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Abstract. Using variational ansfitze of the product 
type we calculate the massgap and the stringtension 
of(2 + 1) dimensional U(1) lattice gauge theory in the 
Hamiltonian formalism for all values of the coupling 
constant. In the strong coupling limit our results agree 
with high order strong coupling series. In the weak 
coupling limit both, glueball mass and stringtension 
vanish exponentially with the coupling constant. 

1 

Pure U(1) lattice gauge theory in 3 space-time 
dimensions exhibits linear confinement [1-3]  and has 
been shown to possess a nontrivial continuum limit 
[3]. In view of later applications to non-abelian gauge 
theories in higher dimensions this model is therefore 
well suited to serve as a laboratory for the development 
of simple approximation methods. Besides a correct 
description of the models properties, which are of 
nonperturbative nature in the weak coupling limit, 
these approximation methods should provide a trans- 
parent picture of the confinement mechanism. Ad- 
ditionally the quality of standard approximation 
methods like strong coupling expansions can be tested 
which might be instructive for their judgement even 
in more realistic models of confinement. 

In this paper we use simple variational ans~itze of 
the product type to calculate explicitly stringtension 
and glueballmass in the Hamiltonian formalism for all 
values of the coupling constant. Our results agree 
nicely with high order strong coupling series [4-5] 
and at least qualitatively with the exact result of 
G6pfert and Mack [3] and other approximate calcu- 
lations [6, 7] in the weak coupling limit. 

2 

The Hamiltonian of (2 + 1) dimensional U(1) lattice 

gauge theory in the temporal gauge is given by 

1 
H = ~aae ~ eZE2(1) 

1 
+ ~ Z (2 - U ( p ) -  U + (p)) 

2ae p~A 

with 

(1) 

u(p) -- [ [  u ( &  [~(0,  u(<3] -- a~.<u(<O;e ~ = a f  
~ap 

denotes the dimensionless coupling constant, a 
the lattice constant and the sums extent over all 
links # and unoriented plaquettes p of a finite, two- 
dimensional lattice A of(2L) 2 lattice sites. In the gauge 
invariant sector of the Hilbertspace ~r without charges 
the electric field operator E(r can be written as 
E(r =(VF(p))(O where ~ is the dual co-boundary 
operator. The operator F(p), defined on plaquettes p 
is conjugate to the plaquette operator U(p) in the sense 
of the commutation relation [F(p), U(p')] = 6p,p, U(p'). 
Using this new variable the Hamiltonian (1) becomes 

1 
H = ~aa~A { - e2F(p)(V+ .V_ F)(p) 

1 
+ z(2 - U(p) - U+ (p))} (2) 

where V+ V denotes the lattice Laplacian in terms of 
the discrete forward and backward lattice derivative 
V4 and W_ ,j  = t, 2. 

In the following we determine the properties of this 
Hamiltonian by variational methods. For  this we 
consider as a first ansatz for the ground state 

HI i ,} 1~215 = N, e -(kz/2=O Uk(p IO) (3) 
p E A  k k =  - 
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where the strong coupling vacuum 10) is defined by 

E(d)IO > = F(p)IO > = O, 

and cz~(e z) is considered as a variational parameter. 
This choice for the variational groundstate is motiva- 
ted by the fact that 

I ~ b o ) - - N - ~  e - a ~ k Z U k ( p ) l O )  (4) 
k = - o o  

is in the weak coupling limit, e2= a9 2---,0, an ap- 
proximate solution for the groundstate of the single 
plaquette Hamiltonian [8] 

a.H,p  = 2e2FZ(p) + 2~(2  - U(p) - U+(p)).  (5) 

In comparison to (3) we consider a second variational 
groundstate 

I t 2 H ) = N . e x  p ~ ( U ( p ) +  (p)) 10) (6) 
k -- pEA 

which has been used first for this model by Patkos [9] in the transfermatrix formalism. 

Now we determine the two approximate groundstate 
energies E~ and E~ ~. A straightforward calculation 
gives for the expectation value of the Hamiltonian (2) 
with respect to the two states IOz ) and [ff~II ) 

,o ,,,,,)> + 1 -- - - e  (- (7) 
A0 

where 

A , =  _ 2~ 1 Ao ' Ao = ym2 
m =  - ~  

B , =  -2c t  t B 0, B0= ~ ( - - 1 ) m y  to2 
t o =  - o o  

y = e x p ( -  ncq) 

and 
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(8) 

respectively, where I (x)  = I i ( x ) / I o ( x )  denotes the ratio 
of the two modified Besselfunctions l o (x  ) and I i ( x  ). 

Minimization of E~(cq) and E~I(~2) determines 
~l(e 2) and ~2(e2). Their functional dependence on the 
coupling constant is shown in Figs. 1 and 2. For their 
asymptotic behavior we find explicitly 

21og4e for e 2 --) 

1 
e 2 exp + #z fo r  e 2 ---) 0 (9) 

aQp} a~(p) 

10[ ' ' 

0 5 p : 1/e~ 10 

1.0 

OS 

0 
0 

) 

weak c ~ p l m g  ,' asym~ 

$fr~lg r / 

I i 

1 2 p :1/e2 
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Fig. 1,2. The variational parameters cq,~ 2 as function of .the 
coupling constant f l=  l/e 2 and their strong and weak coupling 
asymptotes 

where 

2 4xz 2 # = ~W-(x -- 4)e-~=(l + O(e 2) + O(y)) 

1 ( l )  1 1 e2 
= ~ e  2exp - - ~  --2e 2 8 64 +O(e4) 

and 

~'~ for e z---) oo 

~ 2 ( e 2 ) ' ~  l 

L ~  + ~ + ~  for e2 ~ 0 " 

(10) 

Already from the asymptotic behavior of (xl(e 2) for 
s m a l l  e 2 it can be seen that only the first ansatz (3) 
takes into account the non-perturbative tunnelling 
contributions which arise in the eigenproblem of the 
single plaquette Hamiltonian H~ (5) and which are 

�9 , P 

necessary for a correct descrtpt~on of the gauge theory 
in the weak coupling limit. 

The results for the approximate energy densities of 
the groundstate 2ro'n=Eto'n/(2L)2 , are shown to- 
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0 I I I 
1 2 3 p = 1/e2 

Fig. 3, The groundstate energy density a.21o, a'2rol of both trial 
- 1  

states 1(2t), It~rr ) and their weak coupling asymptote 1 - -  
8fl 

gether with their weak coupling expansion 

l 2 4 a-2~ ' n = l + ~ e  + O ( e )  (11) 

in Fig. 3. The first ansatz yields the lowest upper bound 
for the exact groundstate energy in the medium and 
weak coupling regime, while for strong couplings 2~ 
and 2~ I are almost identical. 

4 

We determine now the massgap using both types of 
trial states. In the strong coupling region trial states 
of the product type yield the massgap directly. In the 
weak coupling regime, however, the results of an 
analogous variational calculation for a massive free 
scalar field have to be employed in order to separate 
the non-perturbative glueball mass. 

According to (3) we choose for the trial state of first 
excited state 

1 X~ e iP.6,1 " (-~ hl,(m'~ - -  ]-I ' q,o(,l) lO) (12) 
p e A *  q E A *  

where 

fro(q) = ~ e ( - ~ / 2 ~ u k ( ~ l O )  
k ~ - - c o  

0 , ( q ) =  Z k ' e  ( kZ/2cq) Uk(q)iO ) (13) 
k =  - o o  

/3j = ~nj ,  n i = - L . . . . .  L - 1 ;j = 1,2, 

and p denotes a site of the dual lattice A*. For the 
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variational parameter cq(e 2) we use the one determined 
before. This is justified for large values of L which we 
assume tacitly. For  the energy e~(/I) of the first excited 
state we find explicitly 

e~(//) = )~] - 21o + (K2(/I) - 4)-[M t 12 (14) 

where 

e2~1 3A o - 4 A a  + A  a 1 

a A o - A s e2a 

(1 
�9 1 ~oo~ ~ - e  - t l / 4 ~ 1 )  

I M ,  I 2 =eEl(oalV(p)lOo)12 
a 

= 2 a \  

K2(fl) = Z 4sin2~fl~;0<K2(~) --<8- 
j = l , 2  

The variational massgap e~(0) is shown in Fig. 4 in 
comparison with its 8th order strong coupling series 
e]c(0) [4]. The agreement is better than 7% for values 
of the coupling constant 1/e 2 < 0.9 for which the strong 
coupling series seems to converge. 

As mentioned before a detailed analysis of e~ (0) is 
necessary to reveal the glueball mass in the weak 
coupling limit where the gauge theory is described by 
a free massive scalar field theory [3] whose mass 
vanishes for eZ-~ 0 and constant lattice spacing a. As 
a first check of our result (14) we observe that both, 

10 i ~ , i 

o- mo~ a. t~ t01 

s , , 
1 2 3 p:Nz~ 

Fig. 4. The massgap calculated by a) strong coupling series [4], 
sr 1 a'el(O), b) variational ansatz 101)t,a,el(0),  c) variational ansatz 

101 )~ and comparison with the free massive scalar field, a.m, and 
its asymptote a .m~  as a function of fl = 1/e 2 
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the variational massgap of the pure gauge theory al (0) 
and the one of the scalarfield, elf(0), of mass rnsr = #sf/a 

e]r(,) = mx/~2f + 4 .~_ (lq_21 ~ Kz(]J)-ms f2 + a ~4 ~ (15) 

approach 1/a in the limit e2~0,  g fixed, and m~--,0, 
respectively. Equation (15) has been obtained with 
help of variational ansiitze analogous to (3), (1 3). It is 
identical to the result of a first order perturbation 
calculation where the Hamiltonian Hsf of the scalar- 
field r is split into two parts 

H0 1 ~r =2a  Z { lrz(p) +(4 + U~)r 
pEA* 

H~ 1 =2a  2 { -  ~b(p)((V+-V_ + 4)~b)(p)} (16) 
p~A* 

and H~f is treated as perturbation. It has been verified 
by Schiff [10] up to third order that higher order 
perturbation calculations improve the result (15) for 
e]r(/~) and yield the first terms of the convergent power 
expansion 

~ (11) = rnX/rn2f + 1 

( 1  4 ~ ( m 2  4 )  -1 (17) 

of the relativistic energy of a massive scalarfield of 
lattice momentum 1/aK(/~),(Kj(/~j) = 2sin 1/2/~ ; 
j = 1,2). The expansion in (17) is performed in terms 
of the relative deviation A (~) of the square of the lattice 
momentum from half of its maximal value 
1/2[1/a2K2([J) ]max = 4/a 2. 

The comparison of (14,15) reveals the nonper- 
turbative glueball mass in the weak coupling limit. We 
find 

mZ(e2) 2 / - -  2 / 4 (18) 
- 2[Mii2 a z 

4/r2 2 =2~ 
Y~o a2e 40z - 4)e (1 + O(e 2) + O(y)) 

The same asymptotic behavior for mZ(e 2) is obtained 
by the comparison of the variational groundstate for 
the massive scalarfield (16) and the variational ground- 
state of the gauge theory (3), (9) and also from the 
heavy qq-state in the next section. Figure 4 shows the 
glueball mass and its weak coupling asymptote in 
comparison with e~(0) and e]~(0), m(e 2) matches its 
weak coupling asymptote at relatively large couplings 
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Fig. 5. The massgaps ae~(O) and a.e~1(O) in comparison with the 
strong coupling expansion a.E~c(0) 

1/e2~ > 1.5 which indicates an early continuum be- 
havior. 
A similar result for the asymptotic behavior of the 
glueball mass in the weak coupling region has been 
obtained independently by Suranyi [7] where the 
different exponential dependence on the coupling 
constant is due to his variational ansatz which is not 
of the product type. 

The result e/'(0) of a variational calculation of the 
massgap using an ansatz of the second type, (12) but 

~0(q) = e x p { ~ ( U ( ~  + U+(q))} 

Ol(q)=(U(q) -U+(q) )exp{~(U(q)+U+(q) )}  (19) 

is shown in Fig. 5 in comparison with e[ (0) and ~]c(0). 
They all agree nicely for strong couplings. In the weak 
coupling regime, however, the second ansatz does not 
allow the determination of a nonperturbative, expo- 
nentially small glueball mass. This failure of the second 
ansatz clearly shows the necessity of the proper 
treatment of arbitrary high plaquette excitations. 
These excitations dominate the first excited states of 
(13), (19) in the weak coupling limit and are indis- 
pensable for the correct description of the tunnelling 
contributions and thus of the glueball mass and the 
stringtension for small couplings. 

The importance of plaquette excitations of high 
order also has been realized recently by Hamer et al. 
[- 11 ] in a finite lattice Hamiltonian calculation. 

For the calculation of the heavy quark potential we 
add to the trial groundstate two static sources, q+(r) 
and q(s), which are connected by the parallel transport 
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along a path Cg(r,s). We use the two trial states 

f&~e(r,s)3) -- 5,~,~?(r, s ) / - /  
peA 2 

"{k~ooe-(k-6(P))2/2a'uk(D)},O~ (20) 

and 
1 

IS.,, [~(r, s) ] ) = N,, ~(r, s) 

~2 y~ (~2 + (~2 - U+(p))} 10 4 p~,~ e(p))U(p) + e(p)) ) B e x  p 

where ~(r ,s)=q+(r)  I ]  U(/)q(s). (21) 
tE~(r,s) 

The new, real and space-dependent variational para- 
meters e(p) and 6(p) allow for a broadening of the 
string ~(r, s) into a tube of electric flux since now the 
expectation value of the electric field operator in 
general does not vanish on links away from the string, 
rather 

(S, IE(~)IS`') =(V~)(h (r  s) 
where 

q(p) = b(p) + O exp - ~ (22) 

and 

( S,t ]E(O ]Su ) = (~}~b)(O deW(r, s) (23) 

where 

~(p) = �89 l(~x2) 

respectively. 
The variational energy E~*[~(r, s)] of the second trial 
state (21) is given by the energy of a classical, euclidean 
free scalar field of mass m2(e 2) which is coupled to the 
string c~(r, s) as an external source. The string tension 
for a straight string can be calculated for all values of 
the coupling constant with the result 

e 2 m 2 
Yz(e2) -- 2 a / ~  4 ((24) 

,/< + - -  
a 2 

_4e 2 
where m2 z = a2(2 _ e4~2)i(% ). 

It stays positive for all values of e2> 0, matches its 
strong coupling series [5] for large e 2 and vanishes 
perturbatively in the weak coupling region. T2(e 2) is 
shown together with the 10th order strong coupling 
series T~(e 2) of [5] in Fig. 6. In the weak coupling 
region Tz(e 2) is not exponentialIy small as anticipated 
[1-3]. This behavior, however, is improved by the trial 
state [St) of (20). Its variational energy E[(r,s) can 
be minimized in the weak coupling region for infinitely 
separated sources located on the same main axis of 
the lattice, where it essentially becomes the classical 
energy of the kink of the inhomogeneous, one- 
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X•Q2 TI 

1 Z 3 p = 1/e2 

Fig. 6. The stringtension a2T1 and a2T2 and its strong coupling 
expansion a z T~c of 10th order of [5] 

dimensional, euclidean Sine-Gordon equation on the 
lattice. This leads to the stringtension 

2e2 m 
Tl(e 2) - t- O(y) (25) 

r Tr 

where m is given by (18). This is in agreement with 
similar results of Suranyi [7] and Heller [8]. The flux 
tube connecting both charges is of finite width in both 
trial states (20), (21) since both expectation values of 
the electric field operator (22), (23) decrease exponen- 
tially in the transverse direction to the qq-axis. The 
width a 2 determined by the measure of Lfischer et al. 
[12] for the first trial state IS,) in the weak coupling 
limit is the same as the one of [7] 

/.~2 1 
0-2  = - - . - -  

12 m 2 

though a different trial state was used here. The 
glueball mass which follows from the exponential 
fall-off of ( S t IE({)]S,) agrees with the one obtained 
before (I 8) 

Both types of trial states yield in the weak coupling 
limit similar results for the ratio of G6pfert and Mack 
[3] 

T 4~z 2 
R -  a 

m 6 e 2 

We find R, ~ 0  8, which is the result of G/Spfert and 

Mack and R n ---, ~2. 
e 2 ~  0 

6. Conclusion 

As a result of our study of (2 + 1) dimensional U(1) 
lattice gauge theory we conclude that simple varia- 
tional ans/itze of the product type are sufficient to 
describe the known properties of the model for all 
values of the coupling constant. While in the strong 
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coupling limit both types of trial states used here led 
to similar results, the correct treatment of high 
plaquette excitations proved to be essential in the 
medium and weak coupling region for an at least 
qualitatively correct description of the nonpertur- 
bative glueballmass and stringtension. The extension 
of the performed analysis to non-abelian gauge 
theories should improve the existing variational 
results [13, 14] in the weak coupling regime. The 
extension to higher space-time dimensions would be of 
great interest. 
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