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The cross section for radiative capture of protons by monopoles is calculated by the
use of bound-state and scattering wave functions obtained with the Kazama-Yang Hamil-
tonian, i.e., with a pointlike proton. For proton velocities;ﬁ:lO's—lo =3, the cross sec-
tions for capture into the lowest bound states, with binding energies of 938 MeV, 263 keV,
and 105 eV, are found to be of the order of 10°28-10"% ¢cm?. For the state with binding
energy of 263 keV, the capture length in water is found to be [170(8/107%%+%® m, Observa-
tion of photons from the capture process would indicate the presence of monopoles.

PACS numbers: 14.80.Hv, 25.90.+k, 36.10.-k

The Kazama-Yang Hamiltonian® leads to the
prediction of bound states consisting of a mono-
pole and a fermion. While this Hamiltonian re-
quires a nonzero anomalous magnetic moment,
it does not account for other structure of finite-
size fermions like the proton, and applies only
to Dirac monopoles. There are two reasons why
the Kazama-Yang Hamiltonian gives only an ap-
proximate description of the monopole-proton
system: (i) The monopoles of grand unification®
also have an SU(3) color magnetic charge. This
charge is believed to be screened by the vacuum
at distances much larger than Agcp™'=~1 fm.
Since the rms radius of the first excited (z=1)
bound state is about 10 fm, and larger for the
more weakly bound states, and since the proton
is a color singlet, we believe the presence of a
color magnetic charge to have little influence on
the system. (ii) The proton has a finite size.
Thus, at short distances the anomalous magnetic
moment should be described by a finite distribu-
tion taking into account the granular structure
and magnetic polarizability. Since such finite-
size effects will fall off exponentially as the pro-
ton-monopole distance increases, they will lead
to only a small perturbation of the (»> 1) bound-
state wave functions in the region where they are
large.® Therefore, our calculation of capture

cross sections should not be very sensitive to
finite-size effects. The binding energies are
more sensitive to the behavior at short distances,
because of the singular nature of the 1/»® poten-
tial.

In the case of the states of lowest angular mo-
mentum, j=legl-%, eg=+3,+1,..., the bound-
state spectrum has been investigated by Kazama
and Yang,' and by the present authors.® For pro-
tons, with anomalous magnetic moment « =1.79,
and monopoles of minimal magnetic charge, legl
=%, some properties of the lowest bound states
are given in Table 1.

With analytic (albeit approximate) results for
the bound-state wave function,?® it is straight-
forward to calculate the cross sections for ra-

TABLE I. The lowest monopole-proton bound states,
characterized by binding energy (Eg), size (r.,), and
wave length (A) of the photon emitted in radiative cap-
ture from an initial state of zero kinetic energy.

n Ep Vrms A

3 0.04 eV 0.23 & 3% 10° &
2 105 eV 460 fm 120 &
1 263 keV 9 fm 0.048 &
0 938 MeV
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diative capture,

monopole +free proton - monopole +bound proton +photon.

The proton anomalous magnetic moment is not large enough for bound states of higher angular mo-
menta to exist.* The bound states will thus have angular momentum j =0, and the capture will pre-

dominantly take place from initial states of j=1.

As opposed to the case of mesonic and other “exotic” (Coulombic) atoms, there will be no cascade
since the monopole-proton bound states all have j =0. Following capture to an excited state, the sys-
tem can only relax via collisional deexcitation or two-photon emission. What one might hope to de-

tect, therefore, would be just single photons.

For nonrelativistic monopoles of velocity g, the photon energies would be given by

w=E, +3Ma?,

(1)

with E, the binding energy as given in the table, and M the proton mass. If the monopole velocity is
low, 8= 1073, capture to the lowest states (#< 1) would yield monochromatic and characteristic pho-

tons.
The capture cross section is given by

do = @2n/B)Ms;|? 6 GMB® +E, = w)d*k/(271)%2w,
with

Myi= € [d% Ypopa @@ 80 F Ty, 7). (3)

The zero-energy (n=0) bound-state wave function
has been given in Ref. 1, and approximate re-
sults for the excited-state (x> 1) wave functions
have been given in Ref, 3. While the latter are
not exact, they are highly accurate in the present
case of weak binding, E, <M, and have been
adopted for our calculation.

For the initial states we have considered three
approximations: (i) plane waves, (ii) the Kazama-
Yang-Goldhaber wave functions,® and (iii) a mod-
ified version of the Kazama-Yang-Goldhaber
wave functions, which takes into account the pro-|

f)cos(p)g;, P —sinlp)t,;, @)

L
Yim= 5y [—i[g+(r) sin(p)¢;, " - g. r)cos (@), *]

with

@)

I1:on anomalous magnetic moment, We shall short-
ly return to a description of these.

In the nonrelativistic limit, B« 1, incident
plane waves lead to a matrix element proportion-
al to 8, and hence to a cross section oc~g. This
plane-wave approximation turns out to be inade-
quate; the distortion of the incident wave due to
the interaction of the monopole with the magnetic
moment is very strong, and results in a quite
different g dependence for the cross section.

The modified version of the Kazama-Yang-
Goldhaber wave functions that we have used for
the cross sections presented in Fig. 1 is obtained
by solving the radial equations® in the exterior '
region, i.e., for »> 1/M, fof k+0. We find, for
l<Mr «<1/8,

], | )

&)= )2, (pr), g.r)= ;ﬁ— (1+ 20 +wW(pr)2T,_2y (pr), (5)

.= [“2'*“7:‘ - (“2+ q2K2)1/2]1/2,

tang =[(1® +¢°>)"* - u] /kq.

(6)
(7

Here pu=[(j +3)*=¢*1*?, q=-eg, and £V and ¢® are the two-component eigensections introduced in
Ref. 5. For a monopole of minimal magnetic charge, one has g =+3.

The full solution in the exterior region, » > 1/M, also contains terms given by Bessel functions of
the order v_+1, and of the orders v,, v,~1, and v, +1 {where v, =[u®+1 + (u®+ ¢%?)"?]¥?}, as well as
of the corresponding negative orders. Since we are here only interested in small velocities 8, the lat-
ter are unimportant. The matching with the interior region® takes place at such a small value of pr
=BMy that the negative-order Bessel functions are already large and therefore acquire very small co-
efficients.” The remaining (positive-order) Bessel functions contribute to higher order in sSM» and
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therefore are negligible in the region 1«<Myr «<1/3.

In the limit

B << (2¢€,)Y?,

(8)

which corresponds to the incoming-proton kinetic energy p2/2M (in the monopole rest system) being
much smaller than the binding energy, €,M = E, , the matrix elements can be evaluated analytically.

The cross section is given in this limit by

oa(B) = (a/M?)(2¢, /B°) - C,, n>1, (9)
where (for g =%)
2 si R 1 -2\ |22
Cie= 2T7T Sln:f_:rr@) [F(V_+1) I‘<3+V2'H§>‘ ] (1+sin2 ¢) (10)

and the bound state is characterized by®

B=32k-1)¥2, (11)

With k=1.79, we find

0,=0.628(2¢,/p%)**x 10"%% cm?; n=> 1. (12)

For capture to the lowest excited state, with €,
=2.808x 10" (see Ref. 3), we get

0,=8.75(107%/B)>*% x 107 %% cm?. (13)

For capture to the zero-energy state,® we shall
here only quote an estimate (for g« 1), obtained
with the wave function of Eq. (4), which can at
best be a rough approximation for the small dis-
tances involved here:

0, 6(10"%/B)*%8 X 10727 cm?, (14)

Results of a numerical evaluation of the cross
section are given in Fig. 1 for the capture to the
lowest states, for velocities in the range 1075 <3
< 10- 3.9

In addition to the two-body bound states con-
sidered in Refs. 1 and 3, it has also been shown
that there exist three-body bound states consist-
ing of a monopole, a proton, and an electron.®
The latter states have atomic dimensions and,
if the monopole velocity is sufficiently low, cap-
ture cross sections are presumably of the order
of atomic capture cross sections. These mono-
pole molecules’® have a binding energy of the or-
der of 1 eV, which is small compared to the ki~
netic energy of protons incident on the monopole
at relative velocities g8 = 10™%. We therefore be-
lieve that the formation of monopole molecules
does not significantly impede the capture to the
more strongly bound states discussed above, un-
less p*< 2¢ where € ..~ 1 €V/938
MeV = 107°,

Let us now consider more specifically the n=1
state (E; =263 keV).® At a velocity g=10"%, the
cross section for capture to this state is 8.75

molecule »

x 10728 cm?, and the capture length in water is
L=[20, 710l '~ 171 m. Even if the monopole
has previously captured a hydrogen atom or a
proton in a higher excited state, those binding
energies are so small that the probability that an
n =1 state is formed is essentially as if the mon-
opole were free. We therefore expect that after
penetrating an average depth of ~ 170 m of water,
an n =1 state is formed, with the emission of a
photon. Observation of these monochromatic pho-
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FIG. 1. Cross sections for radiative capture of pro-
tons by magnetic monopoles, The labels » refer to the
various bound states characterized in Table I. The
result for » =0 is a rough estimate. For =1, an
evaluation using the Kazama-Yang-Goldhaber relativis-
tic wave functions indicates that the present nonrela-
tivistic approximation is valid to within 5% where the
curves are drawn solid, and that it holds within a fac-
tor of 2 where they are dashed.
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tons would thus indicate the existence of magnetic
monopoles capturing protons. If the lowest-en-
ergy state exists, the emission of 938-MeV pho-
tons would be even more spectacular events.

With g < 1072, the available energy in subse-
quent collisions of the bound monopole-proton
system with other atoms, T\;,=3M 4omB2, wWould
not be high enough to cause the » =1 monopole-
proton system to break up, in contrast to the
more weakly bound states.

We have not carried out any further analysis
of how the » =1 monopole-proton system would
interact with matter. Such a system might be ex-
pected to ionize (or excite) matter more strongly
than a bare monopole, because of the proton
charge. However, it appears that this system
would tend to pick up an electron to regain elec-
tric neutrality. The energies by which the elec-
tron would bind to the monopole-proton system
would be close to those of the hydrogen atom.
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