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We calculate meson and baryon masses in quenched QCD for the small quark masses of phenomenological interest on 
a 103 × 16 lattice. We use Kogut-Susskind fermions which possess an explicit continuous chiral symmetry. We verify 
that this chiral symmetry is spontaneously broken and that for the physics involved our lattice is effectively of infinite 

2 volume at the quark masses we calculate. We verify mrr N rnq, which is what one expects for a Goldstone pion. For Amo m 
= 200 MeV. which appears to be the consistent scale of  quenched QCD, we find mq,~  7 MeV and the hadron masses 
m o = (730 -+ 90) MeV, mA. = (1190 -+ 90) MeV, m e = (660 -+ 50) MeV and m N = (920 -+ 100) MeV. We also extract f~ r 

134 MeV. In physical units our lattice is 3 fermi across. 

In this letter we present the first results of  a Monte 
Carlo calculation of the meson and baryon spectrum 
in (lattice-regularized) quenched QCD. We differ from 
previous (Monte Carlo) spectrum calculations in 
several ways: we use Kogut-Susskind staggered fer- 
mions [1 ],  which possess a continuous chiral sym- 
metry (instead of Wilson fermions [2], which have 
no chiral symmetry); we calculate directly with light 
quark masses; we work on a 10 3 × 16 lattice, which 
we check to be large enough to accommodate the 
dynamics of spontaneous chiral symmetry breaking 
and the hadrons themselves. 

The dynamics that most obviously influences the 
character of the hadron spectrum is that of chiral 
symmetry and its spontaneous breaking. Therefore 
the action one uses should explicitly possess a chiral 
symmetry in the range of couplings where one per- 
forms the calculation. The Wilson fermion action [2] 
breaks chiral symmetry by operators, which should 
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become irrelevant deep enough into the continuum 
limit. However, there is no evidence that this has hap- 
pened yet in the range of couplings numerically ac- 
cessible at present. The fact that the promise of the 
early calculations [3] on very small lattices was not 
fulfilled by later, more detailed work [4] emphasized 
for us the dangers of using Wilson fermions. This was 
widely interpreted at the time as a problem of finite- 
size effects [5], with the cure to be found by in- 
creasing the lattice size. That finite-size effects were 
a part of  the problem was dear. However, there was 
also the disturbing possibility that these effects were 
being magnified by the forced extrapolation of mass 
measurements taken at large pion masses to zero pion 
mass in a theory, that perhaps had not yet developed 
a chiral symmetry that could be spontaneously bro- 
ken. Recent calculations with Wilson fermions on 
large 103 × 20 [6] and 164 [7] lattices have in fact 
shown that the problems are still there, confirming 
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our suspicion that  the real problems go deeper. (A 
recent a t tempt  [8] to calculate (ff~) with Wilson fer- 
mions in SU(2) suggests that continuum chiral sym- 
metry is indeed not  yet  restored.) 

The energy scale of  the gauge dynamics is Amo m 
= 0(200  MeV) (see below). This is therefore also the 
a priori energy difference that  distinguishes the chiral- 
ly symmetric and chirally non-symmetric vacua. It is 
clear therefore that  if we are to be sensitive to the 
spontaneous chiral symmetry breaking physics, we 
m u s t  choose the invariant quark mass to be mq 

"~ Amo m . For  example it is only in this region that 
one expects to find a dependence m 2 ~ mq, which 
reflects the Goldstone boson character of  the pion. 
For  mq ~ Amo m no such simple relation is to be ex- 
pected. Therefore we choose to calculate with in- 
variant quark masses in the range 10 to 100 MeV (in 
contrast to previous calculations with Kogut -Sussk ind  

fermions which use mq ~ Amo m and extrapolate to 
small mq by hand).  We use the conjugate gradient al- 
gorithm, which is the recommended algorithm for 
contemporary large sparse matrix inversion, and find 
very accurate convergence at the small mq of  interest.  
This algorithm is given explicit ly in ref. [9] ,  and some 
general references may be found in ref. [10] (for 
modern techniques and applications, see ref. [11] ). 

We perform our calculation at t3 = 5.7. We judge 
the lattice spacing at this 13 to be small enough not  
to distort  the non-perturbative glue dynamics.  For  
example,  we find that  the 0 ++ and 2 ++ glueball masses 
show continuum scaling behaviour [12,13] for 13 

5.3, and 13 = 5.7 sits at a point on the far shoulder 
of  the specific-heat peak, where the non-perturbative 
piece of  the plaquette is dominated by the F a F a 

# v  p.v 
operator  and higher-order (irrelevant) operators are 
still small [13] .  

The question of  spontaneous chiral symmetry  
breaking needs to be addressed separately. First one 
needs to demonstrate the presence o f  such a spon- 
taneous breaking for Kogut -Sussk ind  fermions. This 
has been done in refs. [9,14].  In fig. 1 we display 
a figure taken from ref. [14] showing the volume de- 
pendence of  the chiral condensate (~ff(mq)) at 13 
= 5.7. The 10 3 X 16 points are obtained from the 
measurements in this paper and are taken at the 
masses we study here. We explicitly see that,  within 
the small errors, a 10 3 × 16 lattice at this/3 and for 
these mq is essentially of  infinite volume as far as the 
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Fig. 1. (~qJ) as a function of the bare (renormalization group 
invariant) quark mass ma(mq) obtained on the 4 3 × 8, 6 3 
× 8 and 84 lattice at/3 = 5.7 using the Lanczos algorithm. 
The solid circles come from the hadron spectrum calculation 
on the 103 × 16 lattice in this paper, using the conjugate 
gradient algorithm, and are obtained from a total of 112 rows 
(× 3 colours) of the inverse of the fermion matrix. 

dynamics of  spontaneous chiral symmetry breaking 
is concerned. 

Using the best measured values of  the string tension 
[15] ,1,  the gluon condensate [13] ((O:s/Tr)F a F a ) 

and the chiral condensate [14] (~ if), which ( ~ i t ~ n  
1 o) consistently give 

Amo m ~ 200 MeV, (1) 

one obtains an estimate for the lattice spacing 

a(/3 = 5.7) = 1.37 GeV -1 = 0.28 fermi. (2) 

So the spatial extent  of  our lattice is 

10a(13 = 5.7) ~ 2.8 fermi >~ 2 D  H , (3) 

where D H is a typical hadron (i.e. meson or baryon) 
diameter. This seems a reasonably generous space for 
the hadron on a lattice (with antiperiodic fermionic 
boundary conditions; see below). Later on we shall 
find that (the same) Amo m ~ 200 MeV also fits the 
low-lying meson and baryon masses. 

The lattice QCD action may be writ ten in terms 
o f  the gauge field and fermion action as 

S = S G + S F . (4) 

+1 This calculation employs the largest lattice and Wilson 
loops at ~ = 5.7. Other recent calculations not inconsistent 
with this (at/3 = 5.7) can be found in ref. [16]. 
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For the gauge field action we assume the standard 
Wilson [171 form 

Tr(V %,.,,, %,) ,  (s) 
n ,tg ,v  4: lg 

with periodic boundary conditions. As has been stated 
we shall use Kogut-Susskind staggered fermions [1 ]. 
They are identical to naive fermions if one only ex- 
cities one of  their four decoupled modes. The naive 
fermion action is 

S [  -- - ~  [M(U) + 2ma] 

.k 

n d ,  z 

- 2ma G ~n ~n" (61 
/2 

If  we decompose the (antihermitean) matrix M into 

m = r ~  r~,  (7) 

where F is a unitary block-diagonal matrix containing 
all the 7 matrices [18],  and write 

= I ' x ,  

the fermion action (6) becomes 

S r = - ~ [ q g ( U )  + 2ma] ×, 

(8) 

(9) 

where the different components of  X decouple. This 
allows us to work with a single component fermion 
field, say 

21 " 

/0J 
Replacing X by ~'in eq. (9) then gives us the action 
for staggered fermions. The bare quark mass m trans- 
lates into the renormalization group invariant quark 
mass mq introduced earlier on by 

- a - 4/11 m g2om/4~'. (l 0) mq - mom ' C~mom = 

To satisfy positivity we shall use antiperiodic bound- 
ary conditions for fermions. 

The action for staggered fermions represents four 
flavours with a full U(4) × U(4) symmetry for m = 0 
in the naive continuum limit. At finite lattice spacing 

the symmetry is explicitly broken down to U(1) 
× U(1) by an irrelevant operator, which mixes fla- 
yours. The important point is that the continuous 
U(1) chiral symmetry (which we have shown [9,14] 
in fig. 1 to be spontaneously broken) is not the singlet 
U(1) axial current, whose divergence is non-zero due 
to the topological charge density, but belongs to the 
axial SU(4). For a more detailed discussion see 
ref. [19].  

The rather complex flavour structure of  the stag- 
gered fermions does not have to concern us (in the 
quenched approximation and for all quark masses 
equal) as long as our meson and baryon operators 
have a non-trivial projection onto mesons and baryons 
made out of  the proper combination of  flavours [19].  
So for the pseudoscalar, vector, pseudovector, scalar 
and tensor mesons we use the local operators ~n75 ~n, 

~n')'~ ~n , ~n T S T/s t~n , ~n t~n and "~nOuu ~n , respective- 
ly, which project onto the ~r, P, A 1 , e (i.e. the (I, j)PC 
= (0, 0) ++ singlet) and B, while for the baryons we 
use the local operators e ABc(~Ac 7-~g) t )C and 

a r~ ~ ~ -  n 2, n n 

eA~c(~ 2 C V. ef t)~,  which project onto the nu- 
cleon (N) and A and their negative-parity partners. 
The quantities we then study are the resulting meson 
and baryon (zero-momentum) propagators [18,20] 

Mps(nt) = ~ M ( n , n t )  
n 

= C  exp( -m ant)+... +(n t - + 1 6 - n t )  , 

MV_T(nt) --- ~ [ ( -1 )  nx + ( - 1 )  ny + (-1)nz]M(n,nt) 
n 

nt 
= C exp(-moant)  + ( - 1 )  CBexp(--mBant) 

+ ... + (n t -~ 16 - nt), 

Mpv(nt)  = ~ [(--1) ny +nz + (_1) nx+nz + (-1) nx+ny] 
Itl 

n t 
× (--1) M(n,nt) = CA1 exp(--m&an t) 

+ (--1)nt C£exp (-moant) + ... + (n t ~ 16 - nt), 

Ms(nt)  = ~ (-1)nx+ny+nz+ntM(n,nt) 
n 

= C e exp(-mean t) + ( -1 )n tc£  exp (-mTrant) 

+ ... + (n t -~ 16 - nt), 
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B(nt) = ~ B(n ,n t )  
n x ,ny ,n z = even 

= C N exp( - -mNan t) + C A exp ( -m ,aan  t) + ... 

nt 
+ ( - 1 )  C N _ e x p ( - m  N _ a n t ) + . . .  

- ( - 1 ) n t ( n t  -+ 16 - nt) , 

M(n,n t )  = ~ IGAB(n)I 2, 
A,B 

G A a ( n ' -  n) = [ ( c~  + 2 m a ) - l ] A B  
n i t  I 

B(n,nt) = A,B,C eABCeA'B'C' 
A',B',C' 

X GAA'(n)GBm'(n)GCC'(n),  (11) 

where N -  denotes the opposite parity nuc leon .Mvv , 
M S also receive contributions from p, 7r, etc.,  as in- 
dicated, through some mesonic operators not  listed. 

We calculate 112 rows (×  3 colours) o f  ( c ~  + 2ma)_ l  
on 7 independent gauge field configurations. The rows 
are chosen so that the quark starts well away from the 
spatial boundaries.  We perform this calculation at 
masses ma = 0 .01 ,0 .03  and 0.05 (mq ~ 14, 46 and 
73 MeV). To invert the fermion matrix we use the 
conjugate gradient algorithm as we have already men- 
t ioned. This algorithm solves a matrix equation A x  
= b (in our case A = c'tg + 2ma; b is a unit vector, so 
x is an appropriate column of  A - 1 )  by  minimizing 
r 2 = (Ax - b[ 2 through an iterative procedure that  

produces a sequence (x i )  ofincreasingly better  ap- 
proximations to the desired solution. We monitor  the 
values o f r  2 = lAx  i - b[ 2 during our calculation. We 
stop the iterative procedure once r 2 ~< 10 - 8 .  In prac- 
tice this means the systematic errors on the smallest 
elements of  the propagators will be on the per cent 
level, that is much smaller than the statistical errors. 
The statistical errors are based on the statistical scat- 
ter observed between the mass measurements obtain- 
ed on the 7 independent  configurations. 

We use the measured quark propagators to obtain 

M p s , M v _  T ,Mpv ,M S and B. We fit the pion propa- 
gator Mps by two masses, m~ and mr, .  The result for 
m r is shown in fig. 2a. We observe that the pion mass 
varies with the quark mass as m 2 ~ m , which is what ir q 
one expects for a Goldstone pion. The dashed line in 
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Fig. 2. (a) (mrra)2 as a function ofma(mq). The solid circle 
on the linear extrapolation curve marks tile position of the 
physical pion, using (I), (2) as our scale, from which we can 
read off the value of mq. (b) The hadron masses, mHa , as 
a function of ma(mq). The solid circles at the physical quark 
mass indicate their experimental values using (1), (2). 

fig. 2a follows 

( m a )  2 -- 7 .60ma.  (12) 

For  m~r, we find a linear mass dependence. M y _  T 
shows only a small admixture of  B, which helps to 
determine rap. We fit the 2 ~< n t ~< 14 tail o f M v _  T 
by the p and B mass. At 13 = 5.7 this is an adequate 
procedure because the excited states drop away rap- 
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idly. We have checked that a three-pole fit including 
the p'  over the whole range 0 ~ n  t ~ 16 gives the 
same m o . We use this m o in M p v  to obtain mA~. The 
pion admixture in M S comes out very small in spite 
of  the small pion mass. We f i tM S for 2 ~ n  t ~ 14 by 
m e and the previously obtained pion mass. The baryon 
propagator B shows small errors for even nt, while 
for odd n t the errors come out to be somewhat bigger. 
This does not allow, at present, to separate the N -  
and also to give a meaningful value for rnzx. We there- 
fore restrict ourselves to the nucleon and fit the 
2 ~<n t ~< 14 tail of  B by raN. The results fo rmp,  
reAl ,  m e and m N are shown in fig. 2b. The calculated 
hadron masses can be interpolated by the linear mass 
fils 

m a = O . 9 8 + 4 . 1 0 r n a ,  m A a = l . 6 1 + 3 . 3 O m a  , 

m e a  = O.88 + 5.70 ma,  t u N a =  1.21 +9 .00rna ,  

(13) 
which corresponds to the solid lines in fig. 2b. It 
should be noted that the dependence of  the hadron 
masses (13) on the quark mass is rather weak. 

To compare with experiment we shall use the same 
(universal) Amo m = 200 MeV as before, which results 
in the lattice spacing (2). We then find that rn~r takes 
its experimental value for ma ~ 0.005 (cf. fig. 2a), 
which corresponds to an invariant quark mass, (10), 
of  

mq ~ 7 MeV. (14) 

To evaluate the p, A1, e and nucleon masses at the 
(physical) quark mass (14) we shall use the linear 
mass formulae (I 3). In physical units we then obtain 
(including statistical errors; cf. fig. 2b) 

m p = ( 7 3 0 + _ 9 0 )  M e V ,  reAl = ( 1 1 9 0 + 9 0 )  MeV, 

mE = (660 -+ 50) MeV, m N = ( 9 2 0 -  + 100) MeV. 

(15) 
We notice that Amo m = 200 MeV fits the low-lying 
hadron masses quite well (given the statistical errors). 
From the slope o f ( m  a) 2 versus ma,  (12), and using 
the calculated value o f ( ~ )  [14] (i.e. ( ~ ) i n v - -  1/3 = 
(235 -+ 10) MeV), we also extract 

f~r ~ 134 MeV. (16) 

This is to be compared to the experimental value [21] 
offer = (131.9 + 0.1) MeV. 

The e meson will mix with the 0 ++ glueball, which 
we have not taken into account. It is interesting to 
note that both masses, m e and re(O++), are close [12] 
(m(0 ++) = (740 + 40) MeV). 

We may say that we obtain altogether a consistent 
picture of  quark and gluon physics in quenched QCD. 
We are in the process of  redoing the calculation at 
different/3 values to check for continuum renormali- 
zation group behaviour. We are also calculating the 
masses of  various other states. 

If we had fitted the lattice spacing to (e.g.) the ex- 
perimental p mass (rather than using (2)), we would 
have obtained 

a(~ = 5.7) = 1.29 GeV - t  , (17) 

which is very close to (2) indeed. We like to draw the 
reader's attention however to the fact that hadron 
spectrum calculations using Wilson fermions require 
a substantially smaller lattice spacing [7]. For a pos- 
sible interpretation we return the reader's attention 
to our introductory paragraphs. 

Encouraged by the success of  the calculations so 
far we are currently analyzing whether the explicitly 
broken SU(4) chiral symmetries are dynamically re- 
stored in the region of/3 where we can perform cal- 
culations, and if these symmetries are restored, wheth- 
er they are spontaneously broken with correspond- 
ring Goldstone "pions". We have learned that similar 
questions, in the context of  colour SU(2), are also be- 
ing addressed by the Saclay group [22].  

The numerical calculations have been done on the 
Siemens 7.882 at the University of  Hamburg and on 
the Cyber 205 at the University of  Karlsruhe. The 
estimated average speed of  our matrix-inversion pro- 
gram on the Cyber 205 is ~ 6 0  Mega-flops. Due to 
the sparsity o f  the matrix almost half the time is 
spent to "gather" the desired matrix elements and 
store them consecutively. To fit the program into 
the available main memory of  ~7  Megabytes some 
tricks were necessary, which slowed the program down 
further. 

We are grateful for the support of  the DESY di- 
rectorate in purchasing time on the Cyber 205 and 
for the generous facilities provided by the University 
of  Hamburg. We are indebted to Drs. D. Ponting and 
lan Duff for useful discussions and to Dr. Sch~fer 
from CDC for computational assistance. M.T. thanks 
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Dr. T o m  Walsh and Professor  F. Gu tb rod  for the hos- 

pitali ty o f  the DESY Theory  Group  during part o f  

this work ,  and J .P.G. thanks the SERC and the Roya l  

Socie ty  for  a fel lowship.  
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