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The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in 
SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree4evel improved action 
and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action 
have been observed. For small/3 Wilson's action scales differently. The string tension value K extracted from the data corre- 
sponds to Alatt = (0.018 +- 0.001)x/~ for the one-plaquette action. 

The basic assumption in lattice quantum chromo- 
dynamics [ 1 ] is the existence of  a unique continuum 
limit for zero lattice spacing (a ~ 0). This implies that 
physical quantities, like a potential V, calculated on 
the lattice obey the renormalization group equation 
(RGE) [21: 

{-a ~/~a +-~(g) ~ /~g} V = O(a 2 Ina ) .  ( I )  

Here -~(g) = -a  dg/da is the Callan-Symanzik #-func- 
tion specific to the lattice action at hand. Asymptotic 
freedom requires that the continuum limit is realized 
by an asymptotically small bare coupling g ~ 0. We 
then say that V obeys asymptotic scaling if the RHS 
o f ( l )  is negligible and we can take for ?(g) the re- 
gularization scheme independent, lowest order expan- 
sion, i.e. for SU(2) gauge theory 

?as(g)= _(4~.)-2 .~ g3 ra--,--4 '36,,5 - ~ ' )  T 6  • (2 )  

The deviations from the continuum limit are repre- 
sented by the RHS ofeq .  (1), which may already be 
very small in a coupling constant region where ~(g) 
differs still appreciably from ?as(g)- Then we just have 
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scaling (and continuum behaviour) in a non-asymp- 
totic form. 

It has been pointed out by Symanzik that by a 
proper choice of  the lattice action the RHS o f ( l )  can 
be reduced to O(a 4 lna) [3]. This will eventually lead 
to improved scaling, but it does not necessarily imply 
a more rapid approach for ~(g)-~g__,0?as(g ). In fact, 
an earlier and more accurate scaling has been observ- 
ed in previous Monte Carlo calculations with improv- 
ed actions in the two-dimensional 0(3) nonlinear e- 
model [4]. Recent calculations [5,6] with improved 
actions in SU(2) LGT [7,8] seem to be promising, 
too. Another way to improve the approach to scaling 
has been proposed by Wilson [9]. He chooses the 
combination of  lattice couplings as near as possible to 
the trajectory of some block-spin renormalization 
group transformation. In general the improved actions 
in SU(Nc) gauge theory have the form [7], with/3 = 
2Nc/g2: 

S = - { 3 { c o ~  R e t r ~ ] + c  I ~ R e t r [ - - - ~  
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Here the sums run over the different (unoriented) 
closed loops of length 4 and 6, as depicted. The stan- 
dard 1-plaquette action corresponds to c o = 1, c 1 = 
c 2 = c 3 = 0. The tree-level improved action of 
Symanzik, where the O(a 2 lna) scale breaking terms 
in (1) are eliminated only in zeroth order in g2, corre- 
sponds to [8] 

c 0 = 5 / 3 ,  c 1 = - 1 / 1 2 ,  c 2 =c  3 = 0 .  (4) 

Finally, Wilson's block-spin improved action is speci- 
fied by [9] 

c o =4.376,  c 1 = - 0 . 2 5 2 ,  c 2 = 0 ,  c 3 = - 0 . 1 7 .  
(5) 

In this paper we shall study the scaling behaviour of  
the potential V(r) between static quarks in SU(2) 
pure gauge theory (without fermions). This potential 
is given on the lattice by 

aV(r=aR)+c03) = -  lim lnW(R 'T)=P R (6) 
T-,.o T 

Here cO3) is introduced to allow for the normalization 
of  V at a given physical distance. W(R, T) are traces 
of  rectangular Wilson loops of  lengths R X T. The po- 
tential is presently the only quantity which can be 
calculated numerically with an accuracy on the per- 
cent level without being restricted to the smallest dis- 
tances R. From the RGE(I)  it follows that the dimen- 
sionless derivative of  the potential scales under a 
change o fg  according to 

a2(gl) (d V/d r) (r = aR) =- v'(gl, R) 

= (1/~j22) v'(g2, R I l l 2 ) ,  (7) 

with 

~ 1 2 - - ~  =exp -- . (8) 
gl 

This behaviour is tested here as follows: we determine 
PR for as many values of  R as possible at different/3 = 
4[g 2. Fitting PR with the ansatz 

PR(fl) = -c_(13)]R + c+(fl)R + Co~ ) , (9) 

we can determine the derivative d(g, R) by differen- 
tiating (9) with respect to R. The scale factor is then 
found by minimizing with respect to" ~12 

A = ~ ([V'(gl, R ) - ~-~2v'(g2,n/~12)]2 
R 

+ [u'(gl, ~12 R) - ~1220'(g2, R)]2} , (10) 

where R runs over the measured values. If  this min- 
t 

imization leads to x/~ "~ v (gl,2, R), then we say, we 
have observed scaling with a scale factor ~12" We shall 
verify this behaviour in the following to a high accu- 
racy. In addition, we shall find significant deviations 
of ~12 from the asymptotic ratios corresponding to 
~(g) =-~as(g)given by eq. (2). Besides determining the 
scale ratio ~ 12, another way to obtain information on 
the lattice/3-function is to write the RGE (1) for the 
potential slope in the form 

(2 + R ~/aR +~(g) O/Og) v'(g, R) = O. (11) 

From this equation we have 

~(g) = - ( 2  + a/8 lnR)v'(g, R) 
(a/~g) o'(s,R) (12) 

The partial derivatives of v'(g, R) can be numerically 
determined e.g. by a quadratic interpolation of the 
measured neighbouring values. 

We performed the Monte Carlo calculations using 
the icosahedral finite subgroup of SU(2) [10]. For 
reasons explained below the lattice size was chosen as 
15 4 with periodic boundary conditions. The/3-ranges 
investigated were: for the standard one-plaquette ac- 
tion (lI-]-action) 2.2 -</3 ~< 2.6, for the tree level im- 
proved action of Symanzik (SI-action) 1.6 </3 <~ 2.0, 
and for the block-spin improved action of  Wilson (WI- 
action) 0.85 ~</3 ~< 1.25, in all cases with steps A/3 = 
0.1. In terms of physical scales these intervals are 
nearly equivalent. For the l/--l-action the approximate 
restoration of the rotation symmetry occurs at fl = 
2.25 [11], which sets a lower limit for the range 
where scaling can be expected. The upper/3-limits are 
close to the critical points where on our 154-lattice 
the Polyakov lines (closed by periodic boundary con- 
ditions) get a non-zero expectation value [ 12]. These 
critical points may have dangerous effects on the nu- 
merical convergence to equilibrium and/or on the ex- 
tracted potential. 

Our data are based on 500-900 measurements for 
each value of/3, separated by 1 sweep with 5 Metro- 
polis hits. In addition, around 200 sweeps were per. 
formed to equilibrate the lattice, starting either from 
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Fig. 1. Creutz ratios XR,R as functions of 3 = 4/g 2 for various 
actions. The lines are asymptotic scaling curves corresponding 
to different values of Alatt as explained in the text. (a) Stan- 
dard one-plaquet te action. (b) Symanzik's improved action. 
(c) Wilson's action. 

ordered state or (in most cases) from a "neighbouring" 
lattice. The calculations were done (except for one/3- 
value) on a CYBER 205 Vector Computer in Karlsruhe. 
Links in distance 3a were updated in parallel [13] 
(which explains our choice o f  lattice size) allowing 
vectors o f  length 54 . These are processed very effi- 
ciently on a 1-pipe CYBER 205. One update  took 50 
/as per link for the WI-action and 33/as per link for 
the SI-action. Updating t ime and measuring time ba- 
lanced roughly 1 : 1. Although the icosahedral group 
algorithm is very fast on a serial computer  like the 
IBM 3081D and about 50% of  CPU-time is used for 
reordering vectors on the CYBER 205, speed ratios of  
12 were reached with respect to the IBM. The total  
data amount to about 37 hours CYBER 205 time. 

When we shall quote errors in the following, then 
they are derived from considering blocks o f  25 conse- 
cutive iterations as statistically independent from the 
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Table 1 
Creutz ratios XR,R and potentials PR for three lattice actions: 10 : Standard one-plaquette action. SI: Symanzik's improved ac- 
tion. WI: Wilson's action. The numbers in parenthesis are the errors in the last numerals. 

3 ×33 x44 ×ss P~ P2 P3 P4 Ps 

1[] 2.2 0.315 (3) 0.253 (27) - 0.4975(6) 0.8506(34) 1.129 (19) - 
2.3 0.2173(16) 0.165 (9) - 0.4272(5) 0.6868(15) 0.871 (5) 1.042(33) 
2.4 0.1528(9) 0.1116(30) 0.074(12) 0.3762(3) 0.5701(11) 0.6963(27) 0.798(6) 
2.5 0.1135(5) 0.0717(15) 0.064(5) 0.3360(2) 0.4887(6) 0.5773(13) 0.646(3) 
2.6 0.0894(4) 0.0524(9) 0.037(2) 0.3077(2) 0.4345(5) 0.4991(10) 0.542(2) 

SI 

Wl 

1.6 0.299 (2) 0.252 (28) - 0.4858(5) 0.8426(46) 1.104 (44) - 
1.7 0.2008(19) 0.156 (8) - 0.4116(4) 0.6654(17) 0.840 (6) 0.991(20) 
1.8 0.1428(8) 0.1062(28) 0.093(14) 0.3590(3) 0.5513(9) 0.6675(16) 0.766(6) 
1.9 0.1063(8) 0.0690(11) 0.048(5) 0.3205(2) 0.4737(7) 0.5556(16) 0.616(2) 
2.0 0.0855(4) 0.509(12) 0.038(3) 0.2922(2) 0.4208(5) 0.4825(9) 0.524(2) 

0.85 0.315 (2) 0.266 (24) - 0.4254(3) 0.7787(30) 1.069 (26) - 
0.95 0.1836(11) 0.140 (3) - 0.3354(3) 0.5613(11) 0.719 (4) 0.849(11) 
1.05 0.1251(8) 0.0826(12) 0.068(5) 0.2803(2) 0.4442(8) 0.5334(16) 0.615(3) 
1.15 0.0940(6) 0.057 (9) 0.041(2) 0.2431(2) 0.3735(5) 0.4437(11) 0.4925(18) 
1.25 0.0773(2) 0.0431(6) 0.031(1) 0.2153(2) 0.3244(7) 0.3790(9) 0.4151(14) 

0.899 (14) 
0.705 (5) 
0.577 (2) 

next one. Only for the smallest errors we found, that 
using blocks o f  50 configurations increases the errors 
by 20% in the average. The existence o f  long range 
fluctuations at a very low level is not excluded. 

Before studying the properties o f  the potential in 
detail let us comment on the Creutz-ratios [ 14] 

W(R, 7) W(R - 1, T -  1) 
XR,T = --In ~-~(R -~ ~, T---~(k-, T - -  1))" (13) 

Most scaling tests done so far for improved actions 
[5,15,16] were analyzing XR,R with R ~< 3 (some- 
times R ~< 4). We show our results for the X'S in table 
1 and in figs. l a - l c ,  comparing them to previous re- 
suits. As it can be seen from the figures, the new 
points for X3,3 in most cases agree within errors with 
the older lower statistics ones. Possible exceptions are 
the points/3 = 2.4 (113 action) and/3 = 2.0 (SI-action). 
We think that this has to do with the expectation 
value o f  Polyakov-lines, which is non-zero at/3 = 2.4 
(11-3 action) on a 84 lattice [12]. On our larger lat- 
tice the Polyakov-lines are still zero at these/%values. 
This can explain the difference as due either to a 
critical slowing down o f  equilibration or to a genuine 
finite size effect. The values of  X4,4 and X5,5 in the 
figures are substantially below the scaling curves corre- 
sponding to the previously quoted string tension 
values. 
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The conventional procedure [14] to extract the 
string tension from XR,R is to find to lower envelop 
to all measured points. We see from fig. 1 that this is 
a rather subjective produce when large Wilson-loops 
are not available: there is no clear convergence to- 
wards a common envelop. As we shall show later, for 
the largest/3-values considered, even R = 5 is far from 
the region, where the potential is linear. The spread 
of  the ×'s is a necessary consequence o f  this, since 
they measure roughly the derivative o f  the potential 
somewhere between R - 1 and R. 

An inspection of  fig. 1 reveals that we cannot ex- 
pect asymptotic scaling to hold accurately. The spatial 
scale factor between X3,3 and X5,5 lies between 5/3 
and 2 which, for asymptotic scaling, corresponds to a 
change 0.2 ~< At3 ~< 0.3. Pairs o f  X3,3 and X5,5 at such 
0-values are always connected by a slope steeper than 
the asymptotic scaling line. 

All this will be made more quantitative by the fol- 
lowing analysis o f  the potential. The values PRO) are 
extracted by fitting the measured In W(R, 7) with 3 <~ 
T<~7 to a straight line in T [18]. The fits are good 
on the level o f  0.5%. There is, however, a small curva- 
ture in T for R i> 3, which introduces a systematic 
error in the order less than 1% in P3,4(fl). The results 
for PR([3) are listed in table 1. The local fit parameters 
c_+,0(.13 ) defined in eq. (9) are given in table 2. The chi- 
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Table 2 
The fitted parameters for the potential. The numbers in parenthesis are the errors in the last numerals. The parameters C+,o O) are 
defined in eq. (9), cO) in eq. (6).-~(g) is the lattice//-function as obtained from eq. (12). ~1: is the fitted scale ratio between con- 
secutive//-values, ~13 is the one between second neighbours (h//= 0.2). ~16 is the scale ratio to the corresponding//-value for the 
(cyclically) next action. 

// c_O) C+(//) CO (//) C O) ~ 1: ~ 13 ~ 16 -~ (g) 

1[] 2.2 0.22 (7) 0.24 (3) 0.48 (9) 0.42 (3) 1.28(4) 1.67(6) 1.03(12) 
2.3 0.225(13) 0.147 (6) 0505(19) 0.453(15) 1.31(2) 1.74(4) 1.03(4) 0.111(15) 
2.4 0.210(7) 0.0893(27) 0.497(9) 0.476(10) 1.32(2) 1.84(4) 1.04(2) 0.100(5) 
2.5 0.198(3) 0.0540(12) 0.480(4) 0.478(6) 1.37(2) 1.04(2) 0.087(3) 
2.6 0.197(2) 0.0287(7) 0.476(3) 0.476* 1.00(2) 

SI 

WI 

1.6 0.30 (13) 0.20 (6) 0.59 (19) 0.36 (6) 1.31(9) 1.79(18) 0.97(9) 
1.7 0.238(15) 0.135 (7) 0.515(21) 0.420(19) 1.33(2) 1.82(6) 1.09(2) 0.18 (8) 
1.8 0.228(6) 0.0784(22) 0.508(8) 0.450(14) 1.36(2) 1.88(6) 1.18(2) 0.141(7) 
1.9 0.218(4) 0.0455(16) 0.494(6) 0.463(9) 1.37(2) 1.24(2) 0.125(6) 
2.0 0.204(3) 0.0268(11) 0.470(4) 0.460(8) 1.30(4) 

0.85 0.21 (9) 0.25 (4) 0.38 (12) 0.34 (4) 1A3(4) 2.01(19) 1.01(8) 
0.95 0.211(9) 0.121 (4) 0.425(13) 0.391(19) 1.41(2) 1.92(6) 0.89(2) 0.29 (4) 
1.05 0.205(5) 0.0619(19) 0.423(7) 0.406(15) 1.37(2) 1.86(6) 0.82(2) 0.277(12) 
1.15 0.187(3) 0.0370(12) 0.393(4) 0.402(11) 1.35(2) 0.80(2) 0.299(14) 
1.25 0.170(3) 0.0245(12) 0.361(5) 0.389(15) 0.83(6) 

squares o f  all local fits are excellent. It is interesting 
to notice that for the smallest/3-values the dimension- 
less coupling constant c_03 ) is compatible with rr/12, 
which follows from string roughening [ 19]. This 
value could not be determined directly by Stack [18], 
since for small/3 he could measure only for R = 1 and 
2. In addition, the main difference of  his analysis 
compared to ours is, that he assumed asymptotic 
scaling o f  the potential from the beginning. This does, 
of  course, influence the values o f  the extracted po- 
tential parameters. For increasing/3 (decreasing cou- 
pling constant) the "Coulomb"-coefficient c_(/3) de- 
creases like 1//3 for all three actions. This turns into 
the logarithmic decrease o f  the non-abelian Coulomb 
potential in the asymptotic scaling region. 

The potential slopes determined from the coeffi- 
cients c_+(fl) can be examined for scaling, for this pur- 
pose we minimize A in eq. (10) by varying ~12. The 
resulting ~12 are listed in columns 5 - 7  o f  table 2. 
The statistical errors o f  the scale ratios as determined 
by varying the input potential values normally distri- 
buted within their errors. In table 2 we have doubled 
these statistical errors to account for some systematic 
errors which we guessed by using parametrizations for 
the interpolating function different from eq. (9). The 

matching o f  the potential slopes between the differ- 
ent/3-values is good within 5% o f  the calculated slopes 
(at most 10% for R = 4 and large/3). Parenthetically 
we remark that we finally did not include the x-ratios 
when fitting the potential coefficients, since this 
spoiled the X 2 dramatically. However, the slopes ob- 
tained from the fit usually agree in the region R = 3 -  
5 to the values o f  X4,4 and ×5,5 within 10-15%. 

The scale ratios ~12 can be compared to the 
asymptotic ones as given by eqs. (2,8): 

a0g)Alatt = (/30g2) -51/121 exp (-1/2/30g2), 

O0 = .~ (4r0_2 . (14) 

Here Alatt is the lattice A-parameter belonging to the 
particular choice o f  lattice action. From this equation 
we obtain (with A/3= 0.1) 1.285 ~<~12 ~< 1.287 for 
2.2 --.</3 ~< 2.6, 1.274 ~<~12 ~< 1.281 for 1.6 --.</3 ~< 2.0 
and 1.249 ~< ~12 ~< 1 264  for 0.85 ---</3 ~< 1.25. In co- 
lumn 5 o f  table 2 there are substantial deviations 
from these numbers for all three actions. The some- 
what surprising fact is that for IV]- and SI-actions the 
deviation seems to increase with increasing/3. For the 
WI-action the deviation is largest, but it is decreasing 
with increasing/3. The very reassuring fact is that, if 
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extrapolated to 13 = 0.805 versus/3 = 1.00, the scale 
ratio is within errors equal to 2. This factor 2 was ob- 
tained for this action by Wilson [9] from matching 
the expectation value of  block-spin loops on 84 , 44 
and 24 lattices. (In this respect we disagree with the 
conclusion of  ref. [15], which was based on X3,3-) 

The scaling properties of  the force u'(g, R) can be 
used to determine the lattice~-function directly by 
eq. (12). The partial derivatives of  u'(g, R )wi th  re- 
spect to g and R were estimated by quadratic inter- 
polation between three neighbouring values in both 
variables. The values for 3(g) given in the last column 
of  table 2 are the averages between R = 3 and 4, the 
values for R = 2 being systematiclaly lower by 1 0 -  
20%. At the largest/3's,3(g) is about 15% smaller than 
the asymptotic gas(g) in eq. (2), in good agreement 
with larger scale factors ~12 in table 2. 

Finally we construct the physical potential V(r). 
We shift the scaled potentials PR(,fl)~ 1 by constants 
(512, such  that the expression 

5 

([pn(gl) _ ~j-112 Pn/~z2(g2 ) - (512 ]2 
n = l  

+ [Pn~tz(gl) - ~{ l en (g2) , -  (51212) , (15) 

is minimal. The constant (512 is related to the c(fl) of  
eq. (6) by 512 = c(flx ) - c(fl2)/~12. We have listed the 
c(3)'s in table 2 with the convention c(3 = 2.6) = 
c 0(/3 = 2.6) (1 [] action). The errors o f (512 are defined 
in the same way as those o f ~ l  2 above. 

The resulting potential V(r) is plotted in fig. 2. It 
can be fitted very well by a Coulomb plus a linear 
term, the latter one connecting the physical scale to 
the string tension. (We note that a fit to the potential 
V(r) with logarithmically changing Coulomb term is 
also possible with a A-parameter around 100 MeV.) 
We use r = (420 MeV) 2 and obtain (V in GeV, r in 
Fermi): 

V(r) = - (0 .042 +- 0.004)/r + 0.046 

+- 0.021 + (0.895 + 0 .04)r .  (16) 

Determining the lattice spacing at/3 = 2.6 from the 
prescribed value o f  the string tension, and assuming 
eq. (14) at this/3-value, one has for the lattice A-pa- 
rameter 

1[] = (0.018 + O.O01)x/~. (17) Alatt 

OA, 

-02 

-0~ 

w(r) [GeV] 

°f  

a" 

m 

.e 

6 e 

• 1" action 
: SI action 

WI action 

tt~ =420MeV 

, r t l m ]  
d2 d.4 ' Q6 ' a8 

Fig. 2. The potential for static q~ pairs. All values for all 
three actions are included. The involved scale factors ~ z2 and 
shift constants c(~) are listed in table 2. 

According to the scale ratios in table 2 this corre- 
sponds to (18) 

SI = (0 .080  + 0.005)N/k-,  Alat t  - Alat t WI _ (0.58 +0.03)X/~--. 

The ratio ASItt/A{~, ---4.5 is near to the perturbatively 
calculated value 4.13 [7,20]. The lattice A-parameters 
in eqs. (17, 18) are larger than the previously obtained 
ones: A~a~t ~ (0 .012-0.013)V~-[14,17] ;  ASIatt = 
(0.056 + 0.003)vrK - [51; AW~t : (0.32 + 0.01)vrK [15, 
16]. Eq. (17) agrees very well with a (3 = 2.3) = (0.80 
-+0.16) GeV -1 (or In _ Alatt - (0.018 + 0.004)x/r~) ob- 
tained from the p-meson mass in the quenched ap- 
proximation with Wilson-fermions [21 ]. A lower value 
o f  the string tension in SU(3)was reported recently 
also in refs. [22,23]. 

In conclusion, our high statistics measurements 
show that for all three actions considered here scaling 
for the q~-force holds very well. This is a necessary 
condition for the existence o f  a unique continuum 
limit of  lattice QCD. It remains to see whether the 
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other  physical quantities do scale in the same/3-range 
with the same scale factors. On the other hand,  the 
relevant scale increments (~12 - 1) differ up to 25% 
from the asymptot ic  values, and somewhat uncom- 
fortably,  do so with increasing tendency for increas- 
ing ft. (An exception in this respect is the WI action.) 
I f  this holds also on larger lattices, it is unlikely that 
we are close to the continuum limit at present. 
Changing the action in order  to eliminate correction 
terms from the RGE does not change the picture 
within our statistical errors. The differences between 
the SI- and l[3-action are barely significant. When 
pressed to decide between maximizing lattice size and 
improving the action, we would presently favour the 
first choice. 

The good statistical quality o f  our potential  values 
on a relatively large lattice allow us to determine the 
lattice A-parameter from larger distances than previ- 
ously possible. We t'md Alnlatt = (0.018 + 0.001)X/~ ex- 
ceeding older values by  50%. 

We are greatly indebted to K. Symanzik, P. Hasen- 
fratz, M. Lflscher and P. Weisz for many illuminating 
discussions. Thanks are due to the Rechenzentrum der 
Universit/tt Karlsruhe and to Control  Data for their 
effective help in all questions connected with the 
CYBER 205. Especially, many programming advices 
by  Dr. G. Sch~fer, CD, are gratefully acknowledged. 
Finally we thank the DESY Direktorium for buying 
time on the CYBER 205. 
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