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We calculate the scalar and tensor glueball masses on large lattices (ranging from 84 to 103 × 12) for 13 = 2.2 to 2.5 in 
the case of SU(2) and for t3 = 5.5 to 5.9 in the case of SU(3). In comparing our results to those previously obtained on 
much smaller lattices we find only small finite-size effects. We confirm previous results on the continuum renormalization 
group behaviour of the SU(3) 0+* and 2 +* glueball masses. 

The application of  lattice [ 1 ] Monte Carlo [2] 
techniques to the calculation of  the (glueball) spectrum 
of  SU(2) and SU(3) gauge theories has had remarkable 
success. The method [3] which has become standard, 
because it is the most direct and is least affected by  
systematic biases, can be crudely summarized as fol- 
lows. Construct a trial glueball wave-functional, 4~(n, t), 
"cent red"  on the site (n, t). (~ consists o f  a combina- 
t ion of  closed loops of  links such as to have the desired 
j P C  content .)  Make the p = 0 translation invariant sum 

~ ( p  -- 0, t)  = ~ ~(n,  t)  (1) 
n 

and measure (on the Monte Carlo generated gauge field 
configurations) the correlation function 

G ( p  = O, t) =- ((o(p = O, t)(~(p = 0, t = 0)5.  (2) 

Vary ~b over a class of  sensibly chosen wave-functionals 
in order to obtain a large enough projection onto the 
desired glueball, so that  G ( p  = O, t) is dominated by  
the lowest-mass glueball intermediate state for t ~> a 
(where a is the lattice spacing). Then the desired glue- 
ball mass is given by 

ma = In [G(p = O, t = a)/G (p  = 0, t = 2a)] . (3) 

The reason for using p = 0 wave-functionals, as in (1), 
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is that  this makes the extract ion of the mass, as in (3), 
very direct. The price for this convenience is that on an 
L 3 × L t lattice one will get only L t measurements of 
G per generated configuration. Thus the computer  
t ime required to achieve a given signal/error ratio is 
proport ional  to Ls 3. For  this reason most calculations 
have been performed on small lattices, typically with 
L s = 4. That calculations on such small lattices are not 
implausible is due to the numerical evidence, in both  
SU(2) [4] and SU(3) [5], that the typical glueball is 
only about 2a in diameter for the couplings of rele- 
vance. Nonetheless a systematic calculation on much 
larger lattices is obviously very desirable. In this letter 
we summarize the results of  such a calculation. 

The secret to calculating glueball masses on large 
lattices, as originally pointed out in ref. [6], is to ob- 
serve that the number o f  low momenta,  say [Pl < 2rn, 
also increases as L~, If  we perform our calculation with 
a wave-functional of  non-zero momentum 

~b(p, t) = ~ e x p ( i p -  n)d~(n, t ) ,  (4) 
n 

we will obtain the corresponding glueball energy from 

E ( p ) a  = l n t a ( p ,  t : a ) /G(p ,  t : 2a)] (5) 

and hence a measurement of  the mass from 
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(ma) 2 = [E(p)a} 2 _ (pa)2 . (6) 

The total  number of  such measurements is proport ion-  
al to Ls 3, and hence the computer  time required to 
acihieve a given percentage error on the mass estimate 
is roughly independent of  lattice size (for large enough 
lattices). Of course at this point eq. (6), the continuum 
ene rgy -momen tum dispersion relation, is an assump- 
tion, albeit a plausible assumption for small momenta  
in a range o f  couplings where one expects to obtain 
continuum physics. However one can use the same 
dal a we employ herein to demonstrate the validity 
of  the continuum dispersion relation. This has been 
done in an accompanying letter [7], and so we take 
eq. (6) to be valid for the range of  couplings and small 
momenta  of  interest in this paper. (As [p i/m becomes 
large, so does the error on the extracted m so that it 
copIributes insignificantly to our final mass estimates.) 

In the present calculation we use the standard 
Wilson action [1] with periodic boundary conditions.  
The lattices we employ are 84 at 13 = 5.5, 5.7, 5.9 in 
the SU(3) case, 83 X 10 at 13 = 2.2, 2.3, 2.4 and 103 
X 12 at 13 = 2.5 in the SU(2) case. The number of  con- 
figurations is 3500, 4000, 4500, 5400, 24000, 10500, 
12000, respectively. For  the error analysis the configu- 
rations at each 13 were split into between 8 and 24 
groups. Since the final masses and errors were usually 
obtained by least X 2 fits, accurate error estimates were 
crucial. Details will appear in a forthcoming longer 
paper. We now turn to our results: finite-size effects; 
0 + and 2 + masses in SU(2); 0++ and 2 ++ masses in 
SU(3). 

Finite-size effects, The most interesting finite-size 
effects are those that appear in the glueball mass esti- 
mates themselves. However, since the mass is derived 
from the longer-distance fall-off of  correlation func- 
tions, the errors are large enough to conceal small 
finite-size effects. To perform a high-resolution search 
for such effects we consider instead the quanti ty G(p 
= O, a)/G(p = 0, 0) for which we have accurate measure- 
ments on an extensive range of  lattice sizes. Typically 
this quant i ty  has an 0(50%) contribution from the 
lowest-mass glueball, with the remainder being contrib- 
uted by higher-mass states. Apart  from accidental can- 
cellations any finite-size effects in the lowest glueball 
mass should be reflected in changes in G(p = O, a)/ 
G(p = O, O)(=G(a)/G(O)). 

In fig. la  we plot the SU(2) values of  G(a)/G(O) for 
various lattice sizes, for both 0 + and 2 +, and for wave- 
functionals 4} based on either the 1 X 1 or the 2 X 2 
loops. We have data at both  t3 = 2.3 and 2.5 ; according 
to the usual perturbative relation a(13) decreases by 
~40% between these values of  the coupling. The 83 
X 10 and 103 X 12 lattices are large enough for the 
physics to be well inside the low-temperature con- 
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Fig. 1. Comparison of correlation functions G(a)/G(O) mea- 
sured on lattices of differing sizes: (a) 0 + and 2 + at/3 = 2.3 and 
2.5 in SU(2); (b) 0 "H" in SU(3); (c) 2 ~ in SU(3). 
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fining phase of  QCD. (The data on small lattices come 
from ref. [6] and the second paper in ref. [3].) The 
smallness of  any finite-size effects is extraordinary.  

In figs. lb ,  c we plot similar data for the SU(3) case 
in a somewhat different format. The 2 ++ correlation 
functions show no finite-size effects just as in the 
SU(2) case. The 0++ case does, however, exhibit sig- 
nificant finite-size effects. The largest effects are at 13 
= 5.5 which is close to the maximum of the SU(3) 
specific-heat peak. The drop in the correlation func- 
t ion is a direct reflection of  the observed [8] flattening 
of  the SU(3) specific-heat peak with increasing lattice 
size. It is associated with an increasing mass for the 0 ++ 
glueball (see below). Presumably one would have seen 
similar effects at 13 = 2.2 in the SU(2) case. This effect 
is to have been expected. A large lattice has a narrower 
Boltzman peak and will not sample gauge field configu- 
rations characteristic of  the nearby critical point (with 
its associated zero-mass 0 ++ glueball [9]). Significant 
finite-size effects are also visible at 13 = 5.9. At this val- 
ue of  13 a 43 spatial lattice is indeed very small. The di- 
rection of  the observed effect suggests a decreasing 
glueball mass and/or an increasing projection onto the 
lowest-mass glueball. How much this is reflected in the 
actual mass estimates will be seen below. Finally we 
note that there are no significant finite-size effects at 
13 = 5.7, which is the value of  13 we have previously [5] 
used for estimating the 0 ++ and 2 ++ glueball masses. 

Glueball masses. In the present calculation we em- 
ploy the standard method [3] with two trial wave- 
functionals, the 1 × 1 loop and the 2 × 2 loop. We do 
not perform a more extensive variational calculation, 

, since we know from previous work on smaller lattices 
[3 -6 ,10]  that ,  where the glueball is smaller than 
about 2a across [13 <~ 2.3 in SU(2) and 13 ~< 5.7 in 
SU(3)],  one or both  of  these wave-functionals will be 
good enough for eq. (3) to be valid even for the tight- 
est scalar glueball. On the other hand, once we increase 
13 so that  the ghieball is more than ~ 2 a  in diameter, a 
trial wave-functional needs to be much more complex 
in terms of  loops of  links on the lattice if it is to rep- 
resent the increasingly structured glueball wave-func- 
tion. No variational calculation of  the sophistication 
necessary has been performed as yet. We shall not at- 
tempt  such a novel calculation. Instead we accept that 
our wave-functional gets worse as 13 increases, that eq. 
(3) breaks down, and that in order to get a reliable 

mass estimate one must measure the correlation func- 
t ion out to ever larger distances. In practice we shall 
measure the scalar glueball correlation function out 
to four lattice spacings. For  the heavier tensor glueball 
we shall use eq. (3) at all 13 relying on the more rapid 
fall-off of  this correlation function to sieve out higher- 
mass contributions beyond one lattice spacing. 

We extract the masses from our measured values 
o r E ( p )  using eq. (6) and a least X 2 procedure. The 
details are not always straightforward and will be 
described in a longer paper. In plott ing the data we 
transform the measured dimensionless products 
m(13)a(13) into m(13)a(13 = 130), for some convenient 
fixed 130, using the usual perturbative renormalization 
group formula. If we are indeed in the continuum lim- 
it, and if moreover we are deep enough in this limit 
for the perturbative connection between a(13) and 13 to 
be accurate, then we should expect m(13)a(13 = 130) to 
be independent of  13. This is the standard test for con- 
t inuum physics. Given finite statistical errors one re- 
quires a measure of  the significance of any apparent 
13 (in-)dependence. In the present context an obvious 
yardstick to use is the perturbative variation of  a(13) 
over the range of  13 being considered. Of course some 
variation in m (13)a(130) would not be unexpected,  
since there is no reason to expect the perturbative ex- 
pression for a(13) to be completely correct in the range 
of  13 we investigate. A more model-independent cri- 
terion for continuum physics is that dimensionless 
ratios of  physical quantities should become indepen- 
dent of  13. In our case that would be the ratio of  tensor 
and scalar glueball masses. 

We now turn to our SU(2) results. In table 1 and 
fig. 2a we display our 0 + mass estimates. As 13 increases 
we present results obtained from further out along 
the correlation function. We observe that at 13 = 2.3 
eq. (3) is still accurate. However, at higher 13 this is no 
longer the case. We observe (within large errors) a sig- 
nal for some increase in m(13)a(2.3) with 13. However 
this increase is certainly much less than the factor of  2 
by which the perturbative a(13) varies from/3 = 2.2 to 
2.5. The 2 + mass is shown in table 1 and fig. 2b and 
shows very similar behaviour. In fig. 2c we plot the ra- 
tio of  tensor and scalar masses versus 13. The results are 
consistent with scaling with any systematic increase or 
decrease of  this ratio being ~30%.  

Turning now to the SU(3) case we display in table 
2 and fig. 3a our mass estimates for the 0 ++ glueball on 
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Tab le  1 

PHYSICS L E T T E R S  23 Februa ry  1984 

m (/3) a (~3) 

/3 = 2.2 13 = 2.3 /3 = 2.4 # = 2.5 

O b t a i n e d  

from 

0 + 

2 + 

1.57 ± 0.11 

..+o.4o 
"~ '3  - 0 . 3 0  
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' 2 "+0"12 G(p, a)/G(p, 2a) 1.48 ± 0.08 t. "*-0.11 
1 . - + 0 . 2 9  , , r + 0 . 2 6  
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0 ^-+0.55 • 5'U_o.35 G(p, 3a)/G(p, 4a)  

2 ,~+o.35 - ^ -+0.20  G(p, a)/G(p, 2a) 
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Fig. 2. SU(2)  g lueba l l  masses  m (13)a(t/= 2.3) as a f u n c t i o n  o f  
/3: (a) the  scalar;  (b) the  t enso r ;  (c) the  ra t io  o f  t en so r  to  
scalar. 

the 84 lattice. In fig. 3a we also show our previous [5] 
mass estimates obtained on a smaller 43 X 8 lattice. 
The main change is an increased mass at/3 = 5.5. This 
is presumably due to a flattening (with increasing lat- 
tice size) of  the specific-heat peak located at this value 
[8]. At/3 = 5.7 any change is very small. At/3 = 5.9 the 
errors are large and we can only rule out very large 
finite-size effects. We note that the change at/3 = 5.5 
further improves what was already a reasonably good 
continuum renormalization group dependence from/3 
= 5.1 to 5.9. In table 2 and fig. 3b we plot our 2 -H- 
mass estimates. Note that for/3 ~< 5.5 the 43 × 8 esti- 
mates were obtained from G(a)/G(O) assuming a pro- 
ject ion of  0.9 + 0.1 onto the lowest-mass tensor glue- 
ball (this estimate being obtained by an extrapolat ion 
from/3 = 5.9 and 5.7). We had no useful p = 0 signal 
for G(2a)/G(a). Now with far fewer configurations 
we are able to get a usefully accurate signal. We ob- 
serve that the 43 × 8 and 84 results are mutually con- 
sistent and that any/3 dependence is much weaker than 
that of  the perturbative a(/3) (which changes by a fac- 
tor  ~2 .5  between/3 = 5.1 and/3 = 5.9). The ratio of  
tensor and scalar masses is constant for/3/> 5.5, show- 
ing a decrease (in the direction of  decreasing/3) as one 
approaches the strong-coupling regime. 

In summary, our large lattice glueball calculations 
support previous results on smaller lattices. No large 
finite-size effects are found in either SU(2) or SU(3), 
with the exception of  an increased mass for the scalar 
glueball right on the specific-heat peak -- which was 
to be expected. Previous evidence for continuum 
scaling of  both  the 0 ++ [5,101 and 2 ++ [5] glueballs 
receives extra support from the present calculation. 
A more detailed presentation will appear in a longer 
paper. 
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Table 2 
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m(#)a(/3) 

/3=5.5 /3=5.7 ~=5 .9  

Obtained 
from 

0-1~- 

2 ++ 

1.37 ± 0.10 

on+o.6o 
. ~ u - 0 . 5 5  

1.13 ± 0.07 
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Fig. 3. SU(3) gluebaU masses m(/3)a(f3 = 5.7) as a function of 
/3: (a) the scalar; (b) the tensor. 
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