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MONTE CARLO CALCULATION WITH UNQUENCHED WILSON FERMIONS 
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A Monte Carlo updating procedure taking into account the virtual quark loops is described. It is based on high-order 
hopping parameter expansion of the quark determinant for Wilson fermions. In a first test run Wilson loop expectation val- 
ues are measured on a 64 lattice at 13 = 5.70 using 16th order hopping parameter expansion for the quark determinant. 

The inclusion of  the effects of  virtual fermion loops 
in Monte Carlo simulations of  lattice gauge theories is 
an important and challenging problem. At present it is 
to a large extent unknown how much the Monte Carlo 
resuks obtained in the pure colour gauge sector or in 
the "quenched approximation" will be changed once 
light dynamical quarks are properly included in the 
computations of  lattice quantum chromodynamics. 
There is a class of  problems, like the screening of  (fun- 
damental) colour charge or the fragmentation of  fast 
quarks into hadrons etc., which cannot even be formu- 
lated without virtual quark loops. 

From the computational point of  view the inclusion 
o f  dynamical fermions is, however, rather difficult be- 
cause of  the long range interaction induced by the vir- 
tual light fermion loops. Several methods proposed re- 
cently, like the pseudo-fermion method [ 1 - 3 ] ,  sto- 
chastic method [4,5] or the microcanonical method 
[6] are promising, but it is usually difficult to control 
their accuracy due to some approximations which af- 
fect the results only rather indirectly. In a recently 
proposed method based on high order numerical 
hopping parameter expansion [7,8] the committed er- 
rors are easier to control. The fermion determinant is, 
however, not included in the updating but it is treated 
essentially as a part of  the expectation value. In the 
case of  light fermions this is the source of  large fluc- 
tuations prohibiting the collection of  enough statistics 
in a reasonable amount of  computer time. 

i Supported by Bundesministerium f~ir Forschung und 
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In the present letter I describe an updating proce- 
dure with the fermion determinant evaluated to high 
order in the hopping parameter expansion at every 
link and included in the Monte Carlo updating. The 
use of  the hopping parameter expansion of  fermion 
determinant in the updating was already attempted 
previously in a different way by Lang and Nicolai [9].  
They, however, sorted out the contributions of  the 
fermion determinant to the effective action according 
to closed curves passing through a given link. The 
number of  such curves increases very rapidly with the 
length (i.e. with the order of  expansion): at 12th order 
there are more than 4 × 106 such curves and e.g. at 
16th order already more than 6 × 109 [10].  (Actual- 
ly, these numbers refer to an infinite lattice. On a fi- 
nite periodic lattice the number is still increased by 
the curves wrapping around the lattice.) It is clearly 
impossible to handle such large numbers of  curves with 
any reasonable approximation (in ref. [9] typically 20 
curves with length not more than 12 were taken). The 
solution I have chosen is to use the fast iterative meth- 
od [11] for the evaluation of  the hopping parameter 
expansion coefficients of  the fermion determinant. 
This can be done up to some definite order in the 
quark part of  effective gauge field action. The error 
due to the truncation of  hopping parameter series can 
be controlled by running the iteration from time to 
time to higher order on some smaller sample set of  
links. Besides, the higher order part of  the hopping pa- 
rameter series, which is not included in the updating, 
can also be considered as a small correction and it can 
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be taken without difficulty as a part of  the expectation 
value following ref. [7]. In this way it is possible to 
keep the errors in the evaluation of  fermion determi- 
nant under control. The numerical hopping parameter 
expansion method could be useful also in combination 
with the other methods [ 1 - 6 ] ,  some of which can 
presumably achieve a higher speed in computation. 

The contribution of  virtual quark loops to the 
Monte Carlo updating of gauge fields is expressed by 
the quark determinants belonging to the new (U' )  and 
old (U)  gauge field configuration: 

1 - KM[U'] .  exp ( -ASq  ff) -= det 
1 - K M I U ]  

= det (1 K(MtU']-M[U]))=det (1-KD) 
- 1 - KM[U] (1) 

Here M[U] is the "hopping matr ix"  in the fermion 
part of  the Wilson action [12],  

Mxlx2 = ~ ( 1  +3,u)U(x, la)6xl,x+~6x,x2 . (2) 
X , N  

The notations are the usual ones: x denotes lattice 
sites,/1 is a (positive or negative) direction, bi is the 
corresponding unit vector, 7u = - 7 _  u is a hermitean 
Dirac-matrix and U(x, la) is the gauge field variable on 
the link x -~ x + ~. K is the hopping parameter con- 
nected to the bare quark mass mq (times lattice spac- 
ing a) by 

K = (8 + 2amq) -1 . (3) 

In general, K (and mq) is a diagonal matrix in quark- 
flavour space. In the numerical calculation I shall as- 
sume, for definiteness, that there are three (light) fla- 
yours with degenerate mass. 

The determinant to be evaluated in eq. (1) is actual- 
ly not a high-dimensional one, because AM-- -M[f f ]  
-M[U] has usually only a few non-zero elements. In 
principle it is possible to change the gauge configura- 
tion on several links simultaneously, but in what fol- 
lows I shall only consider the conventional case when 
only a single link is changed. In this case we have 

&Mxax2 = ~ (1 + 7u)&U(x, /a)Sx, ,x+;Sx,x2 . (4) 
X , / ~  

This is non-zero only at the endpoints of  the particu- 
lar link, therefore the determinant to be evaluated has 
rank 24 (counting spin and colour, too). 

I f  a systematic hopping parameter expansion of  the 
change in the quark part of  the effective action is re- 
quired one can use, instead of eq. (1), the relation 

o o  . 

A S q f f = j ~  1'= ~ T r ( D / ) ,  (5) 

where the matrix D has the block form D = (Dii), (i,] 
= 1 , 2 )  

00 

D l l  =/=3 ~ KIM[U]lx' x+'fi(1 + 7")AU(x' It), 

oo 

D12 = l=4 ~ KIMIU]lx' x(1 - 7u)AU(x'P)+' 

=l~4KlMtUllx+" x+^(1 + D21 = u, u ,),#)A U(x, la) 

D22 5 KIM[u] l = x+fi,x(1 - 7u)AU(x , 12) + . (6) 
/=3 

Truncating the hopping parameter series in the de- 
terminant eq. (1) or in the expansion eq. (5) is, in 
principle, not equivalent. The numerical deviation in 
the actual calculation I have done (see later) is, how- 
ever, rather small: typically less than 1% in the value 
of ASgtff. Since in my computer code the determinant 
calculation was faster than the evaluation of  the trace 
of  powers of  the matrix D I used in most cases eq. (1). 

To speed up the code for the evaluation of the re- 
quired matrix elements of  the quark propagator 
( 1  - KM) -1 , a useful observation is that it is enough 
to compute for half of  the initial spin index values. In 
the Dirac-matrix representation, where 3'4 is given by 

74 = diag(1, 1 , - 1 , - 1 ) ,  (7) 

this is trivial on links in direction 4, since (1 -+ 74) is 
non-zero only for half of  the index values. For the 
other directions one can use, for instance (k = 1, 2, 3), 

1 1 1 
(1 + 7k) fi(1 -- ') '4)=(1 + 7k) ~(1 + 74)7k ~(1 -- "/4)" 

(8) 

This shows how the two lower components of  
e.g. M[U] l ^ (1 + ~'k) can be expressed by the up- x,x+k 
per two. 

The difficult task in the Monte Carlo calculation 
with unquenched Wilson fermions is the computat ion 
of  matrix elements of  the quark propagator 
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(1 - KM) -1 needed in eq. (1) or (6). In order not to 
violate detailed balance in the updating this has to be 

done every time a link is changed in the gauge configu- 

ration. The fastest possibility to do this is to deter- 
mine the hopping parameter expansion coefficients 

iteratively [ 11 ] and take the truncated series (or, if 
necessary, some of the Pad6-approximants) as an ap- 
proximation to the ratio of fermion determinants. 
After investing a substantial amount of effort to speed 
up this part of the code the computer program reached 
a performance where some first test calculations be- 
came possible on a modest size lattice. I have chosen a 
64 lattice at the SU(3) gauge coupling constant 13 
= 6/g  2 = 5.70. In order to have light quarks, the hop- 
ping parameterK has to be chosen properly for this ~- 
value. In the quenched meson mass calculations at/3 
= 5.70 the pion mass (and hence, by definition, also 

the quark mass) vanishes at Kcr - 0.1690 [11,13]. The 
effect of the quark determinant shifts Kcr to a some- 
what lower value. On the basis of the estimate made in 

SU(2) wi thNf  = 1 quark flavours [8] a good guess 
seems to be K = 0.15. (A qualitatively similar shift of 
the critical K value was also observed in SU(3) in the 
previous low-order hopping parameter expansion cal- 
cultaion [14] .) For the number of light flavoursNf 
= 3 was taken in the present calculation. The maxi- 

mum order of the hopping parameter expansion for 

the quark determinant was lma x = 16. This is high 
enough at 13 = 5.70 a n d K  = 0.15, because the last or- 
ders contribute only a few percent to the value of the 
determinant ratio. For the relative importance of the 

different orders see table 1. 

Table 1 
The average relative magnitude of the different orders of 
hopping parameter expansion in the logarithm of the ratio of 
quark determinants (i.e. the difference of effective actions) 
occurring in the updating at/3 = 5.70, K = 0.15 on a 64 lattice 
with 10 Metropolis hits per link: Configuration A: for all of- 
fered changes; Configuration B: for the accepted changes. 

Order Configuration A Configuration B 

4 0.44 ± 0.01 0.37 ± 0.02 
6 0.28 ±0.01 0.28 ±0.01 
8 0.151 ± 0.005 0.167 ± 0.008 

10 0.074 ± 0.004 0.092 +- 0.007 
12 0.033 ± 0.003 0.048 ± 0.008 
14 0.015 ± 0.001 0.026 ± 0.006 
16 0.008 ± 0.001 0.018 + 0.004 

An important property of the 16th order series for 

the ratio of the quark determinants needed in the 
Metropolis updating procedure is that higher and low- 

er order contributions are strongly correlated. This 
makes possible to estimate the result of the lma x = 16 
order series from some lower order (e.g. Ima x = 8 or 
lma x = 12) calculation. For instance, in the actual cal- 

culation at 13 = 5.70 with 10 Metropolis hits per link 
the lma x = 16 result can be obtained in the average by 

multiplying the lma x = 8 number by an extrapolation 
factor X ~- 1.14. The same factor needed from lma x 

= 12 to lma x = 16 is )t ~ 1.03. This brings a substantial 
gain in computer time but ,  of course, increases the er- 

ror for the fermion determinant. Monitoring the dif- 
ference from time to time on several hundreds of 
links, it turned out that the estimates based on the ex- 

trapolation from/max = 8 deviated in the average from 

the exact lma x = 16 value by 16%. The corresponding 

average deviation for lma x = 12 extrapolated to lma x 
= 16 was 5%. The error in the determinant ratio 
caused by this extrapolation is far from being normal- 
ly distributed. In most cases the deviation is much less 
than the average, but  sometimes (in a few percent of 
cases) also errors in the order of 100N occur. It seems 
plausible that the effect of the few cases, where the er- 
ror due to the extrapolation from the lower order to 
lma x = 16 is large, averages out and does not influence 
the updating process on the long run. It is also possible 
to improve the extrapolation to the higher orders by a 
more elaborate use of the covariance matrix among the 
lower and higher order expansion coefficients. 

The Monte Carlo run on the 64 lattices was started 
from a gauge configuration well equilibrated with the 

pure SU(3) gauge Wilson action at t3 = 5.70. Then, as 
a warm-up, 20 sweeps with 10 Metropolis hits includ- 

ing the (Nf = 3) quark determinant up to lma x = 8 or- 
der were performed. After this the configuration was 

duplicated and the updating with the/max = 16 quark- 
determinant started on the two copies. At the begin- 
ning of every sweep 100-300  randomly chosen links 
were updated using the exact lma x = 16 order deter- 
minants. From this the extrapolation factor between 

lma x = 8 or lma x = 12 and lma x = 16 was determined 
and then the rest of the links were updated, in a ran- 

domly chosen order, either with lma x = 8 or lma x -- 12 
including the extrapolation factor to lma x = 16. Alto- 
gether 80 such sweeps were performed on both con- 
figurations. Always 10 Metropolis hits were done per 
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Table 2 
The expectation value of planar Wilson loops 1.9(I, J) = Tr(...)/3 and the corresponding x-ratios x(l, J) = - ln  {[ W(I ,  J ) W ( I  - 1, J - 1 ) ] / 

[ W ( I  - 1 , J ) W ( I , J  - 1)] } for/3 = 5.70, Nf = 0 and for the two configurations A and B with/3 = 5.70, Nf = 3, K = 0.15. The errors 
for Nf = 0 were determined by making 6 groups out of the 120 measurements. The errors given for columns A and B were obtained 
by considering the 30 measurements as independent. 

Nf = 0 Nf = 3 

Configuration A Configuration B 

W(1, 1) 0.5472 ± 0.0015 0.5754 ± 0.0012 0.5720 ± 0.0013 
leG, 2) 0.3223 -+ 0.0020 0.3589 ± 0.0014 0.3544 ± 0.0015 
W(2,2) 0.1299 +- 0.0019 0.1621 ± 0.0012 0.1585 ± 0.0011 
W(1, 3) 0.1928 ± 0.0019 0.2290 ± 0.0016 0.2234 ± 0.0017 
W(2, 3) 0.0561 -+ 0.0016 0.0794 -+ 0.0012 0.0755 ± 0.0010 
W(3, 3) 0.0194 -+ 0.0010 0.0340 ± 0.0010 0.0294 ± 0.0009 

x(2, 2) 0.379 ± 0.015 0.323 ± 0.017 0.326 ± 0.018 
x(2, 3) 0.326 -+ 0.028 0.264 +- 0.033 0.280 ± 0.032 
x(3, 3) 0.222 -+ 0.045 0.134 ± 0.066 0.202 ± 0.064 

link, For the quark fields periodic boundary condi- 
tions were assumed (similarly to the gauge fields). The 

updating time for a single link with lma x = 8 was 2 s 
on the Siemens 7.882 (or IBM 3081D). The lma x = 12 
updating is about 8 times slower. Roughly 2/3 of the 

time was spent with/max = 8 and 1/3 with Ima x = 12, 
both extrapolated to lma x = 16. The average extrapo- 

lation factors were, respectively, X = 1.14 -+ 0.02 and 
X = 1.03 + 0.01. After each of the last 30 sweeps the 

rectangular Wilson loop expectation values were deter- 
mined on both configurations. The results are collected 

in table 2, where, for comparison, pure gauge results at 
/3 = 5.70 on a 64 lattice are also given. These latter 
were obtained in 120 measurements separated by 4 
sweeps. The qualitative difference between the pure 

gauge and unquenched Wilson-loop values corresponds 

to the expectation: the single plaquette value, for in- 
stance, is increased by more than 4% and the larger 
Wilson loops in the table show an increase up to 50%, 

consistent with screening of the colour charge. The 
picture is qualitatively similar to the Nf = 1 results ob- 
tained in ref. [7] with SU(2) gauge field but  the 

screening is much more evident. The statistics (and the 
lattice itself) is not large enough for drawing definite 
quantitative conclusions concerning the x-ratios [ 15] 
or other related quantities relevant for the quark-ant i -  
quark potential. This will be attempted in a subse- 
quent run on 84 lattice. 

The purpose of this letter was to demonstrate that 

an unquenched updating of some reasonably sized lat- 
tices is feasible for Wilson fermions by the use of the 
numerical hopping parameter expansion technique. 

The code can certainly be made faster even on a serial 
computer, but a substantial gain in performance is to 
be expected on a vector machine like the CYBER 205. 

In fact, the important part of the code (namely, the 
iteration for the hopping parameter expansion coef- 
ficients) is well suited for vectorization. The method 
is practicable also for larger lattices and for higher or- 
ders in the hopping parameter expansion (needed for 

larger 13's). For a given order in hopping parameter ex- 
pansion (and large lattice volume) the required CPU 
time grows linearly with the lattice volume. Similarly, 
for a given lattice volume (and large enough order) the 

necessary CPU time grows also linearly with the order. 
An advantage of the hopping parameter expansion 
method is its flexibility and the possibility of a good 
control of errors. 

I wish to thank the Computer Center of the 
University of Hamburg for the generous support of 

this computation on the Siemens 7.882. 
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