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Wilson loops are calculated to one-loop order using lattice actions including 6-hnk loops The 
static potential ~s extracted and ~ts small-a expansJon performed using coefficients determined at 
tree level The A-paramete r  for Symanzlk 's  improved action ~s thereby obtained and constraints 
placed on the coefficients appearing m the action at order g2 

1. Introduction 

Monte Carlo techniques applied to lattice regularised quantum field theories 
present possibilities to explore non-perturbatIve phenomena. To extract quantitative 
physical information, in asymptotically free theories, the continuum limit must be 
approached, In which case the bare coupling must a priori be chosen sufficiently 
small and the lattice size sufficiently large such that the constraints 

lattice spacing " a "  << correlation length ~ << lattice size L ,  (1.1) 

are fulfilled. Unfortunately,  practical limitations, often force us, at present to violate 
these restrictions, and this leads to expected systematic errors. It has, however, been 
discovered by Symanzik [1, 2] that the corrections to the continuum theory stemming 
from finite lattice spacing can be systematically diminished by the use of a judicially 
chosen lattice action. 

Symanzlk has described the construction of the improved action for both &] [3] 
theory and the non-linear o--model in 2 dimensions [4]. The improved action for 
the non-hnear o--model was completely specified to l - loop order [4] and used in 
Monte-Carlo calculations [5-7], and dramatic improvement in the scaling behavlour 
and other properties was claimed. There have been also some studies [8] involving 
an improved Gross-Neveu model lattice action which also indicates the merit of 
using such actions. 

The imtial success of Symanzlk's programme for the above models encourages 
the pursual of the programme for Yang-Mills theory and to the full QCD. For the 
Yang-Mllls theory the following motivated ansatz for the improved action was 
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made [9] 

S,mp g2 }~ Re CRO(g2)~tr(1--UR(D)) 
Repts R D 

+CR1(g 2) ~ tr (1-- UR(( [522 )) 
E73 

+CR2(g 2) ~ tr (1--UR( ~ )) +CR3(g 2) ~2 tr (1--UR( ~ ) )} .  
G 

(1.2) 

Monte-Car lo  calculations have already been carried out [10] using tree-level 

improved coefficients. The topic of th~s paper  is to place some constraints on the 

coefficients to l - loop  order. 
We want first to take this opportunity to clarify a misconception introduced by 

one of us in ref. [9] (referred to as (I), in the following). In (I) it was incorrectly 

implied that to tree level C2(0), C3(0 ) (C t = '~R 2tRCR,) satxsfied C2(0 ) + C3(0 ) ~- 0 b u t  

were separately undetermined. The correct statement is that the constraint c2(0)+ 
c3(0) = 0 is the maximal information that one can extract from consideration of the 

Wilson loops at lowest order,  but 

C2(0 ) = C3(0 ) = 0 , Co(0 ) - 3 , -  5 Cl(0)  - 12,1 (1.3) 

Is obtained by consideration of the improvement  of the full classical action. A clear 
form of these considerations due to Lfischer is presented in sect. 2. Curci, Menottl  
and Paffutl [11] were the first to correctly determine the tree-level action, although 
their derivation followed calculation of corrections to the static potential at l - loop  

order. 
In sect. 3 we calculate Wilson loops with the improved action (1.2) on an infinite 

lattice to l - loop  order. In sect. 4 we extract the static potential and perform its 

small-a expansion. We thereby obtain a value for the ratio of A-parameters  of 
improved and unimproved actions, and also place constraints on the l - loop  
coefficients, cl(0). Again, not all the coefficients are determined since the Wilson 
loop itself contains insufficient information at this order. However  our result shows 
that bent plaquettes will be required at l - loop  order. The results are discussed 
briefly in the conclusion. Sect 5 deals with a definition of an improvement  of the 
x-variable,  introduced by Creutz [14] to extract the string tension. 

2. Improvement of the classical action 

This section, which deals with the improvement  of the classical action and hence 
of the quantum effective action to tree level, is due to Liischer, who kindly permitted 

us to include his clear exposition in our paper. 
Consider SU(n) gauge fields U(n,/x), n c zd, /z = 1 . . . .  d, d/> 2. An admissible 

classical lattice action S is required to fulfil the following. 
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(a) S is local, 

S = Z L ( n ) ,  (2.1) 
n 

where L(n) depends on a finite number  of link variables in the neighbourhood of n. 
(b) L(n) is real and a scalar under translations of the fields. S is invariant under 

cubic rotations and reflections. 

(c) L(n) is a gauge lnvariant polynomial in the link variables. 
(d) S has the correct classical continuum hmit i.e. let A~,(x) be an arbitrary C °~ 

gauge field with compact  support.  For every a > 0, define 

[L' ] U ( n , / x ) = P e x p  a d t A , ( a n + a l ~ - t a ~ )  . (2.2) 

Then we require 

where 

,~ohm ad-4S=½ f dax tr Fu~F~, , 

F~ = O~A~ -3~A~ + [A~,, A~]. 

(2.3) 

(2.4) 

Remarks. 
(i) Because of the classical nature of the consideration the couphng constant 

plays no r61e. 

(n) The idea associated with (2.2) is that a lattice with spacing " a "  is embedded 
m space-time. The U(n,/x)'s are then just the parallel t ransporters from an +al~ 
to an determined by the A~,'s. The construction is thus gauge covariant: when A~, 

is t ransformed by a gauge transformation then U(n, i~) is t ransformed by the 
corresponding lattice gauge transformation. (a)-(d) imply that 

=½ f dax tr (F~,,F~,,)+O(a2"), (2.5) 
a d '4 8 

where, in the usual case, p = 1. In the special case that p/> 1, we call the action an 
xmproved classical action. In the following it is the aim to determine such an action. 
Consider first the case d = 2. Define for each closed path 4 on the lattice 

W(g) = tr U(4) ,  (2.6) 

where U(4)  is the product of U 's  along 4. Further  define 

Lo(n) = N - R e  W(4o), (2.7) 

L,(n) = 2 N - R e  W ( g , ) - R e  W ( 4 ' 0 ,  (2.8) 

where 4o, 41, g] are the paths m fig. 1. 
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n& 

n - n . i  n * 2  

n n÷2 ] n n÷] 
g l  ¢~"1 

Fig 1 Loops appearing m the action (2 9) 

The  action 

S = - •  {aLo(n)  + / 3 L l ( n ) } ,  (2.9) 
tl 

fulfils propert ies  (a)-(c).  The  constants  a, 13 should now be de termined  such that 
also (d) holds in the form of (2.5) with p = 2 Consider  then A . ,  a classical field as 

in (d), and define lo(x, a) and ll(x, a) analogously to L0, El except that  the corre-  

sponding paths ~ start at x instead of at an. In particular then 

L, (n )=l , (an ,  a ) .  (2.10) 

It then follows f rom the theorem proved in appendix B that  

7 1 f 0 v 
a 2S= ~o~a ~-4 d2X~;aA,~lo(x,a)+N~(x,a)}.=o+O(a4). (2.11) 

The  lntegrands (U/Oa v) {cd0(x, a) +/311(x, a)}a=0 In (2.11) are polynomials  in A . ( x )  
and their derivatives. The  dimension of each contr ibut ion is exactly u and only 
gauge invarmnt combinat ions  occur.  The sum extends over only even v since terms 

with odd  v would violate parity. One  immediately establishes that the integrands 

vanish for  v = 0, 2. It then follows that  

, a = l  

with 

F = 01A 2 - 02A1 -t- [A 1, A2] , 

D . F  = O~.F + [A. ,  F] . 

(2.12) 

(2.13) 

(2.14) 

To determine the coefficients ro and ri we consider an abelian field 

A . ( x )  = a . ( x ) T ,  a . ( x ) e  N,  (2.15) 
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1 0 -1  (2.16) 

T = ~  0 " 

Then  we have 

F(x) =f(x)T, f =Olae--aeal , 
D~F(x) = a J ( x )  T,  

tr F 2 = _½f2 ,  tr (D,,F) 2 = - ½(a,,f) 2 , (2.17) 

lo(x,a)=2{1-cos(~a2 f l  f[  d2zf(x+az))}, (2.18) 

l,(x,a)=2{1-cos(½a2 fo' f,) d2zf(x+az))} 
+2{l-cos(½a2 f{; f 'd2z f (x+az) )} .  (2.19) 

Expanding  for a ~ 0 

lo( x, a ) =14a 4 { f 2- ~ a2 ~ ( O,f) 2 + dlvergence + O( a 4) } , (2.20) 

ll(x,a) ~a 48 2 a2~ =~ { f - -~(oJ)2+divergence+O(a4)}, (2.21) 

and inserting this in (2.11) together  with (2.17) yields (2.12) with 

ro = ½~ + 4 f l ,  (2.22) 

1 5 
r~ =24~ +~fl .  (2.23) 

To get the improved  classical action we chose 

ro = 1 , r~ = 0 (2.24) 

and hence reqmre  

1 0  1 
a = 7 ,  fl = - 5 .  (2.25) 

For  dimension d~>2, f o r / z  # u, define L~"(n) and L'~(n) as Lo(n), Ll(n) above  
with the loops in the/~,  u plane. It then follows f rom the theorem in the appendix 
and the considerat ions for  the case d = 2 that  the action 

{TLo (n)-~L~(n)} (2.26) s = E E  t o ~  
n / ~ < P  

Is an improved  classical action for  arbi t rary d. Now if one takes the classical 
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continuum limit of the classical action 

S = _ a d _ 4 1  3 
gZ,=0e~T,2 2 2RCR, t r ( 1 - - U R ( g ) ) ,  

with the sum going over 4 and 6 link loops (see (I)) one obtains 

S =  ddx koSo+a 2 ~ k,S, , 
/ = 1  

with 

(2.27) 

(2.28) 

So = tr E F2,,,  (2.29) 

and the S, operators are of dimension 6 (see (I)). The coefficients kj are linear 
functions of the c's. Since every operator  Sj can be projected out, the system of 
equations 

1 2 k0 = ~g , k, = 0 ,  (2.30) 

has exactly one solution. As shown above then 

5 1 Co=7, c l -  lz, c 2 = c 3 = 0 ,  (2.31) 

is a solution and hence umque. 
In the quantum case, the classical acnon equals the effective acnon to order g-2. 

To improve the quantum action at tree level one then needs in particular 

c2(0) = c3(0) = 0 .  (2.32) 

In the following sections we will set a = 1, " a "  can always be reintroduced by 
dimensional analysis. For any undefined notation the reader Is requested to consult 
paper (I). 

3. Calculation of the Wilson Loop to second-order perturbation theory 

Define the coefficients WnR(t ~) by 

d~ ~ g2,, 
In (tr UR(e))=--,,~1 ~ W,,R(e) (3.1) 

These are expressible in terms of correlations U In~ involving products of n A fields 
defined through 

1 o~ gn 
URS--(tr (UR(()  -- 1)) = n~ 2= ~-~ U~ n) (g, g ) ,  (3.2) 

with 

U ~ ) ( g ' g ) = - d ~ t r  R a R  t~.t2 tl~12 , (3.3) 
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1 a a A b A C  + 3  Y. t~ll~12 t3 Zaa a b  A ~ _ AreAl2 Air) g ~ ) ( e , g ) = - ~ - z - t r R ° n ~ R  ~ Y~ ~,~ ~ ,~ 
aR \ l ~ ,12,l ~ 11<12 <13 

(3.4) 

U~(e'g)=-~RtrRORbR~Ret24 l,<~<n<t,E A~'A~A~3A~4 
[ A a  A b A C  A d _t_ A a  A b  A C  A d ..~ A a  A b  A c  n d  ~ 

+ 12 ~ I,Z-XllZ-Xlll-Xl2X~,13 ~llZ-Xl2rll2rll~ l-lll-t-llzZqtl3 131 
11<12<I~ 

tg.aaAbACAd + A a , a b A C A a  + , b ,- a ~ - ~  \tJ~3tlll-'~tl ;2 12 "l'~'l/IZTkll II 12 4AtIAlzAt2AI2 ) 
11<12 

+ ~  A r A b A ; A ¢ ) .  (3.5) 

The  sums are over  links l, ~ g and It < l z<"  • • denotes  path order ing starting at 

some arb i t rary  point  on g. 

Expanding  

we have 

U ~ ) ( g ,  g) = ~ °P i t ( n )  
s " ~ ( ~ ) ,  

p=O 
p+n=0 rood 2 

(3.6) 

- -Wl  = UI?  ) , 

--  W2 = ( U 2  ) - 3[ U~?' ]2) + 4 U ]  3) + 12  U ~  z~ . 

(3.7) 

(3.8) 

w I for  an L, T loop is given by 

with 

wta(L,  T) = CRU(L, T ) ,  

f (sin s'n 
0(L, T) = k \ sin ( lk , )  ] \ s m  (}k,j) J D,d , ,~(k) .  

(3.9) 

(3.10) 

The  numerical  values for  the lowest ~'s are 

_-~l, fo~c,=0 
1 g(1,1)  ( 0 . 3 6 6 2 6 2 ,  for  c l -  t2, 

(3.11) 

0 . 8 6 2 2 5 1 ,  for  C 1 = 0  

0(1,2)  = t  4l/(1, 1 ) + ~ c  (1 -0 (1 ,  1 ) ) ' 1  

L0 .662624 ,  for  c1= 12- 

c~ ¢ 0 (3.12) 



4 0 4  P Wetsz, R Wohlert / Improved lamce actton 

The expression for w2 is rather more involved. We use covariant gauge fixing with 
Feynman rules given m detail in the appendix and find, 

(4) Uo~ ( e ~ ) -  3(U(o~ ( e ~ ) )  ~ 

=-6NCR{½81(L. T, 4) IK DI,(k) 

[ + - D , l ( k ) D l , ( k  ) sd gig1 - - S t S 1  -t-SI 2) -- 
,k' 

¢,)) 1-2 q _ ~ S d ( S 4 1 _ _ S l ) ( g f  q - ~ l )  S1 S1 

- 2 - t  2 

1 ,2/ ,  + _ \ ( S l  s1 
+ 2 D , , ( k ) D , d ( k ' ) ~ g d  I~(s, + s ; ) ( g T - s ,  l~,-f~ --~l ] 

SIS1Sd \ 

+ c o s ( k . T )  -g2(1 -,2 , -+ --  ' - S~Ls ~- --3S1 )+~(Sl ~'~-Sl ) ~-Sl  "I-S1 ] 

1 / -2-,2-2-,2 
+ Dld(k)Dla(k') SlS'ISdS'e ~5SlS~ SdSd 

1 S 1 a - - +  + - -  -+ + - -  ~( -sds~) + S l S l  - - S l S  1 ) ( S d S  d 
4s~  

-2-,2 -2 1 sl (s12+s~2 +(L*-->T , (3.13) 
+ s~ + sdsa -2s~ 4 2 s~ 

where s, -= sin (Ikl), g~ -= sin (½klL), sd =- sm (lkd), ga --= sin (Ikdr) and similarly for 

k ' , k ± = k + k  '. 
Further  

U(3) f 1R (+#LT) = 6iNCR (2¢r)4~(k + k ' +  k") 
k,k',k" 

. 1 . 

. . . .  (~k'~r) ,, xy, ~ wo) (k, k , k")D;,l(k)Dol(k )D,o.(k ) sin 2 sm (~klL) 
t t ' :v  AP'r S1 

(sin ( IktL)  sin (Ik~L) 1 t )  
X COS (Ik~L)Cl , c o s  (~klL)Cl 

s 1 s1  

[6~1 8,~\ 6~d s i n ( ½ k l L ) s i n ( I k [ L )  

( , )] xcos  (½k~L) sin e (½kdr ) - s in  2 (~kjT) +(L*--) T) ,  (3.14) 



with 
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f (  I (  ~2 I-J2R• r (2) (~LT)  = --CR sin (½klL)__ 2 s in  (½kdT)__ (~lt~dr__ ~d61r)(~16d,7__ ~ 6 1 ~  ) 
k Sl ] \ Sd ] 

x D.~(k)rr,~(k)D...(k). 

T/" = Tgmeas + "wgh+ 7/" p + "B'W+ "B'Va + 7/" V3 

(3.15) 

(3.16) 

~ " ~  (k) = - 1½N6,~. (3.17) 

rrg~(k)= 1 ' fk (27r)46(k+k'+k ) k ' @  - ~4N3~ + aN ',k" " 

X [f%f%- ( k ' -  k")u(k ' -  k") ~], (3.18) 

t _ _  t t 2 ~ru~(k) - (£,6.~ - £~6,.) £. [(C'l - c 2 - c3)(£u.  -1- £2)21_ (C~-[- C~)£2] ,  

(3.19) 

rr.W(k) = ~2 Y 2ts (6C~ - N)(  £,6.~ - £.6.  v)£. 

X f k '  O 14,14(/ ,){(Cso_~_8c~2)_}_16Csl(C 2 _~_c~t)c t2 

+Cs2 ~. " 2~',2 ,2 2 ,2 21 tcpK2 + c 2 £ , ) + 1 2 ( c s 2 + G 3 )  Y~ c2coj . .  (320) 
p ,~ A,Cx p #A,iz 

V4 ( k )  - 1 f ~. , rr~. - 3 N  j Dao(k')Y ~w(')~,t vAo.v ( k ' , - k , k , - k )  -~/(')-A~o~ ( k ' , k , - k , - k )  
k' 1 

(3.21) 

k co - 2a 0(6- 3£ ] + k , k .  / 

* 1 ^t At _~_ t2 y2 -k.k~[a6au6p~kuk~ 26Ao(~..c~ +~,~c. )] 

{ E ( 2 ' 2  ~'2 "2 ]~2]~ '2 , "4-C 1 6 ,  v 6ao6a~. 1 2 c . c , . ( - 2 k ~ . - 2 k .  +_~,_. .  

^t2 ~;2 A2 ~t2 + E  (12(/~2 + ]~;2) _ (]~4 ...1_ £ ;4)  __ 7(£2 k~2 + k ,  k.  ) - 12k .k .  
.r 

~42 ~.t2 .1_ k~, k r )  -+- ^2 ^,2 -2 -I- ]4 t2"} - 3 ( - . . . .  %2 *2 2k . k .  (k .  %2 7 ^2 ^,2 ^2 +k .  )+~k.k .  ( k .  _ . .  

B "2 *,2 *2 + £,2~_,g4g,4 _592 g,292g,2~ + i k . k .  (k .  - .  ] 2 . . . .  4~la.~ . . . .  1] 
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At ^r 2 9 A2 1 At2 + 88,,.kt.k o ( -9c , .  "t- 7/~¢2 __3g2 [~,'2 ___7g2 /~2 - -  2r~t~ +~kp q-~kp 4 ~ r ~ t ~  8 r ~ . ~  O 

5dt2~2 2 l t 4  t2 !b~2/~r2~ 
- - ~ K i z  KpCI~ - - ~ K p C p  - -2n ,  p ~ p  ] 

^t2 3[1~t2 - 8aao(-9(/~ 2 + k ,  ) - > , , - a  +/~2) + a ( k , k , 3  A2 "2 ..-b ~'tzCt2/~t2~,~ ) 

*2 At2 +3(/~4 %4 *2 %2 2 ,~2,~,2 ,2)+6kxk~. + k . ) + 3 ( k A k x  ca + K . K . c .  

At2 1 - C 2 F " 2 / F 2  + k .  ) _ _ ~ 2 P t 2 / ¢ ' t 2  2 e2 t2 KaK u tKx ca +K~c~ )) 

A A At At 13 A2 ..1__]~12~ •2•,'2"} 
+ k.k.([aa,.ao,,k~.k~(-9+w(k~. _ ~ . . - . . , , _ , . .  

At2 + 6a ,Sa . ( -36c~  2 + 14/~ 2 + 18k .  + 2# 2 - 3 # 2 / ~  '2 

t2 ,'~ {~,4 2 A2At2 ly])l ~ 2 ~ 2  ~ 5 k ~ 2  - 2 k . k ~  )]+[/x ~ K .  Clx - - Z K  v C v I 2n'tx ~ v  

+ termsoc c2, c3, (3.22) 

- 1 N  f (2rr)46(k+k'+k")Do,~(k ')D,~(k ')  V 3 7r~v 
d k',k" 

xy~ (') ' k")'t/(J) (k "' k") c,qV,., , .(k, k ,  - - . ~  , . ,  k ,  . (3.23) 
l,] 

In Formulae (3.19)-(3.23) the coefficients c, appearing are understood to be evalu- 
ated at g2= 0. One can check that the condition r r , . ( 0 )=  0 holds as it should. 

Numerical evaluation of w2 for finite L, T for the improved action remain to be 
done. For the Wilson case we agree with Di Giacomo and Rossi [13] for the value 

of We(l, 1) and find only small corrections [14] to the estimates for the X's quoted 
by Hat tor i  and Kawai [15]. 

4. The limit T ~ o  and the small-a expansion 

To extract the static potential we perform the limit T +  ~ .  To first order 

1 i lim W,R(L, T) = CR sin 2 (½klL)D(k)lk.=o. 
T~co -g  

(4.1) 

where we have introduced the notanon D(k)=-Dad(k) .  Note 

D-l(k)lk~=o =/~2_ c, Y/~4 
l 

= k 2 + O ( k  6) , 1 (4 .2 )  for c l -  12. 

The behaviour of D - l ( k )  for small k noted above ensures the improvement  of the 
cutoff dependence of the static potential in lowest-order perturbat ion theory. In 
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second order we find 

hm l tr(4)-3[U(o~]2)=-6NCR[4f D(k') fksin2(½klL)D(k)lkd= o ~ - ~ ( , ~ o ~  
k '  

- fk, k' sin2 (½k~iL)O(k')O(k)lk"=ks 

- 4  f cos (½kS){sin2 (lklL)D(k)lk,= ° 
k , k '  SPd 

--smZ(½k~lL)D(k)lk.=k'.}O-~eD(k')] , 

l i m  1/r(3),-',R =-6iNCR f 27r3(kd) sin2(½k1L)D(k) 
k , k '  

1 t cos (~kd) 
t + x ~ Dad(k )D.d(k ) ~ (') Sd , c,V,ao(k, k ' , - k  +) 

(4.3) 

(4.4) 

and 

Irimo~ ltr(2)tj2R = --4CR f 21r6(kd) sin2(½klL)D2(k)Trdd(k). (4.5) 
k 

Hence summing (4.2)-(4.4) we have 

1 f. l~rn -~ W2R(L, T) = 48CR sin 2 (½k~L) ~,2(k)D2(k)lkd=o (4.6) 

with 

w2(k)=[rrdd(k)+~ND-l(k) fk, D(k')- lND-2(k) fk, D(k+)D(k' ) 

-½ND-'(k) , (1-D-~(k)D(k+))~, d .~dD(k , 

+½igD-l(k) Dod(k')D,d(k +) Y c, Vdp,°) (k, k', - k  +) . (4.7) 
k ' t k a =  0 

It can be checked that w2(k) is indeed independent  of the gauge parameter  a as 
required. Rewriting (4.7) we have 

with 

G ( k )  = x(k)  + Ny(k) + z (k )  , (4.8) 

x(k) = do/~28(1, 1) +4d,(2/~2-¼ ~/~4)B(1, 2) ,  (4.9) 
1 
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d,=-1½ Y~ 2 t s (6C~-  N)cs, .  (4.10) 
s 

For the case where just the fundamental representation is included one has d, = 
(2N 2 - 3) c,/12N. Further 

with 

z(k)  = (c] - c ;  - c'3) Y~ ~4 +(cl  + c~)(,kz) 2 , 
t 

y(k) = l~f~ 2 f,  [ ( 7 - S ~ ) D ( 1 )  + 11 ldDld(l) 

(4.11) 

+ c 1 { ( 8 4 - 6 0 ~ - 2 7 ~  + 10l'~+~-~l~d)D(/) + ( 3 6 -  14~)D,a(1)l lL}] 

__72C 1 ~ ~4 fl [ (25 - -10~- -6~a  + 2 ~ 1 ~  +½14)D(l) + ( 4 -  ~ll)Dla(l)llla] 

+[D- l (k )~  ~ D ( 1 ) - l D - ' ( k )  k, ( 1 - D  l(k)D(k+)) s5 ~-~a D(k  ) 

f f Ctd2ktd2[ 1 1 "~ 
- ~ D  2(k) D ( k + ) D ( k ' ) - j k  ' k,W~k+~-7-k,-*-T] 

k' 

f C'd , k + . v ( ' )  % v do r +l tD- l (k )  ~dDoe(k )Drd( ) ~ (k, k ' , - k  +) 

-½ I ( [ D .  ' + V° '  k ,.+,,z(,) ( k , k , , _k+)]  ~(k )D.~(k ) ~ c,c s eo~( , k ' , - ~  :,'e,.. 
z,] 

(4.12) 

t + 
tq Vt d#. r \ 

~=0,1 

= tc~{6dp (k - k"-"~), + 2 cfl~ 60, - 3d,(k+-i+---k) p 

at ^+2 *+ "+ ( k ~ k g ) r ( k 2  -t- ^,2 + 2/~52)) + Cl[ ado(--kd( &dk - k e k ,  ) -  k ,  

_t_ 2 ~pr~td ( ~2  ~pd __ 2Cp~td2 *t *+ 1 *2 - k .ko (1-~ko  ) -  2c,,fc 2 ) 

+6a.(_/~a(6o,fl~,2 *, ^, "2 +2/~52))]} (4.13) -- kdkp) + (k++ k')o(ko 2 + ko 

For the Wilson case Cl = 0 our expression reduces to that first obtained by Mfiller 
and Rfihl [16] in the axial gauge, 

2 N  2 -  3 ~2, (4.14) 
x(k)lq=o 24N 
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y(k) lc ,=0= k 2 43 Jk, k 2 96] + 2/~: k' 1---~=~-~--~tKk.~/(k'~) ~ ) k' 

c52 / + f  ~ 2 / ~ 2 c ~ 2 _ ~ / ~ 2 / ~ : 2 )  +4  f cd2/~a2[ 1 1 '~ 

(4.15) 

To carry out the improvement programme we require the expansion of if2 up to 
terms - k  4. x(k)  is of no problem 

x(k) = k2 (dJ ( l ,  1)+ 8d10(1, 2 ) ) -  1A2 E k4(dJ(1,  1)+ 20d~0(1, 2)) +O(k6) .  
l 

(4.16) 

The expansion of y(k)  is complicated due to the horrible algebraic form of the 
propagator and vertices. The procedure we followed was as follows. We first broke 
y(k)  into three pieces 

y(k)  = y(k)]c,=o+cl °~y(k)lcl=o+c2R(k, Cl). (4.17) 
ocl 

The Wilson part y(k)lcl=o contains all the terms k 2 Ink  2. Each additional factor of 
c~ carnes with it additional powers of momenta in the integrand. Hence the second 
and third have logs starting at order k 4 and k 6 respectively. The expansion of the 
first two pieces was performed by hand and the resulting coefficient evaluated 
numerically. The third piece was evaluated by performing a Taylor expansion of 
the integrand using "Reduce"  and then integrating numerically. Our final result is 

y(k)  = -fl°k2N In k2+ al (Cl )k  2 + ( 4 @ ( 1  + 12Cl) In k 2 

x i v ( k )  +~6 k 4 +a2(c l )~ .k4+a3(cO(k2)2+O(k61nk2) ,  (4.18) 
I 

with 

l l N  
/30 3(4~r)2, (4.19) 

28 
al(0) =11p2+356Pt4 9(47r) 2 1 - 0 . 1 0 8 4 3 5 ,  (4.20) 

a~(-  1½) = a~(0) -0 .031381 ,  (4.21) 

a2(0 ) _ 5 9  5 9  1 1 1 2 4  _ _  1 0 1 9  I -- -9oP2+216oPl + 5 ~ g + ~ { - l ~ S  In 2 126ooJ 

= -0 .015470 ,  (4.22) 

a 2 ( -  i l )  = - 0 . O 0 2 0 O 2 ,  (4.23) 
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13 9 23 1 32 a3(0) = - ~P3 + a~P2-144oP1 + ~ { ~  In 2 -  7~o 3} 

= - 0 . 0 0 2 1 8 8 ,  

a 3 ( - 1 )  = 0.003695,  

(4.24) 

(4.25) 

P1 = f~ i i  = 0.1549334 , (4.26) 

P2:f~cx 3 (27]') 4041 [(~)2~O(~t.r__lllx])__(~2)2.~ (1211)2] 

= 0.0240132,  (4.27) 

( 1 1 4 p3=f~ d41 [ 1  H 1 1 ~1)2)  ~ . / ~ ]  
( l  2 (12)2 j 

= 0.0022482.  (4.28) 

The coefficients of the k 4 In k 2 terms for cl = 0 agree with those calculated by Stehr 
[17]. The important result is that the k 4 In k 2 terms vamsh for cl =-1½ as first 
pointed out by Curci et al. [11]. Setting c 2 ( 0 ) = - c 3 ( 0 ) S 0  would introduce an 
unwanted (k2) 2 In k 2 term and hence we must have c2(0) = c3(0) = 0, thereby repro- 
ducing the result in sect. 2. In fact it has been proven by Symanzik [18] that for 
scalar field theories, the inclusion of next-nearest neighbours to achieve improvement 
to the tree level, also ensures the absence of all a 2 In a terms m the l - loop graphs. 
The above result indicates that the proof also extends to lattice gauge theories. 

Comparing the result of Fischler [19] for the static potential in the continuum 
minimal subtraction scheme with the O(k 2) terms in ~(k)  obtained above, one 
obtains the ratio of the lattice to continuum A's. For the Wilson case one recovers 
the Hasenfratz and Hasenfratz [20] result [21] 

AL,w,,,on exp{j+3ol[l_~_Np] } (4.29) 
mmm 

where 

J = ½(In 4~r -  Y) = 0.9769042,  (4.30) 

1 P=~PI +~P2+ 12 6(4r r )2=0.0849780.  (4.31) 

For the ratio of the A's for the improved Wilson action we obtain 

AL"mv W'ls°n = exp { flo1[ N ( O.O4 3 300 ) - N  ( O.041414 ) ] } 
AL,Wdson 

= J'4.133 +0 .004 ,  for N = 2  
(4.32) 

( 5.294 + 0.004,  for N = 3.  
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These values agree w~th those obtained independently by Bernreuther  and Wetzel 
[22] but lie outside the range initially estimated by Curci et al. [11]. A-ratios for 
other improved actions (e.g. mixed action) are easily deduced from the above 
formulae. 

Finally the improvement of the action requires the absence of k a terms in ~2(k). 
Hence, combining the results above we demand 

c~ --1-- c3' = -N(0 .003695)  , (4.33) 

c~ = - N ( 0 . 0 0 1 6 9 3 )  + d0(0.030522) + dl (1 .104373) ,  

-N(0 .008553)  + 1 ( 0 . 0 1 0 2 9 0 ) ,  (4.34) 
W d s o n  c a s e  

c; +8c ]  +16c~ +8c~ = 0 .  (4.35) 

We note that our corrections are numerically very small for all reasonable g2N, 

similar in order of magnitude to those found by Symanzik [4] for the non-linear 
o--model. 

5. An improved X 

To ~mplement the improvement programme consistently it ~s necessary to check 
that the observables measured have sufficiently weak intrinsic cutoff dependence. 
For example, looking forward to the theory with fermions, local currents defined 
via point-sphtting would in general have to be Improved. An example of a non-local 
expression m the pure gauge theory which requires improvement,  and which we 
will briefly discuss in the following, is Creutz's X [12], often used in Monte Carlo 
calculations to extract the string tension. X is defined by 

a-2x (R ,  a) = a 2( V ( R ,  R,  A, a) - 2 V ( R  - a, R, A, a) + V ( R  - a, R - a, A, a ) ) ,  

(5.1) 

where V is the logarithm of the R × T Wilson loop 

V(R ,  T , A , a ) = - l n ( l ( t r U ( g R r ) ) ) .  (5.2) 

In the continuum limit (a ~ 0, R, T, A fixed), V approaches a fimte value v modulo 
linear and kink divergences. A possible definition of the string tension is 

0 0 
X = lim - -  - ~  v(R, T, A) . (5.3) 

n.T~o~ OR 0 7  

a-2x  in (5.1) defined by Creutz, has the merits that firstly it Is absent of the perimeter 
and kink divergences mentioned above; and secondly, m the continuum limit, it 

approaches (0/OR ) (0/0 T) v (R, T, A )IT = n, which for large R gives the string tension. 
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Suppose now, we consider  the situation f rom the point of view of the improvement  
p rogramme,  and suppose that Symanzlk 's  improved  action has been constructed 

and observables such as V have diminished cutoff dependence.  Then  for small a/R 
it follows that 

a 2 x ( R ,  a) O O v(R, T, A)IT= R - ~ a  - - + - - I  T, A)tT=R 
OR or ~OR OT/ -~-~v(R '  

1 2 (  02 3 0 0 _1_ 02 ~ 0 0 

+ga ~5-F 2 OR aT OT2/OR O-T v(R' T,A)Ir=~+'". 
(5.4) 

In o ther  words,  X as defined m (5 1), has correct ions O ( a  2) to the cont inuum 

expression and its use would theoret ical ly not  be m the spirit of the improvement  

efforts made  so far. The  correct ions arise because of the exphc~t dependence  on the 

cutoff in the definition of X. We  can, however ,  easily find a modified X (which we 
call ,~) so that  the correct ions are O(a4) ,  

3 3 
a 2.~(R, a) =aR O-T v(R' T, A)[T=R + O ( a 4 )  • 

It just imvolves a slightly more  involved sum 

a : 2 ( R , a ) =  Y e ...... V(R+m,R+n,A,a) ,  
rrl,  n 

with coefficients e,.,. satisfying 

~. em,n(mk+nk)=O, for  k=0,1,2,3,4,  
m , n  

~ e  ..... mn(mk+nk)={10 ' for k = 0  

. . . .  for k = 1, 2 ,  

em. .mZn  2 = 0 . 
m , n  

Define 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

e~,. =l(e,..n+e..m). (5.10) 

A reasonably practical solution can be found involving just era,. + with - 2 -  < m, n ~< 1 
and I m -  n] <~ 2. There  are  nine such e+'s and given any one of them (apart  f rom 

+ 
eo,-1 ) the others  are de te rmined  thus: 

+ 1 + el,1 = y + 5 ,  eo,o = 3 y + ¼ ,  e+-l-i = 1 - 3 y ,  

+ 1 + - -2y- -  , e-1,-2 = 2 y ,  e - 2 , - 2  ~ - y  12 , el ,0 

+ = + = - Y + h  eo.+ , = - 1  (5.11) e l ,  1 Y, e0, 2 , • 

)~ zs, in theory,  an improved  observable.  But we are faced with practical problems,  
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and whether  or not it is bet ter  to work with such a )~ is a delicate question. Since 
we want to exclude loops of " too  small" a size we would require good data on 
larger loops (e.g. 5 × 5). Here  we will discuss these difficulties no further;  we have 
merely touched on the problem concerning which more should be understood. 

6. Conclusion 

By calculating the small-a expansion of the static potential in l - loop  order we 
have, (a)  verified the result of Curci et al. [11] on the form of the tree-level improved 
action and (b) placed some constraints on the coefficients of the improved action 
at l - loop  order. We still require a further calculation to specify ct', c~, c~ separately, 

either by calculating the effective action completely to l - loop  or calculating the 
Wilson loop to 2-loops (such a calculation is under way). It would also be satisfying 
to have consistency checks of the ansatz by ensuring that other physical quantities 
are also improved. We see no reason at present why c~ (or c q) could be chosen 

a a 
zero despite the fact that the currents J ~ -  D~,F~,~ are classically zero and that the 
composite opera tor  ~ J~J~  formally acts as a trivial perimeter-measuring operator  
on Wilson loops. However  if we set c~ = 0  by hand m our constraints (4.33)-(4.35) 
we obtain corrections which have a slope consistent with the trial values found by 

Wilson [23] in his renormahsation group studies. It has been suggested to us by 
Symanzik that c2(g 2) o r  c3(g 2) could possibly be set identically to zero at the cost 
of systematically altering the definition of the observables. 

There  are many difficulties still to be overcome. One type of problem is associated 
with the definition of improved observables, touched upon in sect. 5. Further,  simple 
methods to obtain bounds on the glueball spectrum used for the Wilson action, e.g. 
use of the positivlty of the transfer matrix, will have to be reviewed in the improved 
case. Also some studies of the phase structure, e.g. mean field studies, would be 
appreciated. 

With the appearance of parallel processors the extra complication of the action 
does not present a major  problem, as long as enough effort is spent in optlmising 
the programmes.  We would like to stress that Symanzik's p rogramme is not an 
alternative to the use of larger lattices but rather  complements these advances. As 
for the results we would also like to repeat  that although observation of scaling-like 
behaviour for physical masses is a necessary condition for the relevance of the 
continuum limit, the thereby individual mass/A ratios extracted in practice have 
large uncertainties due to perturbat lve corrections. A better  test of improvement  
is the smoother  behaviour of the ratios of physical masses. 

Many situations may occur in practice - perhaps tree-level or l - loop  improved 
actions show scaling windows where the standard action did not really show any 
(as in the g-model) .  But there is no a priori reason that the improved l - loop  actions 
should have dramatic success over the standard actions in regions where the coupling 
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is not too small. In the latter case the improvement coefficients as functions of g 
must be found by trial and error  [2]; the l - loop forms just aid the search. 

We have many colleagues to thank for various contributions. Firstly K. Symanzik 
for numerous helpful discussions and constant encouragement. We thank M. Lfischer 
for allowing us to include his notes in sect. 2 of this paper, and also for helpful 
comments. We greatly appreciated the time and effort invested by J. Stehr in 
checking some parts of our calculation. All numerical integrals were evaluated using 
an excellent programme of I. Montvay, who kindly made it available to us. Finally 
we thank F. Gutbrod for patiently introducing us Into the use of "Reduce" .  

Appendix A 

FEYNMAN RULES FOR THE IMPROVED ACTION 

We employ covariant gauge fixing and thereby end up with the following total 
action to perform perturbative calculations 

Stota,(a, c ) = S  .. . . . . . .  (a)+Sghost(A, c )+S(A)+Sgf (a) ,  (A. 1) 

with 

S . . . . . . .  ( a )  = - ~Ng 2 f A . ( k ) A . ( - k )  "" "a + O ( g ' ) ,  (A.2) 
d k 

= -  f k, k' 6o( k )~b( k ' ) [  (2 3T)4~ (k  q- kt)~ab]'~ 2 Sghost ( A, C) + igf~b 

f p  "c ^ 1 t 1 2 x (2rr)43(k+k'+p)A.(p)k~ cos (~k . )+~g  f~oefdb~ 

x ( 2 r r ) 4 6 ( k + k ' + p + p ) A . (  (A.3) p ) A ~ ( p ) k . k ~  + O ( g  3) , 
p,p' 

oo g n 2 
S(A) + Sgf(a) = -~--2 - - Z  S"(A' g ) '  (A.4) 

where 

f ~a --1 S2(A) = [ , 4~ (k )A~( - k )D~(k )  
k 
1 27a "a - ¢ 3 ) ( k .  + k . , ) q - ( c ' 2  + c ~ ) ] ¢ 2 ) ] ,  (A .5 )  -~g l . ~ ( k ) f . ~ ( - k ) ( ( G - c ' 2  ' ~2 ~2 

S3(A,g)= f (2"rr)43(kl+k2+k3) 
kl .k2~k 3 

"a "b ~c ~ I]O) 
x A x ( k l ) A o ( k 2 ) A ~ - ( k 3 ) f a b , .  Y. ~', " ~o~ (k~,  k2, k3) , (A.6)  

z 
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S4(A,g)=f (2,n.)46(kl+k2+k3+ "a "b "c "d k~)A.(kl)Ao(kgA.(k3)A~(k4) 
kl,k2,k3,k4 

×E, [c,fabefcde( V(')-xp,~ \r~l,/'/r k2, k3, k4) -  W(') --oa'~ (k2, kl, k3, k4)) 

--~'R CRtS~ bCdrlflZ(I),, ApTo-_(kl, k2, k3,. k4)] • (A.7) 

The propagator D..(k) in (A.5) was discussed in detail in (I) and is given by 

with (Cl = - ~ )  

A~..(k)=A~.(k)=(1-6~,~)A(k) l[(fc2)2-ClfC2(2v~ fc4 +fc2 E 

+c 2, ~ +~22~4 2 k~+(k2)~ 1-I 

where 

(A.8) 

(A.9) 

k . -  k, -4c32kp H k~. 
T p T•p 

(A.10) 

(A corrected version of (A.16) in paper (I)). 
The coefficients c~ appearing in (A.5) are defined by 

cl(ge)=g 2(c,(g2)-c,(0)). (A.11) 

The three-point vertices in (A.6) have the property 

V(,) ap,(kl, k2, k3) =_1i0)  it- kt, k3) = - V 0 )  (k3, k2, kl) (A.12) 

and are given by 

--ap,v(°) ttkl, k2, k 3 )  = t [ ( ~ a p ( k l  - k2 )~ . c3x  +2 cyclic perms],  (A.13) 

V(1) (kl, k2 ' k3 ) = 8 V(x~, (kl, k2 ' k3 ) ApT 

+ i[&,p{c3A ((kt - ~ 2 )  A (6~,/~3 2 -/~3~/~3,) - ( k~ - k2).(k 2, +/~2. )) 

+ (kl - k---~),(/C1A/CzA - 2 c l , ~ c 2 f l ~ 2 a  )} + 2 cyclic perms],  (A.14) 
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V(a~(kl, k2, k3)= 16 V(,°o),-(kl, k2, k3) 

rr ~ A,r 

+ ~>( ~,~,~ - ~ ) )  + (1 - a~)(1 - a~.) 
~ ~ | 

x (1 - 6p,)klAk2p(k~ - k2)~ + 2 cyclic perms J , (A.15) 

F 
V(3) (k l ,  k2, k3)=8V(amo.~(kl, k2, k 3 ) - i l 6 x p ( 1 - S a - ) c 3 A ( - k l - k ~ 2 ) , -  2 ApT 

k cr~ A,r 

4"½(1 - 6ap)(1 - 6a,)(1 - 6p,)(k, - k2), 

~ 1 ~ ~ ] ,  X {kl,k2p- 3(k3- kl)o(k2- k3)a}+2 cyclic perms (A.16) 

where we have introduced the notation 

c,, = cos (½k,,). (A.17) 

Finally the four-point vertices in (A.7). The --ao~*/(') have the properties 

IX(') [b  k3, k4, kl) = ~"(') (k4, k3, k2, k l )  (A.18) --aorc~l/0) (k l ,  k2, k3, k4) = -p.(~a ~.~2 . . . .  oa 

( ~  +~2 ) 

They are given by the following unwieldy expressions (which we have not attempted 
to reduce to an optimal form), 

v(O) (k l ,  k2, k3, k4) Aprcr 

= 26p~6,, cos 1( kl - k3) o cos  1( k2 _ k4)x 

- a /~  fl~2,/~3fl~4a) + 1 cyclic perm] --[(~xo(~(~(COS ½ ( k l -  k2).  cos  l (k3  - k4)~ 1 

- -  g[ ~xo~a~k4x (kl~k2~k3~ + cl ~(k2- k3)~ + c3~(k2- kl)~) + 3 cyclic perms] 

+ ~8.oa,.a~. 2 kl ~k2~k~k~ + 2(k ,  + k-3) 2 -  (k ,  + k2) ~ -  ( ~ - 4 )  2 , 

(A.19) 

Vk~-o- (kl,  k2, k3, k~) 

= 88)~r~pa[ClAC3, ~ COS ( k  2 - k4)a cos ½(kl- k3)o 4. ()t ~ p, k I <-~ k2, k3 ~ k4)] 

- 2[6AoS~,{(cos ½(kl + k2)x cos  (k l  + k2)a cos  l (  kl  + k2) .  

+ cos  ( k I + k2)xc,  xca,/~, ./~2. + 2 cos ½( k I + k2)x cos ½( k 1 4" k2) .c ,  rc2.k , r k 2 r  

+cos ½(k~ + kz)a cos ½(2k~ - 2k2-  k3+ k4).) 

+ ()t o r, k~ o k3, k2 o k4)}+ 1 cyclic perm] 
2 A ^ 2 2 

+ [axo6a,{(5 k4xk4~(c4~ + c4a)+ 2k4a k1~Clo-¢4~ cos  (k,  + k4)~r 



[tu.I;)d :)!F)dO t + ((172/~ z~/'.o <---> d) ~ ,~(z~/+ c~/~)- (~/+ ,~/~)'+ 

*(~t - '~t)~ soo *~ z) "(~ - ~t )~ soo (~, - t )(~'~, - t )C~s ' - t)'~e] + 

Ee:lu~tuotu jo suo!lemm.md g + 

V#,* #rl# ¥ 

(~(~:~v +':~)~- t)'~(~+--~ '~)-(~'-. z)"',,-q~,,~ 3 ~t'~¢'~ + 

sm.i0d o!IOdO ~ + ((s~/~ b/) + 

"(~ + '~.______.__ ~)"("~ + '~z)~ ~o~ ",~ + ~(~:~ + ~:~)~ ~o~ "-y'~pz + 

.o'¥ # ~q 1 

"~ 3 ~-~ 3 

(ozv) 

LIP 

( 2/- 2/)y soo '~ff:/- ~2/)~ soo C"~- t)"~"(~v = 

('7>/'c~/'~/'b/) ~"~'" (z)A 

' [(elu~mom ~q] jo suo!lelntu2~d o!IOdO ~) + 

'('~/-:~/) so3 ~(c:,/- ~/)~ so~ ~cp'~.#- 

~(~:~ -~:Y + ~:Yz) ~(~:i -~ -'~) ~'~ - ~(~- ~:l + ~:Y z) ~(~:Y -~:~ -',t)*'~ - 

,'(,~:y + ,:~) so~ ,~(~:y -~/) so~- ~(~ + ,:~),~+ ~(~v+ ,~)c- c + 

(~(,v + ~__~)~ (~ + ,v~)~+ ~(~ + ,v)~ so~ ~,~'(~v + ,:~)~ soo ~f ~v- 

"ff~/+ ~:y) soo "~" ~a"~/" ~/Z - '~ff~/+ ~/)~ (~/+ ~/)~- v v ~ V 

~(~2/+ t:l) ~u!s ~+{ "~ + 7( + I E Z s g~ ,' 

[sma~d o!IO,~o £ + {(c~ ~ b/) + C°(c~/- ~/- b/) v (~>/_ c>/+,,~ ~;) v t o + 

uouav aa~llo I paao.Muq / l,~alVOA, 1 ~1 'zstaA4, d 
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+ [ , % ( 1  - &,,~)(1 - a,,T)(1 - , % ) ( c o s  ½(k, + k 2 ) , , £ ~ { - c o s  l ( k ~  - k~),, £~,- 

+COS l(kl  + k2)A('2k 4 +k  3)~' ~+ ~ k 3A k.Ak4~,(2k4+k3)T4 

+ cos ½( k, + kz)A (2 k ~ k ~ 4 ) , . { ( ~ ) .  - l ( ~ ) . }  

+ ( T o  cr, kl ~ k2, k3 ~ k4)) + 3 cyclic perms], (A.21) 

V(3) ~xp,~ (kl,  k2, k3, k4) 
= 8~A~-~crp(1  - -  g a p )  COS l ( k  I - k3) p c o s  l ( k  2 - k 4 )  A 

X y~ c o s ½ ( k , - k 3 ) ,  cos½(k2-k4) .  

-t-2[tSAPt~T(l--~a'){ cOS½(kl-t-k2)a~gz,. COS ½(kl + k2)" 

x (cos ½(k, + k2). cos ½(k~ + k2)~ -- 2 cos ½ ( k l -  k2). cos l (k ,  -- k2)~) 

+(A ~ r. k, o k 3 ,  k2"~-~ k4)} + 1 cyclic pe rm]  

r a 1 1 ~2 + a~pS~.(1--aA,~)k4A E ((-3+T2k4.)k4~ 
L /x ~ Adr -1 

+ c4~ cos I (2k,  + k4)~ (2k, + kJ----~)~ + (k, ~ k3)) + 3 cyclic permsJ 
2 A2 1 A2 ~ 2 1 I ~ 2 +6A~8~8~,.~ E [ g k ~ . ( 1 - g k , . ) - ( k , + k 2 ) .  (~-~(k '  k2)~) 

A ~ k L ~ u ~ A  

+ 3 permutat ions of momenta]  

- [6~,(1 - ~A,,) (1 - ~xp)(1 - 60-o) cos ~(k2 - k4)A 

× { ( ~ l ~ + - k 4 ) ~ ( 2 k ~ 2 ) p  + (kl ~ k3)}+ 1 cychc perm] 

+ [8~o(1 - 6~)(1  - ~ , )  (1 - ~ , )  (I cos l(k~ + k2)~{-ka,(2k3 + k4),, 

~ +1 1 k - (2k~+k0.(2k~--~4)~} gcos~( 3-k4)a{/~3~/~4,. 

+ ( ~ ) , ( 2 k ~ 4 ) ~ }  + (r  ~ t~, k, ~ k2, k3 ~ k4)) + 3 cyclic perms].  
(A.22) 

The tensor appearing in (A.7) is totally symmetric and defined by 

S~  bcd = h tr ({g a, Rb}{g ¢, Rd} + {g ~, RC}{R b, Rd} + { R~, gd}{ gb, Re}) • (A.23) 

Upon contraction one obtains 

¢oobc = ~ bCtR ( CR -- 1N) . (A.24) ~'R 
a 

The vertices uzo) ,, ,p,~ are totally symmetric (have no cont inuum analogue),  

~/(1)  A (k~, k2, k3, k4) ]~[I(1) ( kp(4)). (A.25) ~'IA2X3 4 ~- ~'V A a(l)Ao(2)Ap(3)~tp(4) ~ ,kp(1) ,  k p ( 2 ) ,  k p ( 3 ) ,  
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~/(') by They are given in terms of the --ap..~ 

II/(') [/.- k2, k3, k4) = * "~') v(') (kl k2, k4, k3) 4( vAp.~ (kl, k2, k3, k4)-I- --apo-. vv Apro- \~'1~ 

• , ( t )  
+ v~To,, ( k l ,  ks, k2, k4)). (A.26) 

For completeness we hst the resulting expressions 

(kl, k.. k3. k4)---2{8Ao6~.6~ W(0) ]~ 1 ~, ]~2 ~,]~3 ,,/~4 ~, A p~-o- 

+ ((~ApC~crrk3Ak4AklrffC2r 71- 2 p e r m s )  

- (SAo6,./~4,/~j fl~2fl~2fl~3~ + 3 perms)}. (A.27) 

Ap~-o" (kl, k2, k3, k4)= 32{¢~Ap~Ar~Ao-~ W(1) +KA) 

+ (6~6~r.f~3~fc*jq f2.(K~ + K~) + 2 perms) 

- (6;,~sAf~4~fq,f2of%,~(K~ +K~) + 3 perms) t , ) (A.28) 

where we have introduced the notation 

K~ = cl vCzvC3vC4u, (A.29) 

W ~ ¢  (kl, k2, k3, k4) 

= W~3o),o-(k,, k2, k3, k 4 ) + 4 ( d - 2 ) W ~ ' ~ ( k l ,  k2, k3, k4) 

k~ # A,cr 

3 [  . . . .  + 3 p e r m s -  8A06~.(1-6~..) Y. ( k l ~ k 2 ~ k 3 , k 4 , ( k ~ + k 2 ) ,  

+ 2/~,./~2fl~3./~4. (/~1 fl~2,~c3~c4A + CI~c2~k3AIC4A )) + 2 perms] 

- k3Ak4,{kl~,k2,~k3, ,c4,(kl  + k2)~ + kl~k2~k4,c3,~(kl + k2)~ 

. . . . . .  ]} 
- k3~k4~( c ~ c 2 ~ k l . k : T  + c~.c2 .k l~k2~)}  + 5 p e r m s  . (A.30) 
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W(a3o)~,~ (kl,  k2, k3, k4) 

^ A A A 

A ~ k L # v # A  

A A ~ 

+ ( kluk2uc3~c4~k3~,k4vCl ,,c2,, + (2 ~ 3 ~ 4 ~ 2) + (2 ~ 4 ~ 3 ~ 2))) 

/ x  # A , c r  

+ (k~,~Cz,.C3,~cz.k3~,cL~.c4. + (1 --> 2 ~ 3 --, 1) + (1 --> 3 --. 2 --> 1)) + 3 p e r m s ]  

+ 6xo6,.~(1-3A,.) ~ (k3ak4Aq,3c.4+k3~.k4~.ca3G4) 
~ # A , o "  

X ( k lck2¢ca I c~.2 "Jr- kl  . k2ac¢  t c,~2) + 2 perms ] 

Note  tha t  the  W( ' ) ' s  a re  t r ansve r se  

i l l (t)  1A t ,  xpro-(kl, k2, k3, k4) = 0 .  

(A.31)  

(A.32)  

Appendix B 

AUXILIARY THEOREM 

Le t  f(x, a), x e R  e, 0 ~  < a ~< 1 be a C ~ funct ion with compac t  suppor t ,  i.e. t he re  

exists k > 0 such tha t  

f(x, a)  = 0 ,  for  Ixl > k ,  (B.1) 

Then  for  all q = 0 ,  1, 2 

~f(an,  a ) -  o !a d+~ daX~a~f(x,a)la=o+O(a-d+q+l). 

Proof. F r o m  Tay lo r ' s  t h e o r e m  

f ( x ,a )=  ~ 1 ~ o ~ ~=o v -~.a Oa ----Tf(x' a)l~=°+aa+lR' 

IRI~C, R(x ,a)=O,  for  [xl>K. 

(B.2) 

(B.3) 
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It follows that 

and thus 

[Y~R(an, a)[ <~ E C=O(a-d), 
n n < K / a  

q l ~ a) 
f (an ,  a) = Y. ~,1 a~ ~=o " ~=,, v ~. ~a ~ f ( x '  +O(a -d+q+ ' )  

x ~ a n  

All the terms on the right-hand side of (B.5) are of the form 

~. g(an)  , g(x)  C a , g(x)  = 0 ,  for Ixl > k 
n 

Define 

f 
~,(p) = J ddx e-'pXg(x) . 

The Poisson summation formula yields 

~g(an)=a, a ~ , ( 2 ~ ) .  

It is well-known that for every r 

[ff(P)l ~< cAl+ lp [ )  r 

f rom which follows for arbitrarily large r 

E g(an)  = a d~,(O) + O(a-d+' ) ,  
n 

and hence the theorem. 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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