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We calculate the helicity amplitudes and the cross section for the process e+e- + 4y in the 
high-energy limit. The resulting expressions are presented in a form which allows an easy 
numerical evaluation. They are valid for the kinematical configurations where at most two photons 
are emitted in directions nearly parallel to the lepton directions. 

1. Introduction 

Over two years ago, some of us developed a formalism [1,2] for evaluating 
transition amplitudes of bremsstrahlung processes at high energies. That formalism 
was applied to e+e- + 4y [l], which may be considered to be one of the simplest 
examples of double bremsstrahlung. It is the purpose of the present paper to study 
this process in more detail including, in particular, the effects of the electron mass 
for nearly collinear photons. 

Experimentally, since 193 events of the type e’e- + 3y have been observed at 
high energies [3], we expect the four-photon production to become observable in the 
near future. From the experimental point of view, the radiative Bhabha process 
e+e- + e’e-yy, to be studied in paper (VI), is perhaps of more direct interest. In 
particular, this process contributes a correction to luminosity measurements by 
small-angle Bhabha scattering [4]. 
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Another motivation for studying the process e+e- -+ 4y is that due to its symmet- 
rical structure it is the simplest double bremsstrahlung process from the theoretical 
point of view. Its study should provide us with more insight into more complicated 
double bremsstrahlung processes like e+e- + p+p-yy and e+e- -+ e+e-yy. 

As shown before [l], certain helicity amplitudes for e+e-+ 4y have factorization 
properties which are straightforward generalizations of results obtained in e+e--+ 3y 
[5]. The other helicity amplitudes, however, have a more complicated structure. 
Nevertheless, the result can be expressed in such a way that a numerical evaluation is 
rather easy. This is to be contrasted with the standard approach, which meets 
considerable computational difficulties, as the process is described by 24 Feynman 
diagrams, each containing a string of seven gamma-matrices! 

This paper is organized as follows. In sect. 2, we use our formalism to obtain the 
helicity amplitudes. By introducing an explicit representation for the spinors, we 
then express these amplitudes in terms of components of the various four-momenta 
in the process. This is worked out in sect. 3. 

In sects. 2 and 3, we assumed that the electron mass could be neglected. This 
approximation fails when photons are emitted in directions nearly parallel to the 
incoming lepton directions. In sect. 4, it is shown how the finite mass effects can be 
taken into account when there is only one collinear photon in the process, and, in 
sect. 5, we analyze the case of two collinear photons. In sect. 6 we present a 
discussion of the different formulae to be used when different regions of phase space 
are examined. Sect. 7 gives our conclusions. 

Finally, in the appendix, we derive formulae for certain helicity amplitudes for the 
annihilation of efe- into an arbitrary number of photons. 

2. Helicity amplitudes 

We consider the massless fermion limit first. Four-photon production is described 
by Feynman diagrams of the type shown in fig. 1, of which there are 24. Denoting 

bypC,h and byp T, A’ the four-momentum and the helicity of the electron and of 
the positron, and by k/f, &fl (i = 1,2,3,4) the photon four-momenta and polariza- 
tions, we can write the matrix element as follows: 

M= -ie4Cy(p+)C4 li4-i+ 4 

-2(P+k4) 

b--k-F* f b--k1 cluh(p_) 

3(p_-k,-k,)2 2 -2(p-k,) 

+ 23 other permutations of (1,2,3,4) . 

Following ref. [l], we define the various helicities and polarizations by 

(2.1) 

~*(P-)=~(l+Y5)u,(P-), 

~*(P+)=fU*(P+)(l~Y5), 

Ci+ = -N, [ kib+$-(l f Y5) -b+B-F;(l T Us)] 2 

iV-2=16(p+p-)(p+ki)(p_ki), i=1,2,3,4. (2.2) 
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Let us denote the helicity amplitudes by M(X’, A; hi, X,, h,, h4), with Ai the 
helicity of the photon i. Clearly, for X’ = h, the helicity amplitudes vanish. Moreover, 
for A’ = -X, only one of the two terms in & (eq. (2.2)) gives a nonvanishing 
contribution. As was already shown in ref. [l], it follows that, for all A, 

M(h,-h;+,+,+,+)=M(h,-h;-,-,-,-)=o. (2.3) 

Finally, any two amplitudes for which only the h, differ by a permutation can be 
obtained from one another by applying the same permutation to the kp. 

There are thus only six distinct nonzero helicity amplitudes, which we shall 
present in this section. They are obtained by writing out a given amplitude using eqs. 
(2.1) and (2.2), and then simplifying the expression by applying anticommutation 
relations and explicitly summing all contributions to the amplitude. 

In this way, we obtain the following expressions: 

W-, +; -) +, +, +>= -tie”A(P+P-)(P-k,)u(p+)$,(I +Y’)u(P-1, 

W+, -; +, -, -, -)= -fie4A(p+p-)(p~k,)~(p+)F-,(I -Y~)~(P-), 

W-, +; f, -) -) ->=9ie4A(p+p-)(p+k,)~(p+)R,(1 +Y’)u(P-1, 

M(+,-;-,+,+,+)=3ie4~(p+p-)(p+k,)~(p+)~,(l-y5)u(p-), 

w-,+;-,-,+,+) 

= $ie4A( p+p-)( p- - k, - Ic~)~U( p+)(/q + /c2)(1 + y5)u( p-) + +ie4AU( p+) 

x &Cad-k,(i- - kl)k3b+kl ++/3b-k2(d- - h)k4b+h 
13 

+ $p,p-k,(h- - k2)k3i+k2 + +k,b-k,(P- - k2)k4d,FI) 
23 24 

x (1+ Y'b4P-L 

M(+,-;+,+,-9-j 

=$ie4A(p+p_)(p_- k,-k2)26(p+)(F, +F2)(1 -y5)u(p-)+iie4AD(p+) 

x &,g-k2(i- - kl)fi3b+kl + &p,p_c,(b- - h)k4b+kI 
13 

+ +&4b-k1(b-- k2)k3h+k2 +;11-k3b-&lb-- k,)k,i,F,) 
23 24 

x (1 - Y')4P->> (2.4) 
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kl , EI 1 
k2.q) 

k3.q) + 

k4 .q) 

23 other 

permutations 

of (1.2.3.41 

e-(p-1 

Fig. 1. Feynman diagrams for e+e- + 4~. 

where 

A = [(P+kl>(P-kl)(P,k,)(p_k,)(p,k,)( p_k,)( p+k,)( p-k,)] -y 

Aij= -2(p_k,)-2(p_kj)+2(kik,), i, j= 1,2,3,4. (2.5) 

It should be noted that the sign in front of the first term of M( - , + ; - , - , + , + ) is 
given incorrectly in ref. [l]. 

3. Evaluation of helicity amplitudes 

To obtain the cross section for e+e-+ 4y, we must know the squared absolute 
values of the helicity amplitudes given by eqs. (2.4). The standard procedure, 
however, leads to very lengthy traces for the last two amplitudes and hardly any 
simplifications occur in the result. A much more convenient method consists in 
evaluating the helicity amplitudes directly as complex numbers for a given point in 
phase space. To this end, we introduce explicit representations for the y matrices 
and the spinors. This procedure was already applied in the study of e’e--+ 4 jets [6]. 

Suppose we go to the e+e- c.m. frame, with the z-direction alongp, , and that we 
introduce the notation 

k+=k,+k,, k, = k, + ik,, (3.1) _ 

for any vector k”. Defining the quantities 

Zlj=k,+k,_- kl*,k,, 2 i, j= 1,2,3,4, (3.2) 
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we can rewrite the helicity amplitudes of eqs. (2.4) as 

M(-,+;-,+,+,+)=4ie4Bk,+k;C,, 

M(+,-;+,--,-,-)=4ie4BkI+kIL, 

M(-,+;+,--,-,-)=-4ie4Bk,_k,*,, 

M(+,-;-,+,+,+)= -4ie4Bk,_k,., 

M(-,+;-,-,+,+)=-2ie4BE-‘F*(1,2,3,4), 

M(+, -; +,+, -, -)= -2ie4BE-‘F(1,2,3,4), 

where E denotes the beam energy and 

B= [k,+k,_k,+k,_k,+k,_k4+k4_]-“2, 

F&2,3,4) = (ku +k&u 

(3.3) 

+>( 2%+kLkl. +Z,&+i) 
13 

2Ek2+k4*lkll +Z,,Z:,) +d 
k4J. ( 2Ekl+k?lkz, +GGi) 

23 

+%( 2Ekl+k:,kz, +-WL$ 
24 

(3.4 

By adding the squared absolute values of all helicity amplitudes and by averaging 
over the initial spins, we obtain the unpolarized squared matrix element: 

4 i (kf+ + kf-)k,+k,_ 
:=l 

+E-2[)F(1,2,3,4)12+ )F(1,3,2,4)12+ jF(1,4,2,3)12 

+F(2,3JA)12+ IJ’(V,1,3)~2+ lF(3,4,1,2)l’]j, (3.5) 

and the unpolarized cross section is given by 

da=S4(p++P--kl-k2-ks-k4) - PI2 
d3k, d3k2 d3k, d3k4 

128(2m)*E2 kl,k2,k30k4, ’ 
(3.6) 

4. Single collinear bremsstrahiung 

The helicity amplitudes derived in the previous section were obtained by neglect- 
ing the electron mass m. When the photons are not emitted parallel to the beam 
direction, the approximation m = 0 is justified because the beam energy E is large. 
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In collinear situations, however, some terms proportional to m2 should not be 
neglected. The reason is that in propagators terms like ( p +k;) are then of order m2. 

This gives in the square of the amplitude a peaking factor of order E2/m2 and, 
obviously, terms of the form m2E2/( p + . /c,)~ give contributions of the same size, 
but they have been neglected so far. 

For the case where only one photon is emitted in a direction close to the beam 
axis, we have shown in ref. [5] that the finite mass corrections are given by the cross 
section of the lower-order process (here, efe- -+ 3~) expressed in the appropriate 
variables. 

For e+e- + 3y, the spin averaged squared matrix element is [5]: 

F3( P+ , P- ; k,, k2, k3) = 2e6(p+p-) 
c7=l[(P+k;)‘+(P~ki)‘](P+ki)(P-ki) 

n:=dp+k;)(p-k,) . 

(4.1) 
If k, is the four-momentum of the one photon which travels along the beam 
direction, then we must add to ]M]’ from eq. (3.5) the finite mass correction 

F,= - 
e2m2 

(p+kd2 
&(p+-k,,p-;k,,kz,kj) 

e2m2 

- (p-kd2 
F3(p+,p--kq;kl,k2,k3). (4.2) 

Formulae (3.5) and (4.2) now describe correctly the kinematical configuration 
where k, is nearly parallel to p+ or p _ . Evaluated in one of these limits, they take on 
a particularly simple form. For k, along p-, we have 

IM12+F,=2 (2E)2+(2E-k,_)2+m2k: 
4E2k,, 

x C ki+k;_ ki+ + 3 
i=l 

[ 2 (22k,_ jik$ 

and, for k, along p+ , 

(2E)2 + (2E _ k4+)* + _?!?&I_ 
4E2k,p 1 

x i ki+ki_ k? + 
i=l 

[ I (2s2_Ek,+ )2k:i]’ 

(4.3) 

(4.4) 

The case where two photons are emitted along the beam axis is more complicated 
and shall be treated in the next section. 
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5. Double collinear bremsstrahlung 

The most convenient way to calculate the cross section in the case of collinear 
radiation of two photons is to calculate all the helicity amplitudes in this limit. The 
general method for this purpose was explained in ref. [7]. The central idea was to 
take a representation for 1 for the collinear photons for which we could show that 
only the Feynman diagrams with the collinear photons next to the appropriate 
spinors had to be considered. 

We have to examine two separate cases: two photons travelling together nearly 
parallel to a fermion direction, and two photons separately parallel to the e+ and e- 
directions. The former case is somewhat simpler and shall be treated first. 

Suppose that k, and k, make small angles with p_ , i.e. 

(p_ki)=O(m2), k,+=O(m2), kiL=O(m), i=3,4. (5.1) 

Following the recipe of ref. [7], we know that all helicity amplitudes can be written 
as a product of two factors: an helicity amplitude for e+e- + 2-r and a proportional- 
ity factor which was called F2, eqs. (5.1)-(5.3) in ref. [7]. These quantities F2 depend 
on the momenta of the collinear photons, whereas the helicity amplitude for 
e+e- -+ 2y does not. 

It is a simple matter to evaluate the functions F2 in the e+e- cm. frame. In ref. 
[7], they contain an arbitrary four-vector q, which can conveniently be chosen equal 
to p+ . We then find 

F2(+,+; +,+)=128CE5k3+(2Ek4+-k3_k4++k31k4*I), 

F2(+,+; -,-)=64CE4k3+(2E-kJ_-k4-)(2Ek4+-k3_k4++k3&I), 

F2(+,-; +,+)=32CE4[4Ek3+(2Ek4+-k3_k4+-k4+k4_+k;lk4L) 

+A3GLk,,l~ 

F,( +, - ; -, -) = 32CE4[2k,+(2E - k3_)(2Ek4+ - k,_k,+ + kTlk4,) 

+dlw4,1~ 

F,(+,+;+,-)=O, 

F2(+,+;-,+)=32CmE3[-2Ek,_k4+k:,-2Ek,.k,~k,*,-k,_(k,_+k,_) 

X(k3+& -k4+GJl) 

F2(+,-; +,-)= -64CmE4k,+k4_k4L, 

F2(+,-; -, +)= -32CmE3k3_k~l(2Ek4+-k3_k4++k~lk4L), (5.2) 
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with 

C=N,N,/W,,, Ai= -2( p-k,) 7 i=1,2,3,4. (5.3) 

The first two labels of F2 denote the helicities of photons 3 and 4, photon 3 being the 
one closest to u( p _) in the Feynman diagrams. The third label is minus the helicity 
of the e+, and the last one denotes the e- helicity. This time, the phase choice for 
the fermion spinors, which was made in ref. [6], determines the phases of the last 
three quantities F2 in eqs. (5.2). 

For the so-called “allowed” amplitudes, in which the e- helicity is not flipped, we 
then have in the collinear limit, 

M(-A,X;X,,h,,A,,h,)=e2[~(A3,hq;A,X)+(3*4)]Mo(-X,X;X1,X2), 

(5.4) 
and for the “forbidden” amplitudes, which are proportional to m, 

M(h,h;A,,X2,X3,h4)=e2[F2(X3,h4; -X,h)+(304)]M”(X,-A;A,,X2), 

(5.5) 

where the quantities M” are defined by 

MO(A, -A; A,, h2) = -ie2E(p+) 

with 

(5.6) 

A:= -2(p+k,), i = 1,2,3!4. (5.7) 

These expressions M” are the remainders of the relevant Feynman diagrams, once 
the reference to the collinear photons is removed, but with the proper fermion 
helicity projection operators. They can be viewed as helicity amplitudes for e+e- + 
2y in the massless limit, but written in the appropriate variables. They are easily 
evaluated with the method of refs. [l, 21, yielding 

&I’(+, -; +, -)= -2ie2k,+kzL[k,+k,_k2+k,_]p”2, 

M”(+, -; -, +)= -2ie2k,+k,L[k,+k,_k2+k2_]-“2, 

M”(-, +; +, -)= -2ie2k2+k:,[kl+kl_k2+k2_]-1’2, 

M”(-, +; -, +)= -2ie2k,+kf,[k,+k,_k2+k2_]-“2, 

all other helicity amplitudes being zero in this limit. 

(5.8) 
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Combining eqs. (5.2)-(U) and (5.8), it is now trivial to derive the helicity 
amplitudes in the double collinear limit. We merely give the result for the un- 
polarized squared matrix element: 

(/$+k&+k,Ji ]A,]* 

+ )A,(3,4)j2 + JA,(4,3)12 + l&l2 + lJ44(3,4)12 + lA4(4,3)12 
(5.9) 

where B is given by eq. (3.4) and 

E2k3+k4+ 

A’ = (p-k,)bk,) 
[I + m2Z34Z43/4E2k3+k4+A34] , 

A&,“) = -& {k,+(2E - k,-)(2Ek,+- Z,,)/( p-k,) 
34 

+ [2Ek3+k4+(2E- k,_- k4_) -m2k4_k31k:J2E],‘(p_k4)}, 

A3 = 2(&?ip-k,), [k3-k4+k:I+k3+k4-k4*I-(kfl +kL)23&‘434] 3 

A,(3,4) = m;;;k3L 
34 [( 

2Ek4+-~43)/b-k3) +2Ek,+/‘(p-k,)] ’ (5.10) 

In obtaining eq. (5.9) we used the relations 

k,, = -kzl +0(m), kl+kl_ = k,+k,_ + O(m), 

as well as the relation of the type 

k,+(2E - k,p - k4_) = 2Ek,_ + O(m). 

(5.11) 

(5.12) 

In eq. (5.9), the terms proportional to A, and A, are the contributions of the 
allowed amplitudes, whereas the terms with A, and A, arise from the forbidden 
amplitudes. 

To obtain the unpolarized squared matrix element for the collinear limit when k, 
and k, are nearly parallel to p+ , it suffices to interchange p+ and p_ in eqs. 
(5.9),(5.10). This amounts to interchanging the subscripts + and - as well as 
replacing A,, by A’34, where, in general, 

“:j= -2(P+ki)-2(P+kj) +2(k,k,), i, j= 1,2,3,4. (5.13) 

For the mixed double collinear limit, we take k, along p+ and k, along p_ . This 
case can be viewed as a simultaneous occurrence of two single collinear limits. We 
know from sect. 4 in ref. [7] that we need to know the quantities Fl describing the 
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single collinear emission. For photon 4 along p_ , we have 

F,( + ; + ) +) = 16N4E3k,+/A,, 

F,( + ; - , -) = 8N4E2k4+(2E - k,_)/A,, 

F,( + ; -, +) = -4N,mEk,pk,*,/A,, 

F,(+; +,-)=O, 

F&I,; h’,h)= [F,(-A,; -X’, -A)]*. (5.14) 

We used the same notation as in ref. [7], i.e. the two last labels of FI depend on the 
helicities of the et and e-, respectively. 

Of course, for photon 3 along p+, we have analogous expressions, which we 
denote by G,. They are 

G,(+; +,+)=16N3E3k,_/A’3, 

G,( + ; -, -) = 8N,E2k,_(2E - k,+)/d;, 

G,( + ; -, +) = -4N3mEk3+k3./d;, 

G,(+; +, -)=O, 

G,(&;X,h’)=[G,(-X3;-7x,-h’)]*. (5.15) 

This time, the second (third) label of G, depends on the e- (e+) helicity. 
In this mixed double collinear limit, one finds that every helicity amplitude can be 

written as a sum of two terms. For an allowed amplitude, X’ = -X, one obtains a 
contribution from the amplitude where the e+ and e- retain their helicities, and a 
contribution in which both helicities are flipped. More precisely: 

M( -X, A; Xi, h,, X3, h4) = e2F,(A,; X, X)G,(X,; -h, -X)&f”( -A, h; h,, X2) 

+e2F,(h,; -h, h)G,(h,; h, -h)fi”(X, -X; hi, h2). 

(5.16) 

Similarly, for the forbidden amplitudes, h’ = A, one and only one fermion helicity 
must be flipped. Thus 

M(X, A; A,, h,, h,, h4) = e2F,(A,; A, A)G,(h,; -h, X)fi”( -X, A; X,, X2) 

+eqFI(A,; - h, A)G,(X,; h, h)ti’(X, -h; h,, h2). 

(5.17) 
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The expressions &lo in eqs. (5.16),(5.17) are again remainders of the relevant 

Feynman diagrams after removal of the collinear photon parts. This time, they read 

fi”(h,-X;X,,h,)= -ie2B(p+) [ #~1’--/~-k4&2+(1-2) 
1 
*u(p_). 

In this way, all helicity 
alongp,, k, alongp-, 

amplitudes can be readily calculated, and we find for k, 

2 

I[ m2k3 
w2 + PE - &+I2 + 4E*;;_ 1 

(2E)2+(2E-k,)2+$ 1 k,+k(G+ + G+) . (5.19) 
4t W-k,+)* 

(5.18) 

This time, we used the relations 

k,+(2E-k,_)=k,_(2E-k,+)+O(m), 

k,+(2E-k,_)=k,_(2E-k,+)+O(m). (5.20) 

Interchanging 3 and 4 in eq. (5.19) then gives the formula for lM12 when k, is along 
p_ and k, is along p+. This then concludes the derivation of the formulae for the 
cross section in all double collinear configurations. 

6. Discussion 

The formulae we derived in the preceding sections can be used for different 
purposes. Either one studies the reaction e+e- + 4y when all four photons are 
observed, or one misses one or two photons, in which case this reaction is a 
background for e+e- + 3y or 2y. The undetected photons can escape along the 
beam directions, and one will want to integrate over these regions in phase space. In 
this section, we summarize which formulae have to be used in the different regions 

of phase space. 
We can distinguish seven regions in phase space: 

(i) lk311,1k411 pm 
(ii) lkjll *m, lkdll +E, k,,<O; 
(iii) lkjll pm, Jkdl) +E, k,,>O; 

(iv) Jk311,1k411 <ET k,,<O, k,,<O; 
(v) (k311,1k4~l +E, k,,>O, k,,<O; 
W> lk311,1k411 GE> k,,<O, k,,‘O; 
6% lk31l,lk411 +E, k,,>O, k,,>O. 
Note that the positive z-axis was taken along the p+ direction. 
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The scale at which the transition occurs from 1 k, I ( or 1 k, I 1 Q E to + m is rather 
arbitrary and can, e.g. be taken to be (kJ1 I or I kdl I = hd?. In other words, Q E is 
to be interpreted as < m, and + m as > m. 

In region (i), none of the photons are collinear ones, and one should use the 
zero-mass formula (3.5). In region (ii), only photon 4 is collinear with e-, and 
formula (4.3) should be used. For region (iii), one should similarly use formula (4.4). 
In the regions (iv)-(vii), both photons are collinear. For region (iv), one uses formula 
(5.9), and for region (vii) one uses again eq. (5.9) but with p+ and p_ interchanged. 
This amounts to interchanging the subscripts + and - , as well as replacing A,, by 
A’s4 (see eq. (5.13)). In the regions (iv) and (vii), photons 3 and 4 are indistinguish- 
able, and one should include a statistical factor 4 in the cross section formula (3.6). 
Finally, for region (v), one should take formula (5.19) and for region (vi), formula 
(5.19) again, but with 3 and 4 interchanged. 

7. Conclusions 

By introducing explicit polarization vectors for the photons in a covariant way, we 
were able to obtain relatively simple expressions for the helicity amplitudes for 
e+e- + 4y in the massless fermion limit. Using a specific representation for the 
spinors, it was then possible to express these amplitudes as complex functions of the 
components of the four-momenta. With eq. (3.6) it becomes easy and straightfor- 
ward to evaluate numerically the unpolarized cross section for a given point in phase 

space. 
When one or more photons are radiated along the beam directions, finite mass 

corrections have to be taken into account, however. We showed how this could be 
accomplished for the cases where one or two photons are in this collinear configura- 
tion. A summary of the formulae to be used in the different regions of phase space 
was presented in sect. 6. 

We hope that the simplicity of our formulae will stimulate more precise analyses 
of experiments where this reaction is observed. 

One of us (TTW) thanks Professor Hans Joos, Professor Erich Lohrmann, 
Professor Paul Soding, Professor Volker Soergel and Professor Thomas Walsh for 
their kind hospitality at DESY. Also discussions with Professor H. Takeda and 
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Appendix 

The simplicity of the helicity amplitudes (eqs. (2.4)) in which three photon 
helicities are equal is quite remarkable. It is easy to show that this is a general 
feature of helicity amplitudes for e+e- + n photons, where y1 - 1 photon helicities 

are the same. 
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Consider the case of M( - , + ; - , + , + , . . . , + , + ). With our choice of E,’ (eq. 
(2.2)) only (n - l)! Feynman diagrams contribute, i.e. the ones where 1; is inserted 
next to u+( p_). A typical diagram is 

4 = C4n2”-1 ,+Ji fib+jF,B+b- _$$ j k-d+B- 
i i 

P,+F,-1-P+ 
+ ” (P+-k”-,-kJ2 

XFn-*b+#- 
F, + h-1 + F”F2 -b+ 

(p+-k,2-k,_l-k,)2**.k2i+P 

x 1--F, -2(p_kl)i+P-Fl~1 +Y5MP-) 

= -4-e)n2”-1 IfLY u(p+)~-(F,+P,-,-1+)(F,-1 -B+)B+i 
i i i=l 

x kl+F,-1-B+ Fn+F,-1+Fn-2-i+ *..F b b_ 

(p+-k,_,-k,j2P”-21+iP (p+-k,_2-k,_l-k,)2 2 + 

xW+(l +Y5)4P-). 64.1) 

The complete helicity amplitude is obtained by adding to (A.l) the remaining 
(n - l)! - 1 permutations of (2,3,. . . , n). 

Adding to MI the contribution with n and (n - 1) interchanged, we obtain 

M2 = -+4”2”-l ,J!j& 3(P+WB+B-(F,+ ic,-, -b+)L28s+81 i i 

X 
F,+F,-l+Fn-2-b+ 

(P+-k-,-k,-,-k,)’ 
428+b-Cd+0 +Y5b4Pp) 

= -i(-ej”2” 68 fi(P+)b-(F, + h-1 +Pn-2 -B+)(kn-2 -4,) 
i i 

x$ b_ F,+F"-l+Fn-2-b+ 

+ (p+-L,-k,-,-k,)2 
. ..F28+8-Fd+(l -tY’MP-)(P+Pd. 

64.2) 

Note that the symmetrization in n and (n - 1) had the net effect of cancelling the 
denominator ( p + -k, - k,_,)2 and bringing out a factor 2(p+p_). A similar 
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phenomenon occurs when we symmetrize MZ in n, (n - 1) and (n - 2). We obtain 

j& = 4 -4y+1 ( i f) (P+P-)2fi(P+Mkn + L1+ Fn-2 -8,) 

a-d+1- ..*F2B+hhB+O +Y5MP-h (A.3) 

This process of symmetrization can be continued. All denominators are cancelled 
and the last symmetrization brings out a factor 

2b.K)k + k”-l+ . . . +k2-P+)2= -4(P+PP)(P-kJ. (A.4) 

By now, all (n - l)! Feynman diagrams have been added and the helicity amplitude 

reads 

A+,+;-,+,+ )...) +) 

= i( -qp-2 (P+P-)n~2(P-kl)u(p+)gi-F1BS+(1 +u’M-) 

= -+i( -e)“A,( p+p_) “‘2-1(P-wG+)k1(1 + Y’bdP-)Y (A4 

with 

1 
-l/2 . 64.6) 

Similarly, one finds 

M(+,-;+,-,- )...) -) 

= - fi( -e)“A,( p+p_)n’2-1 (P-W(P+M1 -Y’)4P4, 

M(-,+;+,-,- )...) -) 

= fi( -e)“A,( p+p_)n’2p1 tp+k,)$p+)F,(1+ Y')~P-L 

M(+,-;-,+,+ )...) +) 

= $i( -e)4A,( p+p_)“‘2-1 (P+kl)~b+)Fdl -Y')~P-). (A.7) 
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For n = 3, the formulae (AS)-(A.7) reproduce the results of ref. [3] for e+e- + 3y, 
and for n = 4, we recover the expressions of eqs. (2.4). It should be noted that the 
amplitudes (AS) and (A.7) consist of a product of n - 2 “infrared factors” 

[ 

(P+P-) 1 l/2 -e (P+M P-k) 
G-w 

times the corresponding helicity amplitude for e+e- + 2y. 
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