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The scahng properties of the lattace 0(3) non-hnear o-model are studted The mass-gap, 
energy momentum chspers~on, correlation functions are measured by numerical Monte Carlo 
methods Symanzik's tree-level and one-loop ~mproved actions are compared to the standard 
(nearest neighbour) action. 

1. Introduction 

In the last few years considerable work was spent in Monte Carlo (MC) simula- 
tions of euclidean field theories. Sources of systematic errors and limitations to 

numerical simulations are: 
(a) statistical noise; 
(b) finite size effects; 
(c) finite lattice spacing effects. 

Exact block-spin renormalization group transformations allow to simulate a n  L d 

lattice on an (L /n )  d lattice, where n d (typically n = 2) is the block size and L a 
multiple of n. The lattice spacing on the new lattice is (ha) in units of the lattice 
spacing a of the L d lattice, and this transformation can, of course, be iterated. The 
price paid is the introduction of many new interactions, which in general cannot be 
calculated analytically. Monte Carlo renormalization group (MCRG) techniques 
[1, 2] use a truncated ansatz for the new interactions and try a numerical determina- 
tion. In principle the above limitations (b) and (c) can be improved, but in practice 
statistical noise (a) is a severe problem. To the 2d 0(3) non-linear o-model Wilson's 
[2] M C R G  version has been applied by Shenker and Tobochnik [3]. 

More recently Symanzik [4, 5] suggested a systematic procedure for constructing 
lattice actions, which minimize the cutoff dependence (c), and approach more 
rapidly the continuum limit. There are many possible actions on the lattice which 
formally converge to the same continuum limit when the lattice spacing a ---, 0. In the 
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case of renormalizable interactions, for small lattice spacing, a given action on the 
lattice is equivalent to a local theory on the continuum with a local effective 
lagrangmn [4, 5] 

~eff = ~0 + a 2 ~ l  + a4~2 + " ' "  • (1.1) 

E o is the ordinary renormalizable continuum lagrangian in d dimensions, E 1 contains 
operators of dimension d + 2, etc. Because of "irrelevant" operators the renormaliza- 
tion group equations contain non-universal scaling-violating terms, n-point Green 
functions calculated on the lattice obey 

- a ~ + B ( g )  +nT(g) a.(p, ..... p.;g,a)=O(,~ln'a). (a.a) 

The suggestion of Symanzik is to choose the lattice action in such a way that the 
r.h.s, of eq. (2) is at most of order O(a41n'a). In the 2d O(N) non-linear sigma 
model the improved action has the following form [4]: 

S,m p = - g  - l a 2  E ( (  - ½~bKd# + Jdp ) + a2J[ c,dp( ~bK, ) + c2Kg#] + a2c3( j ~ ) 2  

j - 

+ a2caJ 2 + a2c5( Kdp)2 + a2c6E[ O~,O; ¢~]2 

+a;cT(e#KO) 2 + a2cs~_,[oa.a.o]+ = 

IX 

+ 1 + } .  + a2c, E [~(o. + o, ) ,~ (o .  + o. ),]~ 
) #v 

(1.3) 

Here the O(N) vectors ~ - ~ on lattice sitesj are normalized to unity: ~2 = 1, and 
the following notation is used: 

2 
K = -  E 8~,0~,. (1.4) 

W e  often use f l  = 1/g. 
The Green functions are obtained by differentiating Z,m p = f[d¢]exp(-S,mp) 

with respect to the source vector J. The improved field, for instance, is 

i•jlmp . = ¢,~ + q , ~ , o ( , K , )  + c 2 K , , . ,  (1.5) 

where a is the O(N) index. 
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The improvement coefficients c,(g, N) can be determined in perturbation theory, 
in a 1 / N  expansion or, in principle, also by Monte Carlo checks of scaling (" trial 
and error"). For the standard action (SA) all coefficients c, (z -- 1 . . . . .  9) are zero. 
The perturbatively tree-level improved action (TIA) has been calculated by Martinelli 
et al. [6]. Defining 

c, = c + + 4 g  2 + . . . ,  (1.6) 

the tree-level result is 

c g =  (1.7) 

and all other c o = 0. The TIA does not improve the 4-point functions to one-loop 
order. For comparison we note that Shenker and Tobochnik [3] performed a 
spin-wave fit to the block-spin renormalization group. They were led to the interac- 
tion term which we encounter for the TIA, however, with c o = - ~ .  

Symanzik [5] has calculated the one-loop improved action (1LIA). One encounters 
in it two free parameters. We make here the same choice (c~ = c~ = 0) as in ref. [7], 
where also the relevant numerical integrals are explicitly given. For the convenience 

1 
of the reader our final coefficients c, are listed in table 1. They differ slightly from 
those of ref. [5], but stay within the class of actions for which the improvement 
O(a21n a) ---, O ( a q n  a) of eq. (1.2) can be theoretically achieved. It is instructive to 
rewrite our 1LIA in the lattice notation 

3 10 

S = ~_, b,S? + Y~ q,S, q. (1.8) 
t = l  t = l  

The first sum goes over all bilinear and the second sum over all quadrilinear 

TABLE 1 

The  coefficients c~ 

1 - 0 0048591 

2 - 0 0285844 

3 0 

4 - 0 0023988 

5 - 0 0245659 

6 - 0 0032718 

7 0 

8 - 0 0087486 

9 + 0 0194364 
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interaction terms. Coefficients, and interaction terms are listed in tables 2. The 
one-loop corrections to b 1 is notably large in the fl region available for MC 
simulations. 

MC simulations with the ILIA action were carried out in ref. [7], and for the TIA 
action by Falcioni et al. [8]. In the present paper we present more details and 
considerable extensions of the previous investigation [7]. We describe the used MC 
methods and summarize our statistics in sect. 2. Most of our results are obtained on 
a 502 lattice. In sect. 3 we present our continuum mass gap estimates and in sect. 4 
we study the energy-momentum dispersion for states of momentum K---2~rn/L, 
n = 0,1 . . . . .  10. Sect. 5 contains our results for the magnetic susceptibility and a 
4-point function. The latter is inconclusive because of statistical noise. We have also 
taken MC data for the two-point function at non-zero momenta. In the 2d O(N) 
non-linear sigma model the fl and ? functions of eq. (1.2) have universal (regulariza- 
tion scheme independent) parts [9]: 

flume(g) = ( N -  2) g2 ( N - - 2 )  g3 (1.9) 
2~r 4,/./. 2 ' 

= ( N - 1  ) 
g ( ] . ] o )  

The universal parts are obtained from a 2-loop calculation in any regularization. 
Continuum estimates of the mass gap (cf. sect. 3) use the A scale as obtained from 

TABLE 2 
(a) Coeff icients  of  b ihnea r  in t e racnons  

b, St b 1 

4 
0 4892 g + ~ ~.~@J +A I 

-00945 g -  ~ ~,~,+~ 2 
- 0 0 9 8 3  g @/#j ~_,~ + ~,, (p. 4: J,) 3 

(b) Coeff icients  of  q u a d n h n e a r  m t e r a c u o n s  

q, S, ~ z 

- 0.017s g (¢/b + ~,) 2 , (¢~¢~ +,~X ¢'/b - ,0, I, 2 

+ 0 0 1 9 4  g 

(%%+2~)z (%%+~+~)2, 
- (%%+~+~)(%%_~_ ~), 

(¢j~j +~+~)(¢j -~+~ ~2~), 

4,5 

- (q~j~j ~ A + ~)(~j +/,~ ~ j  + 2~), 6,7 
8 
9 

( ~ $ ~ )  10 



B Berg et aL / Symanztk's tmproved acttons 153 

the universal ~ function, and try to establish a scaling window (cf. ref. [10] for a 
more detailed discussion). We will call this asymptotic scahng (valid for g, a---, 0 
asymptotically). More generally scaling means: eq. (1.2) holds with some function 
~(g )  and the r.h.s. = 0. Scaling but not necessarily asymptotic scaling ~s improved 
by using Symanzik actions. Even if scaling holds, higher perturbative (3-1oop . . . .  ) 
corrections to the ~ and ~ functions could spoil asymptotic scaling in an inter- 
mediate coupling constant range. In mass ratios (or other dimensionless quantities) 
these perturbative corrections drop out, and we expect improvement. For instance in 
the equation 

rrl 1 
- -  = const. (1 + O(aZln 'a)} ,  
m2 

the correction on the r.h.s, is improved to O(a41n'a). 
In sect. 6 we analyse our results with respect to scaling in the sense of eq. (1.2). 

This is enabled by the fact that we have measured a considerable number of 
higher-momentum states. In sect. 7 we summarize our results and draw some 
conclusions. 

2. The M o n t e  Carlo statistics 

In this section we summarize our MC data. A review of the MC method is given in 
ref. [11]. For bilinear (spin) interactions the heat bath method is very efficient. 
Upgrading of a spin s = sj amounts to replacing it by a new spin s" which is selected 
with the probabilistic Boltzmann weight 

e t~''s, S=Eaj01,  (2.1) 
J 

where the sum involves all spins interacting with s. More precisely sS is the 
contribution of spins involving s to the total action. 

In our investigation we have used the heat bath method for the SA and the TIA. 
For the SA S is a sum of four terms and for the TIA S is a sum of eight terms. As 
most of the computer time is spent in calculating S with the weight (2.1), upgrading 
the TIA is only slightly ( -  1.2) slower than upgrading the SA. 

In the case of 1LIA the quadrilinear interaction terms (cf. table 2b) prevent us 
from applying the heat bath method. We have used Metropolis with 4 hits per trial. 
The upgrading procedure is roughly 5 times slower than for the SA. We perform 
measurements of all considered observables after each sweep. A sweep consists in 
upgrading each spin of the lattice once in the mean; we did random upgrading (cf. 
ref. [10], subsect. 2.1). For all three actions, measurements take about the same time. 
In the case of 1LIA, measurements took roughly ] of the used computer time, one 
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TABLE 3 
(a) E and staustlcs for the SA 

fl E sweep~ 

04 0 1366 ± 00002 9 000 
0 8 0 2920 ± 0 0001 18 200 
0 9 0 3351 ± 0 0001 18 200 
1 0 03801 ±00002 18 200 
1 1 0 4264 ± 0 0002 18 200 
1 2 0 4728 + 0 0003 18 200 
1 3 0 5188 ± 00003 18 200 
1 4 0.5621 ± 0.0003 15 400 
1 5 0 6016 + 0 0002 18 000 
1 6 0 6364 ± 0 0003 18 200 
1 8 0 6886 + 0 0002 16 100 

1002 latuce: 
1 4 0 5620 ± 0 0001 20 800 
1 5 0 6016 +_ 0,0002 21 200 

(b) E and stattstlcs for the TIA 

fl E sweeps 

0 8 0 3820 + 0 0002 15 400 
0 9 0.4349 ± 0.0002 14 600 
1 0 04879 ± 00002 18 000 
1 1 05382±00002 18000 
1 2 0 5852 ± 0.0003 18 000 
1 25 06068±00004 18000 

METROPOLIS 
0 8 0 3817 ± 00002 18 000 

(c) E and statasucs for the 1LIA 

fl E sweeps 

0.6 0 3950 + 0 0003 22 200 
07 04424+00004 18000 
0 8 0 4812 +_ 0 0002 21 900 
0 9 0 5362 + 0 0009 21 000 
1 0 0.5834 + 00007 18 000 
1.1 06297 +00011 31 800 
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sweep and measurements is only by a factor 2.5 slower than for the SA. The 
Metropolis upgrading is, however, clearly less efficient than heat bath upgrading, 
therefore the error bars are larger. 

Together with mean values for the average link action 

def 
E = (1 - ,jq~j ~ ) ,  (2.2) 

our final statistics is collected in table 3. At the beginning we did always 2000 
sweeps without measurements, for reaching equilibrium. At identical fl values the 
results for E are clearly distinct for the three different actions; in particular TIA and 
ILIA are notably different. We always calculate our error bars by dividing our 
complete statistics into 10 bins. Typically this amounts to groups of 2000 events, For 
the SA at fl = 1.4, 1.5 we have also results on a 1002 lattice. All other calculations 
were done on a 502 lattice. At fl = 0.8 we have also used the Metropolis upgrading 
for the TIA and checked it against results with the heat bath upgrading. Within 
statistical errors we found perfect agreement. 

3. The mass gap 

In this section we present our results for the mass gap. We also compare with 
previously reported mass gap estimates [3, 12-17]. 

We obtain upper bounds on the mass gap from correlations between momentum 
zero eigenstates 

c(At) = (~(t)~b(t + At)), (3.1) 

where 

L - 1  

~ ( t )  = E ~b(x, t ) .  (3.2) 
x ~ 0  

In the case of 1LIA, the improved field (1.5) is taken. For our analysis we use the 
mass gap definition 

1 , {c(At) l  
m ( A t ) = - - ~ - l n  ~ , (At = 1,2 . . . .  ). (3.3) 

In the case of nearest-neighbour interactions, we have a transfer matrix T, which 
connects nearest neighbour time-planes. If the transfer matrix is bounded from 
below (not necessarily positive defimte), we obtain upper bounds on the mass gap 
from the MC values for rn(At). If the transfer matrix is positive definite m(At), 
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At ~ oo will decrease monotonically against the real mass gap. Otherwise oscilla- 
tions due to complex eigenvalues of the transfer matrix are possible. In the latter 
case it is dangerous to use the mass gap definitions (cf. for instance ref. [10]) 

1 c(zat2) 
rh(Atl, At2)= At2 _ At l  In cz  ) ' 

(At 1, At 2 = 1 , 2 , . . . ;  At 2 > At1). 

For the TIA and 1LIA one has to generalize the concept of the transfer matrix, 
because of next-nearest neighbour interactions. Now also next-neighbour time-planes 
become connected and we can trust m(zat) to be an upper bound only for At >1 2. 
This is not an academic question, as for the TIA the re(l)  value is in general the 
lowest. 

Our MC results rely on the statistics outlined m sect. 2. We have measured all 
possible correlations, this means t = 0,1 . . . . .  ½L, (L = 50,100). To illustrate our 

TABLE 4 
Correlauon funcuons at selected values of 13 

At f l =  1 2, SA ,8 = 1 6, SA ,B=I 1, TIA fl = 0  8, 1LIA 

0 3 431 + 0023 11 4 + 02  4 125 +__ 0027 3.056 _____ 0016 
1 2 504 + 0023 10 7 + 0.2 3.278 + 0027 1 779 + 0015 
2 1 833 +___ 0 023 10 2 + 0 2 2 534 +_ 0 025 1 136 _____ 0.015 
3 1 341 + 0022 96 + 02  1.948 + 0.024 0657 + 0015 
4 0 9 8 1 + 0 0 2 0  9 1 + 0 2  1 4 8 9 + 0 0 2 1  0.381__+0016 
5 0719 + 0018 87 + 03  1 131 +__ 0019 0229 +__0016 
6 0 529 + 0 016 8 3 +__ 0 3 0 852 ::t: 0 019 0 132 + 0 014 
7 0 389 + 0014 7 9 +__ 0 3 0634 + 0018 0081 -;- 0011 
8 0 286 + 0 012 7 6 + 0.3 0.464 + 0 018 0 050 + 0 009 
9 0214 + 0010 7 3 + 03  0 334 + 0018 0030 + 0007 

10 0 162 + 0.010 7 0 +__ 0 3 0 239 +__ 0 021 0 021 + 0 007 
11 0 1 2 3 + 0 0 1 1  6 8 + 0 3  0169+__0023 0011+-0007 
12 0095 + 0011 6 5 + 0 3 0 117 + 0026 0010 + 0008 
13 0 074 + 0 011 6 3 + 0 3 0 081 + 0 028 0 005 + 0.009 
14 0 059 +__ 0 010 6 1 + 0 3 0 057 + 0 029 0 003 + 0 009 
15 0044 +__ 0010 6 0 + 0 3 0043 + 0030 0000 + 0.012 
16 0 030 +- 0 011 5.8 + 0 3 0 032 + 0 032 0 004 +- 0 011 
17 0 017 __+ 0 012 5 7 + 0 3 0 026 __+ 0 035 0.006 +- 0 011 
18 0 008 -+ 0 014 5 5 + 0 3 0.022 + 0.038 0 003 +__ 0 010 
19 0001 __+0016 5 4 + 0 . 4  0021 +0041  0001 + 0.011 
20 -0007_+ 0018 5 3 + 0 4  0023 + 0043 0003 + 0011 
21 -0.013 +- 0020 5 3 + 0.4 0029 + 0046 - 0 0 0 2  + 0.012 
22 - 0.016 _+ 0 021 5.2 + 0 4 0.036 + 0 049 - 0 005 + 0 013 
23 - 0 0 1 5  __+ 0023 5 2 :t: 0.4 0041 +- 0051 -0.007 + 0.013 
24 - 0 013 5:0.024 5.2 + 0 4 0 044 _+ 0 052 - 0 007 + 0 014 
25 - 0 014:1:0 024 5 1 +- 0 4 0 046 + 0 052 - 0 009 +- 0.015 
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method for extracting the mass gap, we give in table 4 all calculated correlations for 
some selected values of /~. Table 5 contains the m(At)  mean values, which are 
obtained from these correlations. In case of the ILIA we have taken the correlations 
of the improved field (1.5). For the final results error bars are calculated (by the 
method of sect. 2) from the error bars of the relevant C(At), neglecting the error bar 
of C(0) because of correlations. For large At the error bars of C(At)  increase and 
finally reliable results can no longer be obtained. 

The values re(At) (,~t = 1(2) . . . . .  1L) are upper bounds for the mass gap. As long 
as m(At)  is rather stable when going to larger values At, we hope to obtain a good 
approximation to the mass gap (at the/3 value in question). If the correlation length 

becomes too large, we enter (on a finite lattice) the spin-wave region, and no 
sensible value for the mass gap can be extracted. In this case a power law behaviour 
is indicated for the correlation function C(At),  At--;, oo by strongly decreasing 
values for m(At)  as At ~ oo. For the SA on the 502 lattice we illustrate this at 
fl = 1.6, where the correlation length is ~ -= 20. 

TABLE 5 
Mass-gap estimates (mean values) from the correlations of table 4 

At B = 1 2 ,  SA f l=I .6 ,  SA /~=1 1, TIA B = 0 8 , 1 L I A  

1 0 315 0 063 
2 0 313 0 056 
3 0 313 0 057 
4 0 313 0 056 
5 0 313 0 054 
6 0 312 0 053 
7 0 311 0052 
8 0 311 0 051 
9 0 308 0 050 

10 0 305 0 049 
11 0 302 0 047 
12 0.298 0 047 
13 0 294 0 046 
14 0 290 0 045 
15 0 291 0 043 
16 0 296 0 042 
17 0312 0041 
18 0040 
19 0 039 
20 0 038 
21 0 036 
22 0 036 
23 0 034 
24 0 033 
25 0 032 

0 23 0 54 
0 24 0 50 
025 051 
0 25 0 52 
0 26 0 52 
0 26 0 52 
0 27 0 52 
0 27 0 51 
0 28 0 51 
0 28 0 50 
0 29 0 51 
0 3O 0.48 
0 30 
0 30 
0 3O 
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Our final mass gap results are summarized in fig. 1. The A parameters of this 
figure are defined by (/3 = fls, flax, f l tu)  

A]~'= 2~rflexp(- 2~rfl)(1 + O ( 1 / f l ) ) ,  (3.4) 

S = standard, I = improved. The O(g)  coefficients, distinguishing TIA and 1LIA, do 
not affect the asymptotic A scale, AlL. The full lines of fig. 1 are approximate 
continuum estimates. For the TIA the full line is taken from ref. [8], and our MC 
data are seen in good agreement with it. For the SA we have taken a value which is 
consistent with previous MC literature [3,12-14]. In this case the discrepancies in 
the literature are, however, large and the status of asymptotic scaling is now 
obscured by ref. [14]. 

In fig. 2 we plot the defects 

d = const m (3.5) 
AS£i ' 

versus In ~, where ~ is the correlation length. (The constants in (3.5) are adjusted 
such that always d(fl  = 0.8) = 1.0.) We clearly find improvement in the sense that 
the mass gap exhibits asymptotic scaling already at a very small correlation length 

m 
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Symlnz l k  l o t i on  ( t r ee )  " [ 
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Fig 2 The mass-gap defect. 

for the 1LIA. For the SA we have on a lattice of the same size (502) no signal at all 
for asymptotic scaling. To some extent this result is a surprise, because Symanzik's 
~mprovement is concerned with scaling and not (at least directly) with asymptotic 
scaling. In table 6 we roughly estimate the correlation length at the beginning ~begm 
and end ~c,d of the scaling windows for our three actions on a 502 lattice. The end of 
the scaling windows is due to finite-size effects: lattice raze and (related) spin-wave 
problems. The practical improvement is measured by the fraction q = ~g~n/~e,d" We 
have q =  2.5 (1LIA), q---2.0 (TIA) and q = 1.0 (SA). For the 1LIA asymptotic 
scaling sets in at the very small correlation length ~begm = 2, but we pay w~th early 
fimte-size effects at ~Jend = 5. Consequently, for the practical purposes of a mass gap 
calculation the TIA seems to be similarly useful as the 1LIA, m particular because 
the heat-bath method is applicable for the TIA. On the other hand, both 

TABLE. 6 
Asymptotic scahng windows on a 502 latuce 

~" begin ~end 

SA 7 7 
TIA 4 8 
ILIA 2 5 
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improved actions provide clearly a practical improvement as compared with the SA. 
For the SA asymptotic scaling can (if at all) only be seen on lattices of size > 1002 
and therefore the MC calculations are much more time consuming. 

The ratio AIL/AS L has been calculated analytically [5, 8,18,19] for the O(N) sigma 
model and the 0(3) result is 

AXL/A s = 2.219. (3.6) 

The MC simulation, however, gives 

AtL/A s -- 3.0, (from TIA versus SA), (3.7a) 

A I / A  s -- 6.9, (from 1LIA versus SA). (3.7b) 

Particularly notable is the large difference between TIA and 1LIA. This is argued to 
be due to perturbative (3-loop etc.) corrections to the A-scale (3.4). We can easily 
imagine asymptotic convergence of the full lines in fig. 1 by a small deviation in their 
slope, which cannot be numerically detected in the small scaling windows. Assuming 
the 1LIA estimate to be the best, a qualitative figure of the expected scaling curves 
was given in ref. [19]. The 1LIA gives a result rather close to Ltischer's [16] estimate, 
which is based on a new finite-volume method. Li~scher's value is conjectured to be 
very close to the exact mass-gap result. Strong-coupling estimates [15] are between 
TIA and SA (closer to TIA), and finally also variational calculations [17] seem to 
approach a point, where estimates become possible. 

4. The energy-momentum dispersion 

In our investigation we have also measured correlations between momentum 
K = O, 5: 2~rn/L (n = 1 . . . . .  [~L]) eigenstates. These correlations are defined by 

C(K, At) = Re{ (~ (K ,  t ) ~ ( K ,  t + At))} ,  (4.1) 

TABLE 7 

Correlauons for K -  ~-*r eigenstates 

A t SA, B = 1 0 TIA, /3  = 0 8 1LIA,/3 = 0 6 

0 1 220 + 0 002 1 279 +__ 0 002 2 82 ± 0 02 
1 0 458 __+ 0 002 0 502 ± 0 002 - 0 56 5:0 01 
2 0172-__0001 0171 5:0002 017__+001 
3 0.065 + 01301 0 056 5:0 001 0 08 5:0 01 
4 0026 5:0001 0018  _____ 0001 001 5:001 
5 0011 5:0001 0 0 0 6 5 : 0 0 0 1  - 0 0 1 . 0 0 1  
6 0 0 0 4 5 : 0 0 0 1  0002_____0001 
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Fig 3 Energy-momentum dispersion for the SA 
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where 
L - I  

~(K,  t) = ~_, e'~Xc~(x, t),  
x--O 

and in case of the 1LIA again the improved field (1.5) is taken. For practical reasons 
(disk space) we have only considered n = + 1, ± 2 . . . . .  ± 10. Having in mind a check 
of the relativistic energy-momentum dispersion, i.e. the restoration of Lorentz 

~ob / %  "Z 
o~- /o X'A' 

• I 

Q o ~  
0 1 2 3 4 5 6 7 8 9 1 0  

Ftg 4 Energy-momentum d~spers~on for the TIA 
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Fig 5 Energy-momentum dispersion for the ILIA 

invariance 

e ( K )  = + K , (4.2) 

these values are the most important. From our MC data for the correlations (4.1) we 
note a tendency of the Fourier transform to suppress statistical noise. This may have 
importance for attempts to improve mass-gap estimates. In table 7 we give the 
correlation functions for K = 14 ~rr at one value of/3 for each action. Notable is the 
strong oscillation in the case of the 1LIA at short distances. 

Previously the energy-momentum dispersion (4.2) has been investigated within a 
variational approach (cf. ref. [17] and references given there). In figs. 3-5 our results 
are summarized. We find no improvement by going from the SA to the TIA, but 
considerable improvement of the energy-momentum dispersion for the ILIA. We 
attribute this to the off-diagonal terms of the ILIA (cf. table 2a), which are 
important for improving rotation invariance. 

5. Correlation functions 

In the previous sections we have considered the mass-gap and momentum 
eigenstates. Other examples for quantities satisfying the RG equation (1.2) are 2- 
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and 4-point functions 

8 z[J] : - o  (5.1) ' 

8 ' z [ J l  (5.2) 
Sa= ¢$jl~j2cSj3~$j 4 

The 2-point function at zero 2-momentum is the magnetic susceptibihty 

Xm = S 2 ( P l  = P 2  = 0 ) .  (5 .3)  

It is supposed to scale hke [9] 

Xm = C(2~rfl )-4exp(a~rfl)( 1 + O(1/ f l ) ) .  (5.4) 

For the SA large scaling deviations in Xmwere found in refs. [20,21]. Our present 
results are given in table 8. For the SA and the TIA they are consistent with the 
previous literature [8,20,21]. In fig. 6 the defect ~m = fl%xp(-4~rfl)Xm is plotted. 
We find a window consistent with asymptotic scaling only for the 1LIA. This leads 
to the estimate 

c -- 0.3. (5.5) 

TABLE 8 
Magnetic susceptlbfllt~es 

SA TIA 

fl X~ fl Xm 

04 180_+ 003 
08 4.59+ 008 
09 635_+ 014 
10 928±  030 
11 134 + 04 
12 221 + 06 
13 428 -+ 30 
14 840 .= 50 
1 5 181 0 _+ 140 
16 3500 -+130 
18 6870 -+100 

1002 latttce 
14 701-+ 47 
1 5 171 0_+ 200 

08 77-+ 02 
09 109__+ 04 
10 187+ 06 
11 317~_ 12 
12 646_+ 51 
1 25 970_+ 120 

METROPOLIS. 
08 74-_ 02 

ILIA 
B X,, 

06 542_+ 014 
07 819_* 026 
08 121 + 04 
09 229 + 22 
10 500 _+ 80 
1 1 1930 _43.0 
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Fig 6 Scahng defect for the magneuc suscepub~hty 

a m  

For the SA and TIA estimates of C have to involve more hand-waving arguments. 
Dependence of asymptotic scaling for Xm on the choice of the lattice action was also 
reported in ref. [22]. 

Finally we have also measured the "generalized susceptibility" 

$ 4 (  p~ = P2 = P3 = P4 = 0)  ( 5 . 6 )  
X 4 =  2 ' 

Xm 

which has no wave-function renormalization. On our rather large lattice the results 
were, however, compatible with statistical noise. For the SA and TIA data on 
smaller lattices were presented in [8]. 
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6. Scaling behaviour of the mass-gap and two-point function 

As discussed in the introduction, scaling (in general) means the validity of the RG 
equation (1.2) with some functions fl(g) and ~(g) satisfying for g ~ 0 

f l ( g ) O f l u . , ~ ( g ) + O ( g ' ) ,  

~7(g) --' ?u,~v (g)  + O(g2)  • (6.1) 

(The regularization-independent, universal parts B , ,~v ,~v  are given by eqs. 
(1.9)-(1.10).) In the present section we shall be concerned with "RG-invariant" 
functions which do not depend on wave-function renormallzauon and hence on 
~(g). Let us denote such a quantity, having mass dimension D, by F o. In a lattice 
calculation physical quantities occur in "lattice units", that is the dimensionless 
function fo  = a°Fo  is available (a = lattice spacing). This function can depend, in 
general, on different physical parameters (measured in lattice units) like e.g. L / a  = N 
(L  = lattice size), r / a  = n (r  = distance), ap = 2~rv/N;  , = 0,+_ 1 . . . .  
( p  = momentum)* or a T  = N,- a (T = temperature) etc. From the RG-equation 

o 
[ - a-~a ( g ) -~g ] Fo = O , (6.2) 

it follows for 

fD = f o ( g ,  N,  n, v, U~) = aDFo, 

[ o o o o] 
D + N - ~  + n -~n - e -~u + N, - ~  + ( g l -~g f D = O . (6.3) 

Note, that here the variables N, n, u,.. .  are considered as continuous, although on a 
lattice they are, of course, discrete (integer). This means that in a lattice calculation 
the derivatives have to be approximated by difference quotients. In the continuum 
limit this approximation can, however, be made arbitrarily good by using a high-order 
interpolation between the values obtained at neighbouring integers. As a simple 
example for the physical quantity F D, let us consider the mass gap rnc~ with D = 1. 
The RG equation (6.3) for go  = amc, is 

[ l + f l  O ]tx~( 0 (6.4) ( g ) ~  g)  = . 

This can be used for the calculation of the lattice fl-function: 

#o  
dg / (6.5) 

* Here we assume peno&c boundary conditions 
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Note that in these equations the volume dependence of the mass gap is neglected, 
that is the lattice size is assumed to be very much larger than the relevant correlation 
length ("infinite-volume limit"). 

Other examples for the quantities satisfying the RG equation (6.3) can be 
obtained from the 2- and 4-point functions (5.1), (5.2). The "generalized susceptibil- 
ity" X4 defined in (5.6) has no wave-function renormalization, it is dimensionless 
and it can depend only on the volume. On the lattice it satisfies the RG equation 

+ - -  6 9 , 
(6.6) 

This can, in principle, also be used to determine fl(g), but X4 is rather difficult to 
measure numerically. Therefore, we considered the normalized two-point function as 
a function of the momentum 

S2 ( ap ) S2 ( ap ) 
= ( 6 . 7 )  R2 = S2 ( a p = O) m 

(Here ap is some component of the lattice momentum having the values ap = 2~ru/N; 

= 0, :t: 1, + 2 . . . . .  ) According to eq. (6.3) and neglecting the volume dependence, 
R 2 satisfies 

I (6.8) 

This implies 

OR2/Oln  v (6.9) 
aR /og 

Measuring the two-point function R 2 at different values of g and v allows, therefore, 
a numerical determination of the lattice fl-function. 

The equations like (6.6) or (6.8) imply that the functions X4 and R E depend only 
on a particular combination of the two arguments. For instance, the solution of eq. 
(6.8) is, with an arbitrary function rE(X ) , 

[g  dg '  t 
R 2 = r  2 l n ~ +  j /~ (g , )1 .  (6.10) 

This property can be easily checked graphically. A convenient choice is to plot In R 2 
as a function of ln(ap) and to try to bring the curves belonging to the different 
coupling constant values on top of each other by a shift in ln(ap). If this can be 
achieved there is scaling, the obtained universal curve is the continuum In R 2 
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function and the lattice ~-function can also be extracted from the shifts. The result 
of this procedure for the case of the SA and 1LIA is shown on figs. 7, 8. As it can be 
seen, the result is a rather nice scaling curve, in spite of the large violations of 
asymptotic scaling observed for the SA in previous sections. There are, of course, 
also small scaling violations seen in fig. 7 but the corresponding curve for the 1LIA 
(and also for TIA) is so similar, that one cannot draw an immediate conclusion 
concerning the quality of scaling in the three cases. The crucial question is, whether 
the lattice/?-function obtained from the normalized 2-point function R 2 is universal 
(as it should be), that is whether it describes the scaling behaviour of all the 
quantities in the theory. 

In order to study these questions quantitatively, we numerically determined the 
lattice/~-function for all the three actions using eqs. (6.5) and (6.9). The denvatwes 
were estimated from a quadratic interpolation using the two neighbouring values in 
g and In v. The obtained results are collected in table 9. As it can be seen, the lattice 
/?-function for SA is rather different from the asymptotically valid universal part 
(1.9) even at the smallest measured values of the coupling g. This explains the 
observed large deviations from asymptotic scaling. The 1LIA comes at g - ~ =/3 = 0.9 

-10 

-2D 

glJ 0 ° ~ e  

ej, 

v~ 

• 13 =0/. 
o 13=08 
• fl=O9 
o 13=10 
• 13=11 
~, 13=,2 
• ~B=13 
v B=I¢ 
+ LB=16 

Inp,,A(jB ) 

standard achon 

o= 

o 

in R t 
A 

Fig 7. Test of scaling for the SA. 
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Fig 8, Test of scabng for the ILIA 

rather near to ~umv (it actually coincides with ~ , ,w i th in  errors). The TIA is between 
SA and 1LIA. The universality of the ~-function values, obtained from the mass gap 
and from different momenta, is very good at fl --- 0.9 for the 1LIA and at fl = 1.2 for 
the TIA. In the other points the numbers are in most cases compatible with 
universality within errors. An exception is fl = 0.9 for the SA and perhaps ~ = 0.7 
for the 1LIA. 

In summary: the behaviour of the measured quantities is much better compatible 
with scaling if the lattice ~-function is not fixed to the universal (asymptouc) part 
~un, v- The ~-function at the smallest measured values of the coupling are nearly 
equal to ~u=~ for TIA and ILIA but otherwise/~(g) is different from ~u~. Scaling 
(in general) holds better for the improved actions than for the standard one, but with 
the present errors it is not possible to distinguish numerically between the quality of 
scaling for the different actions. 

7. Summary and conclusions 

We have carried out MC calculations for the 2d 0(3) non-linear o-model with 
three different actions: the standard action (SA); Symanzik's tree-level improved 
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action (TIA) and the l-loop improved action (1LIA). The 1 LIA behaves much better 
with respect to asymptottc scaling. Most likely this is an accident, because Symanzik's 
improvement is made for mass ratios (scaling in general sense) but not for asymp- 
totic scaling. 

Scaling in the general sense is also investigated. The numerically determined 
values of the lattice ~-function ~(g) agree reasonably well if calculated from 
different physical quantities (although ~(g) is qmte different for the three actions). 
It is expected that the agreement is better for the improved actions, but within the 
statistical noise of our MC investigation this is practically invisible. 

Another aspect of (general) scaling, namely the restoration of Lorentz-invariance 
in the energy-momentum dispersion, is found to be considerably better for the 1LIA 
than for the other two actions. This is presumably due to the off-diagonal terms 
present in the 1 LIA. Lorentz-invariance (in particular also rotation invariance, which 
we did not invesugate in this paper) is a very essential requirement. 

In summary: the improved actions have led to a better understanding of MC 
problems in reaching the continuum limit and established a number of interesting 
features. MC results [23-25] for the 4d SU(2) TIA indicate possible improvements 
which are in the spirit of Symanzak's program (asymptotic scahng is not improved, 
however). 
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