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We present a method for calculating the various spin amplitudes for QED processes in which 
an arbitrary number of photons is radiated in directions nearly parallel to the fermion directions. 
This is accomplished by introducing explicit polarization vectors for the photons and by working 
in the high energy limit, where finite mass effects are treated in leading order. 

1. Introduction 

In a previous article [l], we developed a general formalism for calculating multiple 
bremsstrahlung in gauge theories at high energies. This was accomplished by 
introducing explicit polarization vectors for the radiated photons in a covariant way. 
By considering the limit of vanishing fermion mass, we were able to obtain simple 
expressions for the various helicity amplitudes. 

The method of ref. [l] needs to be supplemented by a treatment of the finite mass 
corrections if one wants to describe correctly the kinematical configurations in which 
the photon is radiated at small angles with respect to the fermion directions. For the 
simple case of single bremsstrahlung, we showed how this could be done at the level 
of the cross section [2,3]. 
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It is the purpose of this paper to give a general treatment of the finite mass effects 
for multiple bremsstrahlung when an arbitrary number of photons is radiated nearly 
parallel to fermion directions. We find that in this case it is essential to consider the 
mass corrections to the various spin amplitudes of the process, rather than calculat- 
ing these effects for the cross section as was done in refs. [2,3]. In the zero mass 
limit, these spin amplitudes reduce to the helicity amplitudes we considered earlier 
[l], except for some additional amplitudes which are directly proportional to a 
fermion mass. 

In this article, we shall define collinear photons as being those photons for which 
the scalar product of their four-momenta k, with any external fermion four-momen- 

tum p is of order m2, m being the fermion mass. For the case where all ( p . k,) are 
much larger than m2, no finite mass corrections have to be introduced, and the 
techniques of ref. [l] can be applied without modification. 

Our method consists again in introducing explicit polarization vectors for the 
photons in a covariant way, which allows us to consider only a limited number of 
Feynman diagrams in the collinear situation. In the high energy limit, where fermion 
masses are small compared to the typical energy of the process, we are then able to 
calculate the various spin amplitudes up to the necessary powers of m2. With minor 
modifications, the same techniques can be applied to the case of collinear fermion- 
antifermion pairs. 

It turns out that the spin amplitudes are related to helicity amplitudes describing 
lower-order processes in which no collinear photons are radiated. Provided these 
lower-order processes can be treated with the methods of ref. [l], the technique of 
this article to generate the finite mass effects for collinear bremsstrahlung is 
applicable to all QED processes. 

This paper is organized as follows. In sect. 2, we present the technique for 
calculating the spin amplitudes in collinear configurations, where an arbitrary 
number of photons is radiated. In sect. 3, we show how the general method can be 
applied to a specific case. We chose radiative Bhabha scattering, which is sufficiently 
simple for pedagogic purposes, while containing all the complexities of a more 
general situation. In sects. 4 and 5 we present all the formulae which are necessary 
for single and double bremsstrahlung in an arbitrary QED reaction. In practice, 
these are the cases which are most relevant for high-energy physics. Finally, in sect. 6 
we discuss our results while in sect. 7 we list our conclusions. 

2. General formalism 

Let us consider any QED process, in the tree approximation, in which n photons 
are emitted in directions nearly parallel to a ferrnion direction described by the 
four-momentum p (later on we shall consider the more general case where more 
photons are emitted in directions parallel to other fermion directions). Let k, 
(i= 1,2 . . . n) be the four-momenta of these collinear photons, and let m be the mass 
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of the fermion, i.e. p2 = m2. There will then be Feynman diagrams describing the 
process in which fermion propagators will have small denominators: 

Ai=(p-ki)2-m2, 

Aij=(p-ki-kj)2-m2, 

A 12.,.n=(p-kl-k2- .e. -k,)2-m2. (2.1) 

For collinear photons, the quantities (p . ki) and (ki * k,) are of order m2, which 
implies that all the quantities A are also of order m 2. It is clear, therefore, that even 
in the high-energy limit the fermion mass must be taken into account. 

By introducing a generally positioned lightlike vector q, we can write down the 
following representation for the polarization vectors of the photons [l]: 

C?’ = N, [ Pib4wA, + 44Fiw-A,] ) 

wh=1+hy5, A= -L-l, i=1,2 n. ,***, (2.2) 

The normalization is E? . E,:’ = - 1 which leads to 

iVe2 = 16( pq)( pk,)( qk,) - 8m2( qki)2. (2.3) 

Note that all components of E? are of order 1, even in the collinear limit. Also, the 
representation for +$ in eq. (2.2) differs from the effective one which was introduced 
in refs. [1,3]. This is due to the fact that, for massive fermions, we do not have 
conservation of axial current, and consequently we cannot omit the Fiy5 terms in +$‘. 
However, for m = 0 the two representations are gauge equivalent. 

With the present choice for #?, we now show that, in the collinear situation, the 
amplitudes are at most of order m-“. To this order in m, the contributions to the 
amplitude will come only from the Feynman diagrams for which the collinear 
photons are attached directly next to the external fermion with momentum p. This 
follows from the fact that only these diagrams have all the denominators A (eq. 

(2.1)). 
Consider the case that the photons are collinear with an incoming fermion with 

momentum p (the remaining cases of an incoming antifermion, or an outgoing 
(anti)fermion can be treated in the same way). The diagrams with the collinear 
photons close to the spinor u(p) contain the expression 

A=#-F1- .*. -F.+me~“...s:~“-F1,k2+mb:*d-~+me:’u(p) 

A 12...” 12 1 

+(n! -1) otherpermutationsof (1,2,...,n). (2.4) 
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A =8-E1+m 
1 4 i:‘u(P)=~[2(p.&~l)+~~lF11U(P)r (2.5) 

and, with eq. (2.2), we see that p . $I= O(m). Similarly, as will be shown in sect. 3, 

F+(P) = O(m). I-I ence, the whole expression is of order m-‘. It also follows that 

=~{[2(P-k,.e:2)-k2~:2]F,tk,,h,)-i:’~:1}~(p), (2.6) 

where we introduced the notation 

Because of the symmetrization between the photons 1 and 2 contained in eq. (2.4), 
we can effectively replace &2&l by E~Z . E~‘I in eq. (2.6). Furthermore, 

Using eq. (2.2), it is easily seen that (k;. e/h,) = O(m). Also, #;u( p) = 0( m*), hence 
the whole expression (2.8) is of order m ‘. It follows that A, (eq. (2.6)) is of order 
me2 and that it can effectively be replaced by 

=~{[2(p-k,.~:2)-F~6:2]F,(k,,h,)-~:1.~:2}u(p). (2.9) 
12 

This procedure can now be continued for the remaining photons. We obtain the 
result that 

A =I;;lk, hi,...,&, &)u(p) (2.10) 
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is of order m-” and that F, is given by the following recursion relation: 

F,(k,, &,...,k,, A,) 

+. &qF,-,(k,, h,,...,kn-2, A,,-2))) (2.11) 

with F, = 1. Once Fl and F2 (eqs. (2.7) and (2.9)) are known, it is thus possible to 
evaluate the higher order functions F,. A very useful property for this purpose is the 
generalization of eq. (2.8): 

(2.12) 

The remaining part of the diagram, involving the spinor structure A (eq. (2.4)) can 
now be treated in the massless limit. This means that if we fix the helicities for the 
remaining fermions, the terms of the type (2.12) will give zero whenever the fermion 
helicity operators f(1 f y5) kill the w_~, factor in eq. (2.12). Of course, this term 
already vanishes when some of the collinear photons have different helicities. 
Furthermore, for all i and j, 

(Ef.E;)=O. (2.13) 

This relation is often useful to eliminate the last term in eq. (2.11). 
The other diagrams, which do not have all the collinear photons next to u(p), are 

necessarily smaller by at least one power of m. This is due to the fact that as soon as 
an acollinear photon is inserted in the string of collinear photons all the fermion 
propagators from that point on are of order 1 instead of being of order m-‘. 

To summarize, we can say that, with our choice of representation for &I in eq. 
(2.2), the amplitudes in the collinear situation are at most of order rn-” if there are n 
collinear photons. To this order in m, the relevant Feynman diagrams are those in 
which the collinear photons are attached immediately next to the external fermion 
which determines the collinear direction. These Feynman diagrams can easily be 
evaluated using the function F, in eq. (2.11), while the rest of the diagram can be 
treated in the massless fermion limit. The evaluation of F, is further simplified using 
the relations (2.12) and (2.13). 

This analysis also shows that when all ( p . k;) are small, but much larger than m*, 
the same set of diagrams is the only relevant one. In this case, all manipulations in 



F.A. Berends et al. / Multiple bremsstrahlung (III) 387 

the numerators of the Feynman diagrams can be done in the massless limit, all finite 
mass effects being of subleading order. 

We shall now show on a simple example how our procedure works in practice. 

Consider the process 

3. A simple example 

e+(P+)+e-(p-)-,e+(q+)+e-(q-)+y(k), (3.1) 

where the momenta of the particles are given between parentheses. Let us introduce 
the standard notation: 

s= (p++pQ2, t=(P+-q+)2, u=(p+-q-)*, 

s’= (q++ q-)*9 t’=(p_-q_)2, u’=(p_-q+)*. (3.2) 

Suppose we want to evaluate this process for k nearly parallel to p_, i.e. for 
(p-s k) = O(m*), m being the electron mass. We then take for 1 the following 
representation: 

N-* = 16( p+p_)( p+k)( p-k) - 8m*( p+k)2. (3.3) 

From the preceding section, we now know that only the two Feynman diagrams of 
fig. 1 contribute in leading order in m. They are given by 

A41 =$qp+)y b_-F+m p _2(p_k) e~(P-Mq-)Yp~(q+L 

M, = - +i(q_)Y P--F+m 
p _2(p_k) eu(P->fi(P+>Yp&l+). (3.4) 

First, we consider the helicity amplitude M( + , - , + , - , +), where the arguments 
indicate the helicities of the particles in the order in which they appear in eq. (3.1). 
We proceed by evaluating Fr( k, + )u( p_) as given by eq. (2.7). The first term is 

(p-. Et) = iNTr[ ~_&-~+(I + y’)] = [4N( p+k)] -‘. (3.5) 
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Fig. 1. Feynman diagrams for k nearly parallel to p _ 

Next, 

= WP+4i-F(1- Y')U(P-) +OW) 

=2N(p+k)(l-y5)[2(p_k)-m&]u(p_)+O(m2). (3.6) 

For the helicities we are considering, only the component of k along b_ is 
relevant, and the expressions (3.5) and (3.6) become of order m. Consequently, we 
can perform all the remaining manipulations in the massless limit. Inserting the 
appropriate fermion helicity operators, we then find 

kq+,-,+,-,+)=-ie)~d [ +t80Yp(l - Y5)4P-)+L)Y"(l - Y5)u(q+) 

- +WY,(I - Y5MP-)G+)Y”(l -us)u(q+)], (3.7) 

with 

NcY2 = 16(~+~-)(~+k)(~-k) > (3.8) 

i.e. the normalization factor of 1 in the massless limit. 
Using the techniques of ref. [3] to eliminate the repeated indices, etc., one finds 

that 

M(+,-,+,-,+)=~[M(+,-,+,-,+)I,_,, (3.9) 

where [M( + , - , + , - , +)],+ is the massless helicity amplitude given by eq.(2.56) 
of ref. [3]. (To obtain this result, one should realize that, in this collinear limit, 
St = s’t’.) 
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The result of eq. (3.9) is quite general: whenever a helicity amplitude in the 
zero-mass limit exists, its massive counterpart in the single photon collinear situation 
is proportional to it with the same proportionality factor NO/N. 

In the massive case there exist, however, amplitudes which are vanishing in the 

massless case. Such a “forbidden” amplitude is, e.g. M( + , + , + , - , +). 

For this amplitude, it is convenient to introduce two additional four-vectors t, and 
t,, obeying the relations 

(p_‘tJ=(p+.tl)=O, t:= -1, 

t$ = e:&W:/(P+%). 

It follows that 

(p_.t,)=(p+.t,)=O, t;= -1, (yt2)=o, 

d* = +Y5tB+~-d~ - hlu+)/2(P+24 

d28+= -iy5dlB+. 

As the vectors p_, p +, t, and t, are independent, we can decompose k: 

(P+4 
k” = ( p+*p-)p’+ (P,lP_) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

2 (P+4 
hk)- (p_.p+) I p,:-(k.t,)tf-(k.t,)tf. 

(3.14) 

Introducing the decomposition of k in eq. (3.6), we find that only the terms 
proportional to /, and & contribute to this helicity amplitude: 

However, 

[(kt,)h +b%h’&l + Y%(P-> 

=5[(k.t,+it,)(h-id2)+(k.tl-it2)(h+id2)](1+y5)u(p_). (3.16) 

But, from eq. (3.13), it follows that 

%(I + u5)4p-) = dI(l + Y’)~P-), (3.17) 
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and only the second term in eq. (3.16) contributes. On the other hand, the form 

(4, + idA1 + Y5)U(P-) is a solution of the Dirac equation and an eigenvector of 
1 - y5. It must therefore be proportional to (1 - y5)u( p_). Ignoring an irrelevant 
phase factor, but ensuring a correct normalization, we have 

(9, + 4)(1+ Y’MP-I G 20 - Y'MP-1. (3.18) 

Throughout this paper, the symbol 6 stands for an equality sign modulo a phase 
factor. Inserting eq. (3.18) into eq. (3.16), we have 

KWh +(kb)9*1( 1+y5)U(p_)fi(k*t+t2)(1-y5)u(p_). (3.19) 

It is now straightforward to write 

M(+,+,+,-,+)fi e3N m(p+k)(k-t,-it,) 
2(p-k) 

x 
[ 
+A P+)YJl - Y5b(Pp)%)YP(1 - Y5bhl+) 

- $wY,(l -Y5MP-b(P+)Yp(l - Y’)U(Y+)]. 

(3.20) 

One recognizes in eq. (3.20) the same spinor structure as in the “allowed’ helicity 
amplitude of eq. (3.7). 

One more remark should be made concerning this example. When calculating the 
helicity amplitude M( + , - , + , - , +) in the massless limit, we had to introduce two 
different representations for 1 depending on what set of diagrams we were consider- 
ing (see ref. [3]). This led to certain complications as one had to take into account 
the appropriate phase factors connecting the different representations. In the collin- 
ear configuration, however, one representation (3.3) is sufficient, as the relevant 
diagrams are those which have the photon next to the spinor u( p_). 

4. Single collinear bremsstrahlung 

In this section and the next one, we will present the relevant formulae for the cases 
where either one or two photons are emitted in collinear configurations. In practice, 
this corresponds to the most frequent situations. 

First, we treat the single bremsstrahlung case. Suppose that a photon with 
momentum k is nearly parallel to an incoming fermion with momentum p. Let A and 
A, be their helicities. We already know that the relevant Feynman diagrams are 
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those where 1’ stands next to u(p). On the other end of the fermion line stands 
another fermion spinor, which can be taken to be massless. If we calculate the 
helicity amplitudes of the process, this spinor will produce a helicity projection 
operator 3(1 + h’y5), with h’ = f 1, multiplying A of eq. (2.4) from the left. We 
proceed by evaluating F,(k, h), eq. (2.7), for given values of h, X’ and X,, and 
denote this quantity by F,(A; h’, hr). 

Suppose we first consider the case h’ = h. As (see eqs. (2.2) and (2.3)) 

kC”=Nk#ko-,, NP2 = 16(pq)(pk)(qk) - gm2(qk)2, (4.1) 

we find that this term in Fi does not contribute because of the operator whJ = w,, 
which hits it from the left. Hence, for all h, 

&(A; A, Xp) = - [JN(pk)(qk)] %,A,. (4.4 

Next, we take A’ = -X and h, = -A. From eqs. (3.6) and (3.14), we see that the 
terms proportional to {i and & do not contribute. Hence, 

F,(k -A> -A) = -(q.p - k)/bN(pq)(pk)(qk)] . (4.3) 

For h’ = -h and h, = X, the (p . E) term does not contribute, and, of eq. (3.6) 
only the two terms proportional to /, and & give a non-vanishing contribution. They 
have, however, the effect of flipping the helicity of the spinor u(p). Hence, 

E;(X; -h,?+2mNJ(k~t,+it,)((qk)/(pk). (4.4) 

To summarize the single collinear bremsstrahlung case, we find that all helicity 
amplitudes reduce to a product of a factor Fl (eqs. (4.2)-(4.4)) times an amplitude 
for the process in which the collinear photon is removed. For the “allowed” 
amplitudes, h, = A’, this lower-order amplitude retains the helicities of the fermions, 
but for the “forbidden” amplitudes, h, = -A’, the helicity of the spinor u(p) is 
flipped. 

5. Double collinear bremsstrahlung 

When two collinear photons are emitted, it may happen that they are both nearly 
parallel to the same fermion, or that each of them is nearly parallel to a different 
direction. 

In the first case, we assume that k, and k, are close to the direction of p, the 
momentum of the incoming fermion. We now have to evaluate the function F2 of eq. 
(2.9) for the various helicity configurations. The calculation proceeds exactly like in 
the single collinear bremsstrahlung case, and we merely list the results. Let hi, h, 
and h, be the helicities of photons 1 and 2 and of the fermion with momentum p. 
Let h’ be the signature of the helicity projection operator which is associated with 
the fermion spinor on the other end of the fermion line which connects with u(p). 
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First of all, note that the relation 

F,(x,, A,; A’, x&J = [&(-A,, -A,; -A’, -x,)1 * (5.1) 

holds, which is easily proven by replacing y5 by - y’. For the allowed amplitudes, 
A’ = A,, we have 

F2(+,+;+,+)= & $k,) Tr[U - FdFd40 + ?)I ) 

1 N2(P-k1-k24 Fz(+,+;-,-)=a;i-. 
12 1 2K(qk,)h) Tr[(+ - kdkd(I(1+ Y5)] > 

F,(+,-;+,+)=L 1 

AnA1 -gqk,) N2Trkb - k~khi(~ -Y’>] - 2N 

2 
ipq)) 

-~{2~~(~q)Tr[FIWF2(l-u5)l -$$))}, 
1 

F2(+,-;-,-)=- ’ N2(P-k1*q)Tr[(/-~I)F2PQ(1-y5)] 
424 2mYk?k) 

The allowed helicity amplitudes are now given by a sum of expressions 
F,( A,, A,; A’, A’) + E2( A,, A,; A’, A’) times the helicity amplitude for the massless 
lower-order amplitude in which the two photons are removed, while all other 
particles retain their helicity assignments. 

For the forbidden helicity amplitudes, A’ = -A,, we have 

F,(+,+;+,-)=o, 

F,(+‘-‘++A12Al Nl(qkl) 
A 2% N2(qk2) (k, e t, + it,), 

4(+,-i -‘+)-A& A -+N,N,(qWk,. h - idTr[(# - kl)hbi(l - y5)] . 

(5.3) 
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The forbidden helicity amplitudes are given by &(X1, h,; X’, -X’) + 

Fz(&, A,; A’> -A’) times the lower-order amplitude without the collinear photons, 
but with the flipped helicity for u(p). 

For the case where the two photons are nearly parallel to two different fermion 
directions, it becomes cumbersome to give general formulae analogous to eqs. (5.2) 
and (5.3). The reason is that a given helicity amplitude can become a linear 
combination of two different lower-order amplitudes, one for which the fermion 
helicities are unchanged and one for which the two fermions, that specify the parallel 
directions, have their helicities flipped. Using the techniques of sect. 2, it is, however, 
straightforward to work out the amplitudes case by case. 

6. Discussion 

In the case of single bremsstrahlung, a method was presented in ref. [3], which 
allows one to calculate mass corrections for the cross section in collinear situations. 
There are, however, kinematical configurations where that method fails while the 
method of this paper works, namely when the collinear photon and (anti)fermion 
also make a small angle with another fermion or antifermion. This would be the 
case, e.g. in radiative Bhabha scattering, when the final state e+ (e-) and y both 
travel along the e- (ef) beam direction. It also occurs in radiative mu-pair produc- 
tion, when the photon and a positive or negative muon are emitted close to any one 
of the beam directions. 

The method of ref. [3] is not applicable in these cases, as it implicitly assumes that 
only one kinematical invariant is small. When more than two particles have 
directions nearly parallel to each other, this assumption does not hold. The applica- 
tion of the present method, however, remains straightforward. 

7. Conclusions 

We have shown that there is a simple way to calculate directly, in the high-energy 
limit, the various helicity amplitudes for QED processes in the limit where one or 
more photons are radiated in directions closely parallel to fermion momenta. 

This was achieved by introducing explicit polarization vectors, eq. (2.2), for 
collinear photons. In this way, a gauge choice was made for which only the Feynman 
diagrams with the collinear photons directly next to the relevant spinors gave the 
leading contributions. 

In sect. 2, we explained in detail the general formalism for the calculation of the 
collinear limit. As an illustration of the simplicity of our procedure, we calculated in 
sect. 3 two helicity amplitudes for radiative Bhabha scattering and showed that they 
were proportional to nonradiative amplitudes. 

In sect. 4, we found this property to be a general feature of all single collinear 
bremsstrahlung processes. We also listed the various proportionality factors Fl (eqs. 
(4.2)-(4.4)) for every helicity configuration. Finally, in sect. 5 we treated in an 
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analogous way the case where two photons are collinear to one and the same 
fermion direction. 

This work will be useful in subsequent papers in which we shall write down the 
cross-section formulae for double bremsstrahlung processes in the high-energy limit 
which are valid in various regions of phase space. We suspect that it could also be 
useful for the study of mass singularities in connection with virtual radiative 
corrections. 

We add here a word of caution. Throughout the present considerations, the 
problem was characterized by one large parameter only, namely the ratio s/m2. 
Difficulties may arise if there is a second large parameter. Therefore, in particular, 
the present approximation may break down if the number of photons, n, is large. We 
do not know if such a breakdown occurs for n = O(fi/m) or n = 0(ln(s/m2)), or 
perhaps for some other value for n. 

One of us (T.T.W.) thanks Professor Hans Joos, Professor Erich Lohrmann, 
Professor Paul Soding, Professor Volker Soergel, and Professor Thomas Walsh for 
their kind hospitality at DESY. 
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