (kl’ kZa k3’ k4)+ V()\l;)urr (kl’ k2, k4s k3)
+ V()\I:p(r (kl’ kSa k27 k4)) . (A26)

For completeness we list the resulting expressions

WS\(:,)TG. (kl ’ k2, k3’ k4) = 2{6/\‘,5)‘75,\0 z ’21 VIEZVI)(\3 VIG4V
+ (5Aa5m/€3A1€4A1€1J€zT +2 perms)

- (5@5“’2“/21”’22(,122(,1230 +3 perms)} , (A.27)

Wf\lp)-ra (kl’ k27 k3, k4) = 32{5)\;)8)\78/\0- Z I;\IVEZV’)(\:;VlzllV(KV +K/\)
+ (5)\;)507]23)\]24)\]21 1—]227(1()‘ +K,)+2 perms)

- (6/\06/\1124/\121 rr’220'123r1(K)\ + Ka) + 3 perms)} s
(A.28)

where we have introduced the notation
KV = VC2VC3VC4V L] (A29)

Wf\zp)-ra (kly k2’ k37 k4)
=W (ky, k2s ks, k4)+4(d_2) WE\(L)m (kl, ks, ks, ki)

ApTa

+2{[5Ap6)\7(1 —6A(r) Z 124)\]24;4(’2]0]2201230'124;4,— EI;LIEQ;LES;LEAI»U)

HFENT

A A A A T
+ 3 perms] - [6Ap5¢77(1 - 8/\0) Z (klak20k3Ak4A(k1 + kz)i

A
+ 2k1uk2uk3uk4y(klakzoCS/\CA/\ + cla'c2¢7k3,\k4,\ )) +2 permsj'

+ [5Ap(1 —8o)(1—8,,)(1— 810)(26‘3)\642\’210’]220’230’21TkAZ‘rIeA-r

- ’23)\]24,\{]210]22(7’2306'47(’('*'\](2)7 + ’317’227’341630((@)0

- ’230'1347((:10(‘20]2171327 + CITCZTlgloEZU)}JF 5 perms]} ’ (A3O)
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3
Wf\p)‘ra' (kl’ k2’ k37 k4)
= 8{5/\p6/\75Aa' Z (klyk2uk3uk4y.Kv
AR v

+ (Elulé2uc3uc4plz3vlé4lfcl €20 + (2—) 3 - 4—) 2) + (2_) 4_) 3 - 2)))

— [awam(l —Sidkar T (kiokyoks K,

mFAT

+(I€10'C20'c30"€2p.,23p.clp.c4,u. +(1 >2->3-> 1)+(1 ->3-2- 1))+3 perms}

+ [5)\,:5;”(1 =)o) Z (E3AE4/\CM3C;L4+ E3,J€4MCA3CA4)

pEAT
X (Elajemycy,] Cuat l@luléz,‘calcﬂ) +2 perms]
81, (1= 81 )(1 = 8, )(1 = 8.0 W s Kancar s (ks ngCanro + ko i1 620}
— C3aCarkarkso{Cr oy horg + Ky hanCraCan}) + 5 perms]} . (A.31)
Note that the W’s are transverse

kAlAW()\';TO' (kl’ k25 k3’ k4) = 0 . (A32)

Appendix B

AUXILIARY THEOREM

Let f(x, a), xeRY 0<a=1 be a C* function with compact support, i.e. there
exists k>0 such that

f(x,a)=0, for |x|> k, (B.1)

Then for all g=0,1,2

':y f(x, @) amo+O(a™ 4"y, (B.2)

5 fam )= § Lam [ate-

=0V
Proof. From Taylor’s theorem

a1 9
f(x,a)= L —a”
v v.

=0 da”

f(x, @)|amo+a®"'R, (B.3)

IR|=C, R(x,a)=0, for|x|>K.
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It follows that

¥ R(an,a)|< ¥ C=0(a™?),

n<K/a
and thus
2 1 v 8" —d+g+1
Y flan,a)= Y —a’y— f(x,a) +0(a ).
o v! n 0a a=0

All the terms on the right-hand side of (B.5) are of the form

Y glan), g(x)C™, g(x)=0, for|x|>k

Define

£(p) =J dx e g(x) .

The Poisson summation formula yields

_ «f2mn
= stam=a *54(27)
It is well-known that for every r

lg(p)|=<c(1+]p)",

from which follows for arbitrarily large r

Y glan)=a g(0)+0O(a?*"),

and hence the theorem.
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