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We calculate the energy-momentum dispersion relation for the 0 +(+) glueball in SU (2) and SU(3) lattice gauge theories. 
We find that this relation takes the usual relativistic continuum form E 2 = pZ + m 2 for ~3 1> 2.2 in the case of SU (2) and 
t3/> 5.5 in the case of SU(3), thus demonstrating the dynamical restoration of Lorentz invariance. We obtain similar results, 
albeit with larger statistical errors, for the 2 +(+) glueball. 

The success of lattice [1] Monte Carlo [2] calcula- 
tions in illuminating the physics of  continuum QCD 
has been made possible by the apparently precocious 
onset of  continuum behaviour: typical non-perturba- 
t ire quantities seem to have become insensitive to the 
lattice structure for lattice spacings that are still as 
large as a -~ 1/3 fro. The onset of  continuum behaviour 
may be deduced, for a particular set of  physical quan- 
tities, from the 13 (=-2Nc/g 2) independence of  dimen- 
sionless ratios of these quantities. More directly the 
onset of  continuum physics should be accompanied 
by a restoration of  those symmetries of  the continuum 
gauge theory, which are explicit ly broken by the lat- 
tice regularization. Some time ago numerical evidence 
was presented for the dynamical restoration of rota- 
tional symmetry in the SU(2) gauge theory [3]. In 
this let ter  we present numerical evidence for the dy- 
namical restoration of  Lorentz invariance, in both 
SU(2) and SU(3) latt ice regularized gauge theories, in 
a range of  couplings where calculations of  physical 
quantities are currently being performed. To be pre- 
cise, we shall calculate the e n e r g y - m o m e n t u m  disper- 
sion relation for glueballs, and we shall see to what ex- 
tent we reproduce the relativistic continuum form 
E2 = p2 + m 2. 
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The by now standard technique [4] for calculating 
glueball masses proceeds roughly as follows [5]. Con-. 
struct a trial glueball wave-functional, ~b(n, t), "cen- 
tred on the site (n, t) with the desired jPC properties. 
Make the p = 0 translation invariant sum ~(p = 0, t) = 
Y'n ¢(n, t) and measure the correlation function 
G(p = 0, t) =- (~(p = 0, t) q~(p = 0, 0)). Vary ~ over a 
class of wave-functionals to obtain a large enough pro- 
ject ion onto the desired glueball so that G(p = 0, t) is 
dominated by the lowest mass glueball propagator for 
t ) a. Then obtain the glueball mass from 

ma = ln[G(p = 0, t = a)/G(p = 0, t = 2a)] . (1) 

To obtain the glueball energy, E, as a function of  the 
momentum p,  follow the same steps as above, except 
use a trial wave-functional of  momentum p, 

~b(p, t) = ~ exp(ipn) ~(n, t ) ,  (2) 
n 

and find 

E(p)  a = ln[G(p,  t = a)/G(p, t = 2a)] . (3) 

In practice we shall employ as our basic loops in the 
construction of~b(n, t) the 1 X 1 and 2 X 2 plaquettes.  

69 



Volume 136B, number  1,2 PHYSICS LETTERS 23 February 1984 

We know from previous work [5,6] that at least one 
of these will provide a "good enough" (in the above 
sense) wave-functional in the range of  couplings of  
interest herein. For the (spacelike) 2 × 2 loop we take 
n at the centre of the loop. For the 1 × 1 loop we 
take n to be the vertex from which the loop emanates. 
Note that in assigning momentum and angular mo- 
mentum properties the choice of n can lead to some 
ambiguity. However, as long as one chooses n to be 
within one lattice spacing of  the geometrical centre, 
this ambiguity is "irrelevant" in the technical sense. 

We use the usual Wilson action [ 1 ] and employ 
conventional periodic boundary conditions. For a 
Ls 3 • Lt lattice the allowed momenta are thus 

Pia = (2rr/Ls) n ,  n = 0, ..., L s / 2 ,  (4) 

for L s even. The results we present in this paper will 
be on lattices with Ls = 8. However, we do not calcu- 
late E(p) for all p for several reasons: computer time; 
for large IPl the signal is lost in noise; when IP J >> m 
one must go to t >> a to isolate the lowest glueball 
contribution to G(p, t). In fact we limit ourselves to 
IPl ~ 2m (for the 0 +(+) glueball). Here we expect (3) 
to be accurate, and we can hope to obtain statistically 
significant results. 

We begin with the SU(2) case. Our most extensive 
measurements were taken at/3 = 2.3 on an 83 • 10 lat- 
tice: 24 000 configurations, broken into 24 subsets of 
1000 configurations each for the error analysis. We 
use eq. (3) to extract [E(p) a] 2 versus (pa) z. In fig. la 
we plot the results for the wavefunction based on the 

1 X 1 plaquette for the 0 + glueball. To guide the eye 
we display the continuum relativistic dispersion rela- 
tion, E 2 = p2 + m 2. It manifestly interpolates the data 
very well. The leading order strong coupling E(p) is 
(obviously) independent ofp .  The momentum depen- 
dence first comes in at O(134) [7]. Our data is certainly 
very distant from that strong coupling limit. For com- 
parison we also show the nonrelativistic continuum 
dispersion relation. Our data unambiguously prefers 
the relativistic version. 

We have performed a lower statistics calculation at 
fl = 2 .2 :5400  configurations, again on an 83 • 10 lat- 
tice. Averaging the results for 1 X 1 and 2 X 2 basic 
loops we obtain [E(p) a] 2 as shown in fig. 1 b. Again 
the relativistic dispersion relation is well verified, 
although at an obviously reduced level of  statistical 
significance. 

Turning now to SU(3) we show in fig. lc the 0 ++ 
glueball energy squared, as a function of momentum, 
extracted (using the 1 X 1 loop) from 4000 configura- 
tions on an 84 lattice at/3 = 5.7. Again we obtain a 
very nice verification of the relativistic continuum dis- 
persion relation. 

We have also measured E(p) for the 2 +(+) glueball. 
Since this state is much heavier than the 0 +(+) the 
errors are larger and plots such as those in fig. 1, where 
one squares E(p),  tend to be visually uninformative 
because of the large errors. As an alternative procedure 
we extract from E(p) a the mass ma, using eq. (4) and 
E 2 = p2 + m 2, and see to what extent the extracted 
mass is independent of  (pa) 2. In figs. 2a, b we show the 
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Fig. 1. Energy versus m o m e n t u m  for the 0 ++ glueball: (a) at/3 = 2.3 in SU (2); (b) at fl = 2.2 in SU (2); (c) at/3 = 5.7 in SU(3). 

70 



Volume 136B, number 1,2 PHYSICS LETTERS 23 February 1984 

ma 
' s u ' ( 2 )  ' 

2*, i3= 2.3 
(lxl l){aquetle) 

t ttt 
' S ' U ( 2 )  

2; p:z.3 
(2x2 plaquette) 

(a) (b) 
I I I I 

15a} 2 (~a} 2 

, , / - 
SU(3 ) '  ! 

+ 2~, 13:5.7 

J (2x2 plaquetle} 

(c) 
I S J 

(~a) 2 
I I 
4 5 

Fig. 2. The 2 ++ glueball mass extracted from E (p) using E 2 = p2 + rn2: (a) 1 X 1 loop wavefunction at/3 = 2.3 in SU (2); (b) 2 X 2 
loop wavefunction at 13 = 2.3 in SU(2); (c) 2 X 2 loop wavefunction at t3 = 5.7 in SU(3). 

SU(2) results at/3 = 2.3 (on 83 • 10) for tile wavefunc- 
tions based on the 1 X 1 and 2 × 2 loops, respectively. 
In fig. 2c we show the SU(3) results a t f l  = 5.7 (on 84). 
We clearly have a significant consistency with the E 2 = 
p2 + m 2 dispersion relation, 

To provide a contrast  we have performed a similar 
calculation at a value of/3, where the lattice is not  ye t  
expected to have become "irrelevant". In fig. 3 we 
plot  [E(p) a] 2 for the SU(3) 0 ++ glueball (based on 
the, 1 X ] loop) as extracted from 1800 configurations 
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Fig. 3. Energy versus momentum for the 0 ++ glueball at 
13 = 4.0 in SU(3). 

at/3 = 4.0 on a 43 .  8 lattice. [We have used G(a)/G(O) 
which should be accurate enough in this case.] The ob- 
served dispersion relation is very different from the 
continuum one and provides a yardst ick against which 
to measure the significance of our earlier results. 

We conclude that we have good numerical evidence 
for the restoration of Lorentz invariance in the range 
of  couplings/3 2 2.2 [SU(2)] and/3 2 5.5 [SU(3)] 
which are of particular interest for current lattice 
QCD calculations. In a longer paper we shall give more 
details from our data taken on large lattices at/3 = 
2.2, 2.3, 2.4, 2.5 in the SU(2) case and at 13 = 5.5, 5.7, 
5.9 in the SU(3) case, together with results on the 
restoration of rotational invariance. Having verified 
the continuum dispersion relation one can use it for 
the lowest momenta  to enhance the statistics of  glue- 
ball calculations on large lattices (as discussed origi- 
nally in ref. [8]). The util i ty of this, especially for the 
hard to get 2 ++, will be obvious from our fig. 2. The 
results for the 0 ++ and 2 ++ glueball masses, obtained 
from the data summarized herein, are presented in an 
accompanying let ter  [9]. 

We are grateful to DESY for generous computing 
facilities. One of us (M.T.) is grateful to T. Walsh and 
F. Gutbrod for the hospitali ty of tile DESY Theory 
Group during part  of this work. 
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