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Masses of all the glueballs which are created by 6- or 7-hnk operators are calculated to order 
g-  s in pure SU(3) hamiltonian lattice gauge theory. Several low-lying states are found with masses 
m(0 ++ *)-  1.4 ms, m(0 ++**) - 1.7 m s (* and ** stand for radial excitations and m s is the mass 
of the lowest 0 ++ state), m(0 - ) - 2 . 2  ms, m ( l + - ) - m ( l + - * ) - l . 6  ms, m(1 +)-1.8 ms, 
r e ( l - - ) -  2.2 m s and m(2++) - 1.3 ms. These values are obtained at the point g-2 =0.8, which 
lies near the scaling region. 

I. Introduct ion  

Since the pioneering work on glueballs in strong coupling (SC) hamil tonian lattice 

gauge theory  was carried out by Kogut ,  Sinclair and Susskind [1], many  authors have 
calculated masses of  glueballs in lattice theories using various methods [2-9,13].  

A m o n g  them, only the authors of  refs. [3-6] have actually made efforts to s tudy the 

whole SU(3) spectrum. They used Monte  Carlo (MC) variational methods.  In  these 

computa t ions ,  however, only a few masses have shown clear asymptot ic  f reedom 

behaviour ,  and  the spectrum is not  pinned down yet. There are also strong coupling 

expans ion  results (up to order  g-16) for the lowest three states that are made of  

simple plaquet te  operators,  namely j e c =  0 ++, 1 +-  and 2 ++, in the hamil tonian [1] 

and  the euclidean [7-9]  lattice gauge theories. They are consistent with each other 

( r e ( l + - )  - (1 .6-2 .0)m(0)  ++ and m(2 + + ) -  (1 .0-1 .2)m(0++))  *, but  disagree with 
the M C  results (m(1 +- )  - (2 .8-4.0)m(0 ++) and m(2 ++) - (1 .5-2 .8)m(0++))  [4,6]. 

In  our  opinion,  more  precise and improved calculation [10-12] should be done by 

M C  methods  [13]. In  addition, other possible approaches such as strong and weak 

coupl ing  (WC)  expansions [14,15] need to be exhausted for the calculation of  all 

* Alexander von Humboldt Fellow. 
* Even if we start from the same series, we will obtain different mass ratios depending on the methods 

of analysis. We quote the values from the extrapolation methods. The tangential method, which is 
regularly used in the analyses of MC results, is dangerous to apply to SC expansions when the series 
are short. 
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excited masses. In this paper we try to get a rough impression of the whole SU(3) 
spectrum with the aid of ordinary hamiltonian SC perturbation theory. Although the 
series we have obtained are rather short, they present many interesting first non-MC 
results. 

We will work in an SU(3) pure gauge system on a regular lattice with the standard 
hamiltonian [16] 

H =  g2(2a)  - I  E E~(£)EC(£) - (  ag 2 ) - i  ETr( u ( P )  + u+( P)} 
£,c P 

= g Z ( 2 a ) - l { W ( ° ) - y V } ,  y = 2 g  -4,  (1) 

where a is the lattice spacing, g the bare gauge coupling, U(P) the ordered product 
of link operators, U(£), around the boundary of a spatial plaquette P and the 
chromoelectric field E c ( c = l  . . . . .  8) is normalized to satisfy the commutation 
relation [EC(£), U(£')] = ½XcU(£)Stt, ( ~  is Gell-Mann's matrix). The perturbation 
calculation will be done for the dimensionless energy w = 2ag -2, and we will deal 
with the dimensionless hamiltonian W =  2ag-2H. The first term W (°)= E~E2(£ )  is 
~egarded as the unperturbed hamiltonian (E2(£ )  becomes the quadratic Casimir 
operator  when it acts on state vectors), while the second term - y V =  
-2g-4~2pTr(U(P) + U+(P)) is regarded as the perturbation with the expansion 
parameter y = 2g -4. First of all, we have to produce the zeroth order wave functions 
of glueballs. Since the hamiltonian has a cubic symmetry, more precisely the full 
octahedral one O h = O × i (O is the octahedral or proper cubic group, i denotes 
inversion) [17], every energy eigenstate must be in one of the irreducible representa- 
tions (rep.'s) of the symmetry group. The group O has only 5 irreducible rep.'s, 
namely the trivial rep. A1, another one-dimensional rep. A2, 2-dim. rep. E, 3-dim. 
vector rep. T 1 and another 3-dim. rep. T 2. There are simple relations between the 
irreducible rep.'s of the group O and integer spin J rep.'s, Ds, of the proper rotation 
group SO(3) restricted to the group O. How many times an irreducible rep. R of O 
appears in a rep. D s can be determined easily with the aid of an orthogonality 
relation for the irreducible characters x(R).  We reproduce the results of ref. [17] for 
the first few cases 

D O = A1, D1 -- T1, 

0 2 =  e . 03 = T* * 

D 4 = A  1 • E ~  T x • T 2. (2) 

The extension of these formulae for the full symmetry groups O h and 0(3) is trivial. 
One should only assign the parity of the representations, namely change the 
representation symbol R into R e- + 1. The cubic symmetry O n of the hamiltonian 
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system is expected to turn to the approximate, rotational symmetry 0(3) in the weak 
coupling region [18]. Accordingly the cubic irreducible multiplets in the strong 
coupling region will turn into the ordinary integer-spin multip!ets in correspondence 
with the decomposition formulae (2). The confluence or splitting of the levels for 
higher spin cases ( J  > 2) will occur in the intermediate coupling region 0.4 < y _< 1.65, 
which has been determined by the behaviour of the fl-function a × d g / d a  deduced 
from the SC expansion series of the string tension up to the order of y6 [19]. A 
discussion of the actual cases will be given later. 

2. Wave functions 

The irreducible sets of zeroth-order state vectors are constructed as follows [3]. 
First, we apply the various types of gauge invariant operators at a lattice site n (for 
simple examplessee fig. 1) to the vacuum II~> in such combinations as to have 
definite charge conjugation parities (C = + 1): 

(3) 

where et denotes the type of the operator (#1 ,  # 2  .. . .  in fig. 1), index i (=  1 . . . . .  N~) 
distinguishes operators within sets of operators of the same type (for # 2* and # 3", 
see fig. 2) and O F is the complex conjugate of O~. Notice that for the operators 
depicted in fig. 1 the charge conjugation is equivalent to taking the complex 

0#~ 0#2 0#3 

1 

0 #,- 01:i 2 .  0 # 3N 

Fig. 1. O*~x-O ~.4 are traces of the products of link operators U(£)  along the loops. 0 #2* and O #3. are 
defined as O n = ½vr3eijke~,,n × U(1)izU(2)mU(3)k,, where U(2) is an ordinary operator on link 2, U(1) 
and U(3) are the products of operators along bended lines 1 and 3, respectively. The numerical factor ½~/3 

is necessary in order to get unit vectors ( 110 ~1 fg)II 2 = 1). 
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Fig. 2. (a) Opera tors  O~2*(n) ( i =  1 . . . . .  6). Ze ro -momentum states I # 2 * , C  = ± 1 ,  i )  t ransform into 
+ 1 2 # * ,  C = + 1, i )  under  the space inversion. Therefore P =  C for all 1 # 2 " )  states. (b) Operators  
O/~3"(n) (i  = 1 . . . . .  12). Ze ro -momentum states t ransforms as I-# 3", C = + 1, i )  ~ + I # 3", C = ± 1, 

i + 6) (i = 1 . . . . .  6) under  the space inversion. 
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conjugate, because U.~ transforms into U., + under the charge conjugation (U,~- 
exp[igJ~+C'dxA~(x)], and At(x ) ~ -A~,(x)). Next, we construct the zero,momen- 
tum states, averaging over the whole space (we are interested only in the masses): 

la, C= + 1 , i ) =  V~-a~_,la(n),C = +_l,i), (4) 
n 

where N s is the number of lattice sites. Each zero-momentum vector space (dimen- 
sion = N~) distinguished by a and C is a representation space of the cubic group 
(not irreducible in general), because each vector ]a, C, i) in such a space transforms 
into another one In, C, j )  in the same space under a cubic rotation. The N, × N~ 
matrix representation F~C(G) of the group dement G can be easily obtained by 
simple geometrical consideration (the transformation property of the vectors under 
the space inversion G = i can be deduced from that of the link operators, U,., 
U_+n_~,,~. See fig. 2). We have to decompose each space further into irreducible 
representation spaces using the orthogonality relation for the irreducible characters 
of O h [17]. For the spaces of 4-, 6- and 8-1ink states, the decomposition formulae 
have been obtained in ref. [3]. Here we obtain the results for the spaces of 7-1ink 
states: 

F#2*+=A~-+~Af+~9 2E ++ ' 

:r2--, 

AI++  T ; + ,  + , 

The symbols on the right-hand side stand for R ec. Finally, we have to construct 
orthonormal state vectors explicitly for each irreducible representation. This has also 
been done in ref. [3] by the use of Schur's lemma for 4-, 6- and 8-1ink states. We have 
obtained 7-1ink irreducible states as linear combinations: 

]ReC, r ,a)=Eb,(ReC,  r,a)la, C,i) ,  r = l  . . . . .  NR, (6) 
i 

where only the index i is summed over, and r distinguishes the vectors in the 
representation space. The coefficients b~(R ec, r, a)'s are given in table 1. 

3. Mass calculation 

We have calculated the masses of all these 6- and 7-1ink states up to second order 
in y. The results are given in table 2 together with the results for 4-1ink states that 
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TABLE l a  
Irreducible wave functions I R ec, r, #2*)  as linear combinations of I #2" ,  C, i ) 's  

R e C ~  1 2 3 4 5 

A~ -+ 1 1 1 1 1 1 
A~ + 1 1 1 - 1  - 1  - 1  
E ++ 0 1 - 1  - 1  0 1 

2 - 1  - 1  - 1  2 - 1  
E +÷ 0 1 - 1  1 0 - 1  

2 - 1  - 1  1 - 2  1 
1 0 0 0 1 0 

T~-- 0 1 0 0 0 1 
0 0 1 1 0 0 
1 0 0 0 - 1  0 

T Z -  0 1 0 0 0 - 1  
0 0 1 - 1  0 0 

According to C =  +1 the vectors 1#2" ,C  = +1, i)  have to be chosen in eq. (6). Suitable overall 
normalization factors should be understood (e.g. b,(A1 ++, # 2 * ) =  ¢'6 - -1  for all i, b 1 of 5(T1 - - ,  1, #2*)  

TABLE lb  
Irreducible wave functions I R Pc, r, # 3") 

ReC• 1 2 3 4 5 6 7 8 9 --6 -]- --2 

A~ ++, A~-- 1 1 1 1 1 1 1 1 1 1 1 1 
E ÷+, E - -  - 1  1 0 - 1  1 0 - 1  1 0 - 1  1 0 

- 1  - 1  2 - 1  - 1  2 - 1  - 1  2 - 1  - 1  2 
- 1  - 1  0 - 1  1 0 1 1 0 1 - 1  0 

T~ -+, T f -  0 - 1  - 1  0 - 1  1 0 1 1 0 1 - 1  
- 1  0 - 1  1 0 - 1  1 0 1 - 1  0 1 

0 0 1 0 0 - 1  0 0 1 0 0 - 1  
T~ -+, T { -  1 0 0 - 1  0 0 1 0 0 - 1  0 0 

0 1 0 0 - 1  0 0 1 0 0 - 1  0 
1 - 1  0 1 1 0 - 1  1 0 - 1  - 1  0 

T~-+, T~ - 0 1 - 1  0 1 1 0 - 1  1 0 - 1  - 1  
- 1  0 1 1 0 1 1 0 - 1  - 1  0 - 1  

For i = 4, 5, 6, 10, 11 and 12 the vectors ( - 1) I #3*,  C = - 1, i)  have to be chosen corresponding to 
C =  - 1  (e.g. bx(A~-- ,#3*)= - b4  (d~--,  # 3 * ) =  ¢ ' ~ - 1 ) .  For the rest, the rule is the same as in table 
la. 
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TABLE 2 

w = 2 a g - 2 m  of the states  ]R vc, r, a> up to second order  in  y = 2 g  - 4  

a R vc  const  y y2 

# I  Al++ 1_6 - 1 - 0 . 1 0 6 4  3 

E ++ - 1 0.1093 

r l  + -  1 0.0180 

#2 A~ + 8 0 - 0 . 9 5 2 7  

A~  + - 0 . 9 5 2 7  

E ++ - 0 . 9 5 2 7  

E ++ '  - 0 . 9 7 7 2  

7"1+- 0.0473 
T ; - '  0.0288 

# 3  A { -  8 0 0.4146 • 

E ++ '  - 0 . 8 1 1 0  

E - -  - 0 . 0 8 5 5  
T~ + - 0 . 7 1 0 5  

T f -  0.1646 

T2 - +  - 1.0438 

T2 + - '  0.1413 

# ( 3  + 4) A~  + 8 - 1.1547 - 0 . 9 5 3 0  

T~- 1 - - 0 . 9 4 2 8  - 0 . 3 9 4 4  
7"2+ + - 0 . 6 6 6 7  - 0 . 8 1 1 7  

# ( 3  - 4) A~  + 8 1.1547 - 0 . 0 8 7 0  
7"1+- 0.9428 0.3127 

T2 ++ 0.6667 - 0 . 3 1 1 7  

# 4  A ~ -  8 0 - 0 . 2 0 4 6  

# 2 *  AI++, 2_a 0 0.8279 3 

A~ + 0.6806 

E + + 0.6806 
E ÷ + '  0.8138 

T{  - '  0.2708 

T2- - 0.0806 

# 3 *  AI++, 2_8 0 - 0 . 0 3 9 9  3 

A 2 -  0.3785 
E + + ' 0.2820 

E - -  0.0708 

T1 + -  , 0 . 1 5 9 6  
/'I- + 0.4404 
T { - '  - 0.4776 

T2 ++ 0.7734 
r ; -  0.0455 
T2-2 + 0.6455 
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have been obtained in ref. [1], where a detailed explanation of the calculational 
method is presented. We will mention a few important points which are peculiar to 
the calculation for 6- and 7-1ink states. At zeroth order, all the 4-1ink states are 
degenerate with the dimensionless energy w~°~(4)= 2ag-2E = 16 T,  likewise the 6-1ink 
states with w~°)(6)= 8 and 7-1ink states with w~°)(7)=-~. To first order, all the 
diagonal matrix elements of V among 6- or 7-1ink states vanish, while the off-diago- 
nal elements between the 6-1ink states IReC, r, # 3 )  and [RPC, r ', # 4 ) ,  both of 

T + + ~ have non-zero which belong to the same representations (R pc = A (  +, T ( -  or 2 ), 
values through the processes depicted in fig. 3. Mass splitting occurs by the 
diagonalization procedure, as is well known from degenerate perturbation theory, 
and the corresponding zeroth-order eigenstates are determined as 

IReC, r , # ( 3 + 4 ) ) = ~ / - f f . - ' (  IReC, r ,#3)+_  IReC, r , # 4 ) ) ,  (7)  

with suitable relabeling of r ' s  within the space of [R pc, r, # 3)'s, We chose a phase 
convention such that the states IR ec, r, # ( 3  + 4)) would correspond to the lower 
mass states. Next, to second order, we calculate the matrix elements of the operator 

1 - Pk  
W (2) = gw(o)(k ) _ w(O) V, Pk = ~lk ' l i nk ) (k ' l i nk [  ' a n  (8) 

when we are interested in the masses of k-link states. Off-diagonal elements between 
I Rpc, r,  # 2 )  and I Rj'c, r', # 3 )  (R Pc = E ++ or T f - )  and those between 
I Rec,  r, # 2 * )  and IRP c, r', # 3 * )  (R  ec =A1 ++, E ++ or T { - )  are nonzero in general. 

0#8 

Fig. 3. An operator 0 **3 grows into -~ 0 *4 + 1VfffO#8 by one application of the perturbation operator 
V. The operator O *s is defined as O #s = {¢~U(1)ijU(2)ktUS(3)~ljA~,jh~,, where U(1) and U(2) are the 
products of ordinary operators along bended lines 1 and 2 respectively. Us(3) is the product of octet 
representation operators along 3 and h " (a = 1 ..... 8) is Gell-Mann's matrix. A numerical factor {¢2- is 

necessary in order to get a unit vector [[o*S I ~2)II 2 = 1). 
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For these states, by the diagonalization of W (2), the mass splitting occurs and the 
zeroth-order wave functions are determined as the linear combinations 

IR *'c', r, a )  = cosS~alR *'c, r, a)  + s inS~lR  ec, r, ~8) , 

]R Pc', r, ]3) = - s i n  0~/~IR ec, r, a)  + cos 0~/~IR pc, r , /3) ,  (9) 

where a and fl stand for # 2  and #3 ,  or #2*  and #3* respectively. The 
mixing angles 0~  depend on both the values of diagonal and off-diagonal matrix 
elements, and for most cases [O~[ = (20-30) °. Attention should be paid to E +÷ 
cases. There are two equivalent E ÷+ representations in the spaces 1#2)  and also in 
[ # 2 " ) .  By a suitable linear transformation within each space, one E ++ representa- 
tion (we denote it as IE ++, r, # 2 )  or [E ÷+, r, #2*)  respectively) de.couples from the 
others, namely the off-diagonal elements ( E + + , # 2 [ W ( 2 ) [ E + + , # 3 )  or 
( E  ++, # 2 " [  W(2)[E ++, #3*)  vanish, and then becomes a zeroth-order eigenstate. 
For the remaining E ++ states, the regular diagonalization procedure was used and 
the notation (9) was used for the resulting zeroth-order order states. The calculation 
for all other states in table 2 is straightforward, because there is no possibility of 
degeneracy lifting (no off-diagonal element). 

4. Mass ratios 

From these series, we produced the series for mass ratios of all states to the lowest 
scalar (Ih~ ++, # 1 ) )  mass m s, and compared the values at y =  1.3 (g-2___ 0.8) in 
order to get a rough spectrum pattern (see fig. 5). The Pad6 extrapolation method is 
inapplicable for these low-order series, because each [1,1] Pad6 approximant has a 
pole in the y > 0 region in general, except for a few cases. The point y = 1.3 was 
chosen as a typical value, because it lies in the upper half of the rather wide 
crossover region, 0.4 < y _< 1.65 [19]. The whole spectrum does not change drastically 
when the y-value is changed from 1.0 to 1.6. In most cases the change in the ratio 
m / m  s of a higher mass is larger than that of a lower mass (several typical ratios as 
functions of y are drawn in fig. 4). Moreover the fourth-order series of the mass 
ratios for 4-1ink states [1] give, at this point, the consistent values ( m ( T ( - ) / m  s - 1.4 
and m ( E + + ) / m  s - 0 . 9 )  with those for the second-order ones ( m ( T ~ - - ) / m  s - 1 . 6  
and rn(E++)/ms ~ 1.1. In addition, [2, 2] Pad6 approximants of these fourth-order 
series also give consistent values in the continuum limit ( m ( T ~ - ) / m  s - 1 . 6  and 
m(E++) /m~ - 1.0 as y ~ oo). Therefore we hope that our second-order results at 
y = 1.3 will give rather good estimates of the masses for other excited states. At 
y = 1.3, the series for the ratio of m s to the square root of the string tension a [19] 
up to second order and fourth order give m J ¢ - o  - 2 . 8  and 2.6 respectively. This 
means that the mass of the lowest scalar is fixed around m s - 1.1 GeV, provided 
that ¢ff is about 400 MeV. This value should, however, be understood to have a 
large systematic error. Let us now discuss the results for each case in turn. 
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Fig. 4. Ratios of masses to the lowest scalar mass m s (second order in y = 2g-4). Curves a, b, c, d, e, f 
and g are for states [A~+,#(3+4)), IA1--,#3), [Tt+-,r,#l), [Tl+-,r,#(3 +4)), [T{- ' , r ,#3*) ,  
I E++, r, #1) and IT2 ++, r, #(3 + 4)) respectively. Dotted curves c' and f' are fourth-order results for c 

and f from ref. [1]. The crossover region is 0.4 _<y _< 1.65 [19]. 

(i) A1 ++. There are two stable (m < 2ms) excited states, IA1 ++, # ( 3  + 4)) and 
[A~ ++, # 2 ) .  According to the decomposition formulae (2), the A 1 state can appear 
only in spin-0, -4 and higher spin states. From the naive expectation that the masses 
of higher spin states a re  rather heavy, we can suppose that both of these low-lying 
states belong to the radial excitations of the lowest scalar. Using the notations * or 

• * for the radial excitations, we get 

rn(0 ++*) - 1,4ms, rn(0 ++**) - 1.7m s . (lOa) 

Series for these two mass ratios have [1,1] Pad6 approximants which are regular in 
the positive half-space y > 0. They give in the continuum hmit m(0 ÷+*) - 1.5 m s 
and m(0 ÷+ **) ~ 2.3 m s. These results might be used'for the estimation of systematic 

errors. 
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Fig.  5. Mass ratios at y = 1.3 ( g - 2  __ 0.8) from the second-order series. 
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(ii) A{- .  The lowest state IA{-, # 3 )  can be regarded as 0 - - .  This is an "odd 
ball", i.e. a state which cannot appear in the usual quark model states. The 
prediction is 

m ( 0 - - )  - 2.2m s . (lOb) 

MC results give m ( 0 - - ) -  (2.9-4.0)m s [4, 6], omitting error bars. 
(iii) T1 +-. The two (×  3) lowest states, IT1 +-, r, # 1), which have been considered 

in ref. [1], and IT} +-, r, # (3  + 4)), are practically degenerate. From formulae (2), we 
can regard these states as axial vector. The prediction is 

rn(14-)  _ m ( l + - , )  _ 1.6m~. (lOc) 

A quasi-level crossing or repelling will occur near the point y = 1.3 (see (c) and (d) 
in fig. 4), but the change of the masses will be small compared to the rather large 
errors which we are taking into account implicitly. [1,1] Pad6 for m ~(3 + 4) (T~--)/m s 
goes to 1.9 in the continuum limit and [2,2] Pad6 for m # 1 ( T ~ - - ) / m  s g o e s  t o  1.6 [1]. 
MC results give m(1 +-) - (2.8-4.0)m~ [4, 6]. 

(iv) T1 -+. The lowest state IT~ +, r, # 3 )  may be 1 -z,  an odd ball. The prediction 
is 

m (1- +) - 1.8m~. (10d) 

This is the lowest odd ball we have obtained. This result is consistent with ref. [6]. 
MC results are m(1 -+) - 2.3m S [6] and m ( 1 - + ) -  (3.1-3.9)ms [4]. 
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(v) T~--. The lowest IT/--', r, # 3 " )  may be 1-- ,  the screened gluon 

r e ( l - - )  - 2.2m s. (10e) 

MC results are r e ( l - - ) -  (3.1-4.4)m s [6]. 
(vi) E +÷ and T2 ++. We naively expect that the lowest states in both representa- 

tions, [E ++, r, # 1 )  and IT2 ++, r', # (3  + 4)), will form a degenerate 5-dimensional 
tensor multiplet in the weak coupling region. Although the series are too short to 
manifest this degeneracy, we can see the tendency of these two masses to meet at 
some point (y ~ 2.5) beyond the crossover region (see (f) and (g) in fig. 4), where the 
predictive power of the series may be weak. We point out here that it is another way 
of checking the restoration of 0(3) invariance to see whether these states become 
degenerate in the weak coupling region (the splitting in the strong coupling region is 
such that the ratio m(T~-+)/m(E ++) ~ 1.5). The situation will be the same in the 
euclidean theory, and the MC simulation may be convenient for this purpose. The 
actual mass of the 2 ÷÷ state will be the mean value of rn(E +÷) and m(T~+). So 

m (2 + +) - 1.3m s . (10f) 

[1,1] Pad6 for m#(3+4)(T~+)/ms goes to 1.8 as y ~ o 0  and [2,2] Pad6 for 
m#l(E++)/ms goes to 1.0 [1]. The MC results are m(2 ++) - (1.5-2.8)ms [4, 6]. 

(vii) E - - ,  T/--, T 2 -  and A2-. All the lowest states are practically degenerate. It 
is very difficult to assign their spins correctly, because there are many possibilities 
( 2 - - = E - - +  T2-, 3 - - = A 2 - +  T/--+ T 2 -  and 4 - - - - A ~ - +  E - - +  T/--+ T2-  ). 
We can only say that 2- - ,  3 ~- or 4 - -  will be found with mass m - (2.0-2.5)m~. 

We will not say anything about other states because of the above mentioned 
difficulty. 

5. Conclusions and discussion 

We obtained several crude predictions (10a)-(10b) for low-lying glueball masses 
from the strong coupling expansions up to second order. In most cases, they are 
rather low compared with'the MC results [4, 6]. In particular for 0 ÷+ and 1 +- cases, 
there appeared radial excitations with masses lying near the lowest ones. If this is the 
case, the analyses of MC variational calculations should be done more carefully for 
these cases. The validity of the simple exponential decay assumption for the 
correlation functions ( R VC l e- atH I R VC ) - e- atm~ R pC) crucially depends on the preci- 
sion of the trial wave functions. In the MCV calculations only such states which are 
made of simple loop operators have been taken into account as basis vectors. On the 
other hand, in the hamiltonian SC expansions, all possible states, which appear as 
the intermediate states in the calculation, are taken into account systematically. 
Typical non-simple-loop states which have appeared in our calculation are states 
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that are created by operators like O #2. and O #3. but whose link variables are 
suitably replaced by others belonging to sextet or octet rep.'s (see also O #s in fig. 3). 
The exact eigenstates have the components of all these states, and the contribution 
(absolute value) of each component to the masses is comparable to that of a 
simple-loop state, at least in a second-order calculation. 

We also proposed a method of checking the restoration of rotational invariance. 
That  is to examine the degeneracy of the lowest E ÷+ and T2 ++ states in the weak 
coupling region by some calculational methods. For the SU(2) case, the weak 
coupling expansion [15] has consistently shown this degeneracy. And it also suggests 
the existence of stable low-lying states (m(0++*) - 1.Tin s, m(2++) - 0.Sin s and 
m(2 ++*) - 1.6ms). For  the SU(3) case, there is no WC expansion result at present 
because of the practical complexity. The higher-order SC expansions for the low-lying 
states in SU(3) case will be promising. 

We have not calculated the masses of 8-link states. Since there are many states 
which belong to the same rep.'s (see table in ref. [3]), the diagonalization of the 
hamiltonian is a very hard task. However, there are some interesting states among 
them, for example 0 -÷, 0 ÷-  and 1 +÷, which do not exist in 4-, 6- and 7-1ink states. 
Therefore, the second-order calculation for 8-1ink states will also be interesting. 

In the euclidean lattice gauge theory (LGT), it is difficult to extract an excited 
mass from SC expansion series for a correlation function between general (e.g. 
6-1ink) operators. Such a function generally has contributions from the lowest mass 
states ( m s -  41ng 2) in addition to the expected one from an excited mass state 
(ma - 6 In g2) (There is an attempt to estimate the masses of excited states in the SC 
limit in 3-dim. euclidean LGTs [20]). In order to get a simple exponentially decaying 
function, we need a considerably precise definition of the operator corresponding to 
the excited mass eigenstate. This is the reason why we worked in the hamiltonian 
L G T  instead of  working in the euclidean LGT. 

The author would like to thank Prof. G. Mack, G. Miinster, B. Berg and G. 
Schierholz for useful discussions, especially G. Mack and G. Mianster for reading the 
manuscript carefully. He also acknowledges support from the Alexander von 
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