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We calculate the chiral condensate ( ~ )  for all quark masses using Kogut-Susskind fermions in lattice-regularized 
quenched QCD. The large volume behaviour of ( ~ )  at small quark masses demonstrates that the explicit U(1) chiral sym- 
metry is spontaneously broken. We perform the calculation for fl = 5.1 to 5.9 and find very good continuum renormaliza- 
tion group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the 
first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. 

Spontaneous chiral symmetry breaking is one of  
the most striking features o f  the strong interactions 
[1 ] ,  and if QCD is to be a successful candidate theo- 
ry it must reproduce this phenomenon.  Whether it  
does or not  has not  yet  been established: the prob- 
lem is made difficult by  its non-perturbative nature. 
I f  i t  does not  then the spectrum predicted by QCD 
will possess parity doubling and no very light pions, 
in damaging contrast to the experimental  situation. 
In a previous paper [2] we discussed this problem 
within the context  of a Monte Carlo [3] simulation 
of  lattice-regularized [4] QCD and presented prelim- 
inary numerical evidence that chiral symmetry is con- 
sistent with being broken spontaneously.  In this let- 
ter we shall make the evidence convincing: continu- 
um QCD in the quenched approximation,  where one 
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neglects vacuum fermionic fluctuations, breaks its 
(zero quark mass) chiral symmetry dynamically.  

The usual criterion for chiral symmetry breaking 
is that  the chiral condensate ( ~ ( m ) )  should not vanish 
as m -+ 0. One has to be careful when using this cri- 
terion on a lattice of  finite volume, V. A finite sys- 
tem will, given enough time, rotate through all the 
degenerate minima of  the effective potential ,  so that 
one obtains ( ~ ( r n  -+ 0)) = 0 even if  the symmetry 
is dynamically broken.  The correct criterion is that 

l im lim (~qJ(m)) 4= 0, (1) 
m ~0  g--*~ 

if  we are to have spontaneous breakdown. To check 
whether (1) holds (or not)  one proceeds as follows. 
Calculate (~$ (m) )  for several different lattice vo l -  
umes. The condensate should tend to an envelope, 

which for m ,~ O(Amom) (Amo m being a rough mea- 
sure of  the energy) is linear in m and has a non-zero 
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intercept at m = 0. For the largest volumes the mass 
at which ( ~ ( m ) )  breaks away from the envelope to 
collapse to zero should be so much smaller than the 
gauge theory energy scale, O(Amom) , that it is obvi- 
ously a kinematic rather than a dynamic effect. It is 
clear that such a calculation requires great accuracy 
at very small quark masses. We emphasize that unless 
one calculates for quark masses much less than the 
energy scale of  the non-abellan gauge theory, one can- 
not say anything about whether the theory breaks 
chiral symmetry spontaneously or not. Especially so 
i~ a numerical lattice calculation, where ( ~ ( r n ) )  at 
larger quark masses possesses a large (ultraviolet) per- 
turbative component.  We shall illustrate this explicit- 
ly with our data below. 

To show that the spontaneous breaking is a con- 
tinuum property one must then repeat the calcula- 
tion over a range of~  and demonstrate the correct 
continuum renormalization group behaviour for ( f~ ) .  

To demonstrate continuum behaviour is especial- 
ly important since it is known that one has spontane- 
ous breakdown in various modified strong-coupling 
limits [ 5 - 7 ] .  One also finds spontaneous chiral sym- 
metry breaking whenever one has confinement, in 
the large N c and mean-field (space-t ime dimension 
d -~" ~)  approximation [8]. This situation is rather 
weaker than the one for confinement: there has been 
no direct demonstration of  chiral breaking for SU(3) 
in d = 4 at large g2. In this paper we shall in fact show 
that quenched QCD breaks chiral symmetry at strong 
coupling, and our results are in beautiful agreement 
with the analytic expressions of  ref. [7],  but only 
if one includes their l id corrections. 

There have also been numerical calculations claim- 
ing to provide evidence for continuum chiral break- 
ing. In refs. [9] and [I0]  the cases of  SU(3) and 
SU(2) are considered. Unfortunately these claims are 
typically based on naive extrapolations of  measure- 
merits of  ( ~ ( m ) )  at large quark masses, m ~> O(Amom)- 
In addition they use periodic fermionic boundary 
conditions, which misleadingly simulate [2] chiral 
symmetry breaking on small lattices, even for the free 
theory. The dangers of such procedures are highlight- 
ed by the apparent appearance [9] of  continuum 
chiral breaking on small lattices at values of/3 where 
they are deconfining and there is in fact no spontane- 
ous chiral breaking [11 ]. An interesting calculation 
on small lattices with quark loops and at m = 0 ap- 

pears in ref. [12] ;it is suggestive but hardly defini- 
tive. This is the rather unsatisfactory situation we 
now try to remedy. (As we were completing this 
work we received a paper by Kogut et al. [13],  which 
studies the high-temperature recovery of  chiral sym- 
metry in the SU(2) case. Although these authors do 
not attempt to systematically demonstrate chiral sym- 
metry breaking at zero temperature, their emphasis 
on calculating at small quark masses is realistic. They 
use the conjugate gradient algorithm, which we have 
also used both in this context [2] and in that ofha-  
dron spectrum calculations [14]. While it is much 
better than the popular Gauss-Seidel method, it does 
not compare, for the present purposes, with the 
Lanczos algorithm [2] we use herein.) 

The euclidean lattice QCD action may be decom- 
posed in gluonic and fermionic pieces 

S = S c + S F . ( 2 )  

For S G we take the well-studied Wilson action [4] 

= U t U t ~ (3) SG -~3 ~ Tr(Un,uUn+u,v n+.,. n y  
n, .u ,v  =~.u 

and impose periodic boundary conditions. For S F 
we want an action with chiral symmetry. This dis- 
qualifies the (r v~ 0) Wilson-type fermions, which ex- 
plicitly break all chiral symmetries by irrelevant oper- 
ators, and there is no evidence that they have recover- 
ed chiral symmetry (enough to break it spontaneous- 
ly) in the region of  couplings accessible to Monte 
Carlo studies. The naive action 

S F ~ - ~ [M(U) + 2real ¢ 

- - -  N;L , ( v  , .  - . )  
n,N /2 n , #  n -~/.t 

- 2ma ~ ~n $n (4) 
r/ 

has an obvious explicit chiral symmetry when m = 0 
but describes 16 "flavours". If  we decompose the 
(antihermitean) matrix M into 

M = FC/?~ F +, , (5) 

where F is a unitary block-diagonal matrix containing 
all the 7 matrices [6], and write 

= r x ,  (6) 

the fermion action (4) becomes 
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S F = ~ [eYe(U) + 2ma] X, (7) 

where the different components of  X decouple. This 
allows us to work with a single component  fermion 
field, thereby reducing the number of  degrees of  free- 
dom by a factor o f  4. The fermion action (7) reduced 
to a single component  × is the action for staggered 
fermions [15],  which we shall employ in this paper. 
The remaining quark degrees of  freedom may be in- 
terpreted as 4 flavours [16,17]. The matrix qR is an 
N × N sparse complex matrix, where N = 3L3Lto 
(where Ls, L t are the spatial, temporal extents o f  the 
lattice). We shall use antiperiodic boundary condi- 
tions for the fermion fields: the importance of this 
choice is discussed in ref. [2].  

The action for staggered fermions has a U(4) 
× U(4) symmetry for m = 0 in the naive continuum 
limit. At finite lattice spacing the U(4) chiral sym- 
metry is explicitly broken down to U(1) by an ir- 
relevant operator, which mixes flavours. For a quench- 
ed calculation such as ours the important  point is that 
there is an explicit U(1) chiral symmetry ,  for which 
( ~ )  is an order parameter, and this U(1) is not the 
anomaly afflicted piece of  U(4), but  belongs to the 
SU(4) [171. 

Let Xi, i = 1 ..... N,  be the eigenvalues of  the (re- 
duced) matrix i c/R. These eigenvalues come in pairs 
of  equal and opposite sign (because 75M = -M75),  
so we can write 

( ~ ( m ) )  = (3/N) (Tr(C//~ + 2ma) -1)  

3 N 2ma .~ 

+oo 

. , '  , 3 ( f  dX 2map(X) ; (8) 
V ~  _~ X 2 + (2ma)2/ '  

where p(X) is the normalized spectral density. We can 
see explicitly in (8) how for a finite lattice (~ff(0))  
= 0, while 

lim lim (~(rn))= 3wp(0) (9) 
m -+0 V ~  

demonstrates that it is the volume dependence of the 
eigenvalues of  i c/'R close to zero that will determine 
whether the chiral symmetry is broken spontaneous- 
ly or not.  

The numerical problem we are presented with in 
(8) is that of finding inverse elements and/or eigen- 
values of  a very large sparse complex N X N matrix. 
A numerical algorithm must satisfy two major con- 
straints if it is to be suitable for use here. The first 
is that it should require the storage of only a few N- 
vectors at each step of the calculation; the second is 
that it should have stability against rounding errors. 
The best method we know at present for obtaining 
(selected rows of) the inverse is the conjugate gradient 
method (see ref. [2] for the algorithm and ref. [14] 
for detailed references). The best method we know 
for eigenvalues is the Lanczos algorithm. In the pres- 
ent context there are good reasons for preferring the 
latter method: we only need to calculate one set of 
eigenvalues [those ofiC/~(L0] to obtain ( ~ ( m ) )  for 
all quark masses. The conditioning of an eigenvalue 
problem is in general much better  than that of  an in- 
version problem - which means we shall have accu- 
rate results even at zero quark mass. In exact arith- 
metic the Lanczos algorithm [2] generates recursive- 
ly a sequence o f N  orthonormal vectors, Vl, 02 .... ,v N 
which when put into an N X N matrix V will tridiag- 
onalize the hermitean matrix ic/R by a unitary sim- 
ilarity transformation, T = i VqffV t . The eigenvalues 
of  a tridiagonal matrix can be found quickly and ac- 
curately from the Sturm sequence of the principal 
minors of  the matrix (there are standard library rou- 
tines for this). When one has rounding errors the 
global orthogonality of  the vectors Ol,O 2 .... , o N is 
lost, the procedure tends to repeat itself, and the re- 
sulting eigenvalues include only some of the correct 
ones plus several copies of  the extreme eigenvalues 
and also some incorrect eigenvalues, which have not 
yet  converged. Although we still will usually get the 
extreme eigenvalues correctly, for (8) we need essen- 
tially all the eigenvalues for accurate results. For 
small matrices (such as for a 43 × 8 lattice) one can 
maintain the global orthogonality explicitly by re- 
orthogonalization. This is, however, a very slow proce- 
dure. At this level the Lanczos algorithm, as present- 
ed by us in ref. [2], would seem to be of  limited use 
and certainly inferior for large lattices to the conju- 
gate gradient method. Hence presumably the similar 
remarks by Kogut et al. [13].  There has, however, 
been a recent numerical analysis breakthrough [18] *' 

# 1 For a more recent variation of the method see ref. [19 ]. 
See also ref. [20]. 
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(which has not  yet  percolated through to particle 
physics), that enables one to identify all the correct 
eigenvalues. The procedure is to generate~ ~m°re  than 
N vectors vi, say N. One then has a N X N tridiagonal 
matrix T. Construct also the (N - 1) × ( ~ / -  1) ma- 
trix ir obtained from T by dele t in~the  first row and 
column. Consider the eigenvalues X i of  T and Xi of  
i r  Since degeneracies are not  expected from an essen- 
tially random matrix,  we accept each mult ip le  eigen- 
value of  T as a correct simple eigenvalue of  iQK. If  a 
simple eigenvalue of  T i s  equal to some simple eigen- 
value of  ic, we identify it as spurious. (The numerical 
criterion of  equality here is that the difference should 
be less than about N X machine precision × maxi- 
imum eigenvalue.) We find that taking N ~ 2N is 
enough (for lattices up to 84 ) to obtain all (exactly 
N)  eigenvalues o f  our original N X N matrix iQtf. For 
a clear discussion of  w h y  all this should work see ref. 
[2 l ] .  For  a recent t ex tbook  treatment  of  the Lanczos 
algorithm see ref. [22]. We now turn to the results 
of  these numerical calculations. 

We shall begin by demonstrating that the chiral 
symmetry of  our action in eq. (7) is spontaneously 
breken at ~ = 5.7. (The fact that the 0 ++ and 2 ++ 

glueballs already show continuum scaling at this/3 [23, 
24] indicates that  the lattice spacing is small enough 
not  to seriously distort the relevant continuum gluon- 
ic fluctuations. One reaches similar conclusions [24] 
by  examining the gluonic condensate.) In fig. 1 we 
plot the calculated (~t]J(m)> for 43 X 8 (averaged over 
6 gauge field configurations), for 63 X 8 (1 configura- 
tion) and for 84 lattices (averaged over 4 configura- 
tions). We also show ( ~ ) a t  three mass values for a 
103 X 16 lattice. These values come from a hadron 
spectrum calculation [14],  using the conjugate gra- 
dient algorithm, and are obtained from 112 rows 
(X 3 colours) of  the inverse. To indicate the statistical 
fluctuations between individual configurations and to 
give an idea of  the error we furthermore plot ( ~ )  
for the 4 configurations on the 84 lattice. Since we 
are only interested in ( ~ )  for quark masses smaller 
than O(Amom) , we present results in the range ma 
-< 0.1. 

We observe that a 4 3 × 8 lattice shows no signifi- 
cant signal of  spontaneous chiral symmetry  breaking. 
As we increase the latt ice size, we see a clear envelope 
developing, and this envelope has a non-zero intercept 
at zero quark mass. Comparing our 84 and 103 X 16 

i l l 

B=5.7 

D 20 30 i-O 50 

• 10 3 .16 lattice 

r n a  

60 70 80 90 100 110 121) 
mq IMeV) 

Fig. 1. <~> as a function of me (and the renormalization 
group invariant quark mass m = a-4/H for A___  = 200 q m o J n  m u l n  
MeV) obtained on the 43 X 8, 63 X 8 and 84 lattice at 
= 5.7, and for 4 individual gauge field configurations on the 
84 lattice. The solid circles come from the hadron spectrum 
calculation on the 10 3 X 16 lattice in ref. [14]. The crosses 
represent the average of the 4 gauge field configurations. 

results we see that,  for this physics, an 84 latt ice is 
effectively of  infinite volume down to ma ~ 0.01 at 
least. The break-away to zero occurs at a quark mass 

ma = O(0.002) < O(amo m a), (10) 

where it is obviously a kinematic,  not  a dynamic,  ef- 
fect. 

Having demonstrated spontaneous chiral symme- 
try breaking at/3 = 5.7, we now need to demonstrate 
that this is indeed a con t inuum effect. To do so we 
calculate ( ~ ( m ) )  for values off l  from 0.01 to 5.9. 
For  13 ~> 5.5 we show results using 84 lattices, while 
for/3 % 5.5 we show results from 43 X 8 lattices (the 
physical size of  the lattice increases with decreasing 
/3). Our results are plot ted in fig. 2 for ma <~ 0.1. Note 
that we see directly that a 4 3 X 8 lattice at/3 = 5.5 
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Fig. 2. (~q~) plotted at discrete points of m a  for various val- 
ues of/3. The dashed line corresponds to the leading-order 
strong-coupling result (d = oo). The solid lines include the 
O(1/d) corrections. 

is already large enough. We plot at discrete points so 
as to be able to show error bars (these come from 
fluctuations between different configurations; the 
errors on the numerical calculation would not be 
visible). 

We observe that we have a (roughly) linear depen- 
dence on m a  for m a  < 0.1. We obtain ( ~ ( 0 ) )  by ex- 
trapolating this linear dependence to m a  = 0. The ex- 
trapolation introduces no significant changes, and we 
could get almost the same results by  using our mea- 
sured values at, say, m a  = 0.01. Our values of  ( ~ ( 0 ) )  
are plot ted in fig. 3a. We can see the strong-coupling 
behaviour o f ( ~ )  at low/3, a transition region be- 
tween/3 = 4 and 5.1, and very clear continuum (asymp- 
tot ic  freedom) behaviour for/3 > 5.1. 

Our measured (dimensionless) ( ~ )  can be ex- 
pressed in terms of  the continuum (dimensionful) 
renormalization group invariant (~ ~)inv by  

- _ -4/11 3 -  : g 2 o m / 4 .  ( 1 1 )  ( ~ ) - 2 ~ m o  m a { ~ ) i n v '  amom 

(the normalization uses 4 flavours). We plot our ex- 
- 1/3 (in MeV units;see below) as a func- tracted ( ~ ) i n v  
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Fig. 3. (a) The intercept ( ~ ( 0 ) )  for various values of/3 to- 
gether with the O(1/d) strong-coupling and scaling (asymp- 
totic freedom) curves. (b) The renormalization group invari- 

-- 1 / 3  ant (t~ ~)in v for 5.3 < fl < 5.9. The dashed line represents the 
experimental value (see ref. [ 11 ) of (flu) ~/3 = 225 (± 25) MeV. 
Our scale is set by Am• m = 200 MeV. 

tion of/3 in fig. 3b. In obtaining (~ ~J)inv we have em- 
ployed the perturbative relation 

a(fl) = (83.5/Amom)eXp ( - 4  ~T2/3) ( ~  1r2/3) 51/121 ' 

( 1 2 )  

so the constancy (against fl) of  our results are to be 
judged in relation to the variation by  a factor of  2.5 
ofa(fi)  in (12) over the same range. We clearly see a 
good signal of continuum behaviour. In fact the sig- 
nificance of  the scaling found here is as good as that 
of the 0 ++ glueball [23].  
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If  we now set our scale in MeV units by Amo m 
= 200 MeV, as we have done in fig. 3b, we see that 
we have good numerical agreement with the experi- 
mental value for <flu>. One obtains roughly this scale 
for Amo m by using the measured [14] p mass as in- 
put. A scale of  Amo m = 200 MeV is also consistent 
with calculations of  the gluon condensate [24] and 
with the best measurements o f  the string tension [25].  

Having provided strong evidence for the continu- 
um breaking of  chiral invariance, we br iefy  return 
to the strong-coupling regime. It is clear that we have 
also demonstrated spontaneous chiral symmetry 
breaking for d = 4 and small/3. If  we now compare 
with the small/3, large d calculations of  ref. [7],  we 
see, in fig. 2, that the d = oo results (dashed line) do 
not  agree with our measured values. However, if we 
include O( l /d )  corrections [7] and set d = 4, the 
agreement becomes excellent (solid line). I f  we go 
away from/3 = 0 we see reasonable agreement up to 
/3 = 2.0, but the strong-coupling series begins to deviate 
substantially by/3 = 4.0 and bears no relation to the 
measured values for 13 > 5.0 as we enter the region 
of  continuum physics. 

We return now to the question of  what one can 
learn about ( ~ ( 0 ) >  from < ~ ( m ) >  at large, rather 
than small, m. In fig. 4 we show our measurements 
of  < ~ ( m ) >  for 84 and 43 X 8 lattices at/3 = 5.7 up 
to ma = 1.0. We see that the large difference between 
84 and 4 3 X 8 lattices at small m disappears at larger 

m. Indeed it is clear that a calculation with errors 
>~ 5%, and confined to ma >~ 0.01, could not dis- 
tinguish between the 4 3 X 8 and 84 lattices, which 
indeed contain very different chiral dynamics. A more 
serious problem comes with lattice perturbatice pieces, 
whicb are very small at small ma, but increase rapidly 
at larger ma. We plot in fig. 4 the lowest-order per- 
turbative contribution. The extraction o f  a physical, 
although ambiguous, ( ~ >  can perhaps be obtained 
by subtracting the perturbative pieces. If  we subtract 
the lowest-order piece, we obtain the dashed-dot ted 
line which extrapolates very differently from the un- 
subtracted values! This is o f  course only illustrative: 
f o rma  ~> 0.1 it is dear that one has to calculate at 
least one order further to check that higher-order 
perturbative corrections are small. (This is in progress.) 
Nonetheless it is amusing to observe that almost any 
extrapolation will, after we take the third root to ob- 
tain numbers in MeV units, come to within 0(30%) 

<},> 
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0.e 
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0,1 
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0 

• 8 • " $ 

• 8 
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J j /  
~o 2 i-~ ~ [3 = 57 

o /.3.8} 
/ / w ~  perturbative • 84 lattice 

/ -  / /  ( lowest order) 

I I I 

ma 

Fig. 4. <~¢> on the 84 and 43 X 8 lattice for masses up to 
m a  = 1. The dashed curve is the lowest-order perturbative 
contribution to (~7J> on 84. The da shed -do t t ed  curve rep- 
resents the " t rue"  non-perturbative contribution. The solid 
line indicates our extrapolation to (~¢  (0)> relying on small 
quark masses. 

of  the value we find with a large lattice. It would ap- 
pear that although a large-mass extrapolation of  the 
type performed in refs. [9,10] cannot tell you wheth- 
er chiral symmetry is spontaneously broken or not, 
if it is broken then the value obtained will not be too 
far from the correct value fo r  ( ~ ) 1 / 3 .  

The above calculations have all been performed 
in the quenched approximation. We can consider the 
first correction in an expansion in the number of  
flavours, nf, 

( 1 
( ~ )  = ( ~ ) Q  1 + n f  (~t~)Q d n f  Q + 

(13) 
where Q denotes the quenched (nf = 0 up to an over- 
all factor) value. The first-order correction is 

1 d<JT >Q_ 1 
( ~ > Q  ~ f f  4 (~¢)Q 

X [In det( ~ + 2ma) - (In det( c,//f + 2ma)>] ). (14) 

Our measurements o f  this quantity are not very ac- 
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curate (we do not have many configurations for the 
average) but  reveal the expected feature that this cor- 
rection is negative and decreases rapidly for increasing 
quark masses. (It also is small in the strong-coupling 

region.) This emphasizes the fact that if one inserts 
only massive quark loops into the vacuum, this is not 
going to provide much progress in going beyond the 
quenched approximation. One has to update with 
light quarks to get at the physics. 
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