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When operators of dimension 6 are added to the standard WiLson action in lattice gauge 
theories, physical positivity is lost in general. We show that a transfer matrix can nevertheless be 
defined. Its properties are, however, unusual: complex eigenvalues may occur (leading to damped 
oscillatory behaviour of correlation functions), and there are always contributions in the spectral 
decomposition of two-point functions that come with a negative weight. 

1. Introduction 

With the aim of reducing finite (ultraviolet) cutoff effects in lattice gauge theories, 
Wilson [1] and later Symanzik [2] proposed adding a set of judiciously chosen 
irrelevant operators to the standard one-plaquette action. These new terms also 
couple link variables separated by more than one lattice spacing, and consequently 
the old construction [3,4] of the Hilbert space of physical states and of the Hamilton 
operator breaks down. From experience with higher derivative scalar field theories, 
one  expects that,  in one or the o ther  way, physical  posi t ivi ty is in fact violated. The  

quest ion then is to what  extent  it is violated and how exactly it is restored in the 
con t inuum limit. 

In  this paper ,  we show that  a t ransfer  matr ix  T acting in a Hi lber t  space 9~ (with 
posi t ive defini te scalar product )  can always be  def ined (sect. 3). However ,  T is in 
general  not  hermit ian,  and  this leads to a n u m b e r  of  complicat ions,  which are 
discussed in sects. 4 -6 .  An  impor t an t  result is that  a clean defini t ion of  the not ion of 
"ene rgy  value"  in con t inuum limit  improved  lattice gauge the, ones  is ob ta ined  (it will 
be  needed later for  a new calculat ion of the coefficients of  the d imension 6 opera tors  

* Heisenberg foundation fellow. 
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(a) (b) 

[i5 ...... 

[c} {d) 

Fig. 1. Elementary loops C on the lattice A. (a) and (b) are planar loops, while (c) and (d) extend in 3 
dimensions. Dashed lines are drawn to guide the eye. 

in the improved action [5]). Furthermore, we find that near the continuum limit, 
positivity is only lost at energies of the order of the cutoff so that the effect becomes 
i nc rea s ing ly  u n i m p o r t a n t ,  when the bare coupling constant go is made smaller. 

2. Improved lattice gauge theories 

In this section we define the class of lattice gauge theories that we are going to 
consider. Thus, let A be a T x L x L x L hypercubic, periodic lattice. Gauge fields 
living on A are conveniently identified with fields of matrices U(x, #)~ SU(N), 
x ~ g 4, /x = 0 . . . . .  3, which are periodic: 

+ = V ( x ,  

U(x+Lfc,#)=U(x,#) for k = 1 , 2 , 3 .  (1) 

Here, /2 denotes the unit vector in the positive p-direction and the periods T and L 
are positive integers*. Instead of the periodic boundary conditions on the field 
implied by eq. (1), we could just as well assume twisted periodic boundary condi- 
tions in space-like directions without affecting any of the statements and formulae 
below. 

To write down the "improved" action S[U] of a lattice gauge field U(x, ~), some 
preparation is needed. First, we define 4 sets $, (i = 0 . . . . .  3) of elementary closed 
loops C on A (see fig. 1). g0 is the set of all loops (a), which wind once around a 
single plaquette. The set g~ contains all loops (b) enclosing two coplanar plaquettes. 

* For technical reasons, we shall actually assume T>_- 4. 



M. L~eher, P. Weisz / Properties of transfer matrix 351 

$2 and $3 are the sets of 3-dimensional loops (c) and (d), respectively. Loops that 
differ by orientation only, are considered equal, so that $i has NiTL 3 elements, 
where 

N o = 6 ,  N~ = 12, 

N 2 = 16, N 3 = 48. (2) 

Next, for any loop C set 

E ( e )  = ReTr[I - V ( ¢ ) ] ,  (3) 

U ( e )  being the ordered product of the link variables U(x, it) along C. Note that 
E (C) is independent of the orientation of C. 

The general form of the improved action considered here is [6] 

3 

S[U] : E ~'. K,E(G), (4) 
i -O C~$ t 

where the coefficients K~ are supposed real*. They are to be determined from some 
improvement condition, but we shall not discuss this question any further, because 
the actual value of the K i's is irrelevant for the construction of the transfer matrix. 
Given the action, expectation values of gauge invariant combinations 0 of the field 
U( x, It) are defined as usual: 

1 3 
1-I 1-I dU(x, it)O[U] e-sly1, (5) 

x ~ A  t t - 0  

3 

z = f  I'-I 1-I dU(x, it) e-stvl, (6) 
x ~ A  ~.-0 

(dU denotes the normalized Haar measure on SU(N)). 
Actually, actions S[U] much more general than (4) allow the construction of a 

transfer matrix. In particular, other classes of loops C may be added and ~(C) 
could be replaced by any real gauge invariant and orientation independent function 
of u(C).  

3. Definition of the transfer matrix T** 

First, we must specify the Hilbert space ~ in which T acts as a linear operator. In 
order to motivate our choice, consider the classical theory defined by the action (4). 

* They are related to the bare coupling constant go through K o + 8K l + 8Ke + 16K 3 - 2/go 2. 
** We assume that the reader is familiar with the transfer matrix formalism in ordinary lattice gauge 

theories (refs. [3,4]). 
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In the U ( x , 0 ) = !  gauge, the associated field equations assume the form of a 
fourth-order difference equation in the time coordinate x 0 (if K 1 ~ 0). To have a 
unique solution, initial data must therefore be given on 4 distinct equal time 
hyperplanes in A. This leads us to suspect that in quantum theory it is meaningful to 
talk about a transition amplitude to go from a given gauge field on a pair of 
consecutive equal time hyperplanes to some other gauge field on a later pair of 
hyperplanes. Wave functions ~k that can be propagated with such an amplitude must 
be functions defined on the set of all lattice gauge fields U, which live on a fixed 
double layer of equal time hyperplanes in A (see fig. 2). Thus, we make the ansatz 

tk=~[V+,Uo,U_], (7) 

where U+(x, k) and U_(x, k) are gauge fields on the top respectively bottom 
hyperplane of the double layer, and Uo(x ) sits on the time-like links connecting the 
two hyperplanes (we are no longer insisting on the temporal gauge U(x, 0)= I). 

A wave function of type (7) is called gauge invariant if 

=,[v] 

whenever 0 and U are gauge equivalent. In the course of the discussion, it will 
become clear that it is sufficient to consider gauge invariant wave functions only. A 
convenient gauge invariant scalar product of two wave functions ~p and ~k is then 
given by 

=f 
~[UI = ]-I dUo (x) 1-I dU+ (x, k) dU_ (x, k), 

X x~k 
(8) 

and the Hill~rt space 0C is identified with the space of all gauge invariant wave 
functions ~ of type (7), which have finite norm: (~, ~b) < oo. 

U÷ 

I . - I i i i  
¢ 
O_ 

Fig. 2. Side view of a double layer of equal time hypcrplancs in A. 
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We now proceed to define the transfer matrix T. The characteristic properties we 
want T to have, are: 

(i) T is a bounded, linear operator in %. 
(ii) The partition function Z (eq. (6)) is given by 

Z - -  Tr{T r} ,  (9) 

where "Tr"  means the trace in the Hilbert space %. 
(iii) Let A[U] and B[U] be two bounded gauge invariant functions of the double 

layer field U = (U+, U 0, U_). Define an operator .,t (and similarly B) through 

(d,)[u] (10) 

Then, for any integer t with 0 ~< t ~< T, we have 

(A,Bo) = 1 T r {  r~-,Ar,~ }. (11) 

Here, the euclidean observable A s (and similarly Bs) is equal to A[U], where U is 
identified with that part of the euclidean field integrated over in eq. (5), which lives 
on and between the x 0 = s and x 0 -- s + 1 hyperplanes. 

It is not too difficult to guess an operator T with the above properties (experience 
with ordinary lattice gauge theories and with an "improved" harmonic oscillator has 
been helpful at this stage). Thus, writing T in the form of an integral operator, 

we have 

(r,)tu] = f ®tv] octu, vl,tv], 

K[v, v] = e-asw,'qI-I*(u_(x, k), V+(x, k)) 
x,k 

(12) 

(13) 

(8(U, V) denotes Dirac's 0-function relative to the Haar measure on SU(N)).  The 
exponent AS in eq. (13) is given by 

3 
A S [ U ,  V] = E Z Ki,r(¢)~(¢), (14) 

i -0 C~,  

where the sets of loops ~i are defined as the Si's, but contain only those loops which 
can be drawn on the triple layer of equal time hyperplanes shown m fig. 3. The 
"time-factor" T(~) is equal to 1, ½ or ] depending on the time-like extent of C, 
which can be 2, 1 or 0 lattice spacings. 

Eqs. (12)-(14) define the transfer matrix. Since the kernel • is gauge invariant, T 
maps gauge invariant wave functions onto gauge invariant ones. Furthermore, by the 
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U. 

Uo-4• 

u=v. Vo-. 

V_ 

Fig. 3. Side view of the triple layer of equal time hyperplanes in A occurring in the definition of the 
transfer matrix. The identification U_ - V+ is implied by the 8-functions in eq. (13). 

Cauchy-Sehwarz inequality, we have 

I(r~)[g]l ~C dVo(x)l-l dV_(x,k)l~[V]12v+_u_ 
x , k  

for some constant C.  Hence 

IIrLkll ~ Cll~kll (15) 

and T is thus a bounded operator acting in ~ .  The properties (ii) and (iii) above are 
also readily verified. Note that the integral kernel of T r is gauge invariant in both 
arguments U and V separately. The  trace of T r in the space of all wave functions is 
therefore equal to the trace in the Hilbert space ~ ,  which contains only the gauge 
invariant wave functions. 

4. Spectral properties of the transfer matrix 

In ordinary lattice gauge theories, the transfer matrix is self-adjoint and can be 
diagonaliTed. Eq. (11) then yields the spectral representation for euclidean two-point 
functions, which is the conceptual basis for almost all modem calculations of the 
mass spectrum in lattice gauge theories. In particular, the eigenvalues ~ of the 
transfer matrix are interpreted as energy values through 

E = - l l n ( h / A )  (16) a 

(a: lattice spacing, A: largest eigenvalue of T). 
In improved lattice gauge theories, the transfer matrix is no longer hermitian. 

Rather, one finds from eqs. (12)-(14) that 

r ,  = o r o ,  (17) 
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where 0 is a kind of time inversion operator: 

V _ l = , p [ v _ , v o ' , v + ]  . 

Obviously, 

0 t = O, 0 2 = 1 ,  

(18) 

(19) 

so that 0 has eigenvalues + 1. Since T is not hermitian (and not normal, i.e. 
[T*, T] ~ 0), the usual spectral theory does not apply. However, T is otherwise a 
rather well-behaved operator so that other results from the mathematical literature 
may be invoked to prove properties of the spectrum of T. In what follows, we shall 
not give detailed proofs of the statements made, because they can be derived easily 
from well-documented theorems (e.g. refs. [7-9]). 

The spectrum o(T)  of T is defined to be the set of complex numbers ~,, for which 
the operator h -  T has no (bounded) inverse. A first series of results on o(T) 
derives from the fact that T 2 can be represented by a smooth integral kernel and is 
hence a compact operator. Thus, o(T)  is a discrete set with ~,--0 being the only 
accumulation point. Furthermore, for any A ~ o(T), h ~ O, there are generalized 
eigenvectors ~k ~ % satisfying 

( T - X ) ~ = 0  (20) 

for some k --- 1, 2, 3 . . . . .  The space of all such eigenvectors is denoted by %x and it 
is known that 

m x = d im% x < oo. (21) 

%x is invariant under the action of T, so that relative to a basis in %x, T is 
represented by an m x x m x matrix. If this matrix is transformed to the Jordan 
normal form, then eq. (20) implies that' all its diagonal elements are equal to h. It 
follows from this observation that there exists a smallest power n x such that 

( T -  X)n~q, = 0, for all ~ ~ H a . (22) 

Usually n x = 1 as in the hermitian case, but we have found examples (improved 
harmonic oscillator, strong coupling lattice gauge theories), where n x > 1 for some ~. 

For any spectral value )t # 0, a projector Px can be defined such that 

%x = Px%, 

A convenient formula for Px is 

P~=Px. (23) 

dg r)-' ,  (24) 
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where the integration path encloses X, but no other spectral value. Further im- 
portant properties of the P~'s are easily derived from eq. (24): 

[T, Px] = 0, (25) 

PxP,  = 0 (if ~, •/z), (26) 

Ptx = OPx.O, (27) 

(note that since T is real, A ~ o(T) implies A* ~ o(T)). 
If T would be hermitian, we could now write down the spectral decomposition 

r=  E xe . 
; ~ 0  

Such a relation is, however, not true for non-hermitian operators in general (there 
are difficult convergence and completeness problems). What can be established with 
little effort, is the following statement, which will be quite sufficient for our 
purposes. Let S be a finite subset of o(T) not containing ~, -- 0. Then, the operator 

rs= r -  E (2s) 
~ S  

has spectrum 

O(rs) = o ( r ) \ s .  (29) 

So, for example, if S is the set of all spectral values ), with I~,l >/~o, Ts will have a 
spectral radius smaller than ~, 0 and this implies 

IIrskll ~ C(~0)~k0 (30) 

for some constant C(~o) and all k - -1 ,2 ,3  . . . . .  It follows that for fixed ?~o and 
k ~ oo, we have 

T k =  E TkP~+O(Ako), (31) 
I~,1 ~ o  

i.e. T k can be well approximated by a spectral sum, provided k is large. 
Another good property of the transfer matrix defined in the preceding section is 

that it preserves positivity. That is, if ~,[U] >t 0 for all U, then (T~)[U] >/0 for all U. 
Actually, T 2 has the even stronger property of making an everywhere strictly 
positive smooth function out of any merely non-negative wavefunction ~b (not 
identically equal to 0). Under these circumstances, the Perron-Frobenius theorem 
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ImJt 

- -  Re , t  

Fig. 4. Typical distribution of spectral values h of T. Spectral values always occur in pairs of complex 
conjugated numbers and there is a positive eigenvalue A, which is strictly larger than the absolute 

magnitude of any other spectral value, h - 0 is the only point where spectral values accumulate. 

applies and one can prove that T has a real eigenvalue A with 

A > l h  I forall  h ~ o ( r ) ,  X~A. (32) 

Furthermore, the associated multipficity m a is equal to 1 and the eigenfunction ~a 
can be chosen positive. As we shall show in the next section, ~a may be interpreted 
as the ground state wave function. Its non-degeneracy in particular implies that it 
must be invariant under the discrete symmetries of the system (translations, rota- 
tions and reflections, central conjugations). 

Summarizing our results obtained so far, we expect a typical distribution of 
spectral values of T to look as in fig. 4. Recall that we have always assumed the box 
size L to be finite. In the large volume limit, the normaliTed spectral values h/A will 
be closely spaced and eventually form continuous lines. 

5. Asymptotic decay of euclidean two-point functions 

We are now going to show that the familiar relation between spectral values of the 
transfer matrix and the exponential falling off of euclidean correlation functions at 
large times holds as in ordinary lattice gauge theories. To this end, we must first send 
the time-like extent T of our euclidean lattice to infinity. For the partition function 
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Z (eq. (9)), this limit can easily be determined with the help of Lidskii's theorem (ref. 
[7], chap. XIII.17), which asserts that the naive formula 

Z = E mx ~r (33) 
X ¢ o ( T ) \ { O )  

is in fact rigorously true and that the sum on the r.h.s, of eq. (33) is absolutely 
convergent. In particular, 

lim Z / A  r= 1. (34) 
T ~  

Next, consider the euclidean two-point function (AtBo) (eq. (11)). Using the 
spectral decomposition (31) and the above result, one deduces that 

lim (a,Bo) = A - 'Tr (  Pa.4TtB }. (35) 
T"* oo 

Since the ground state wave function ~b a is positive, it can be normalized such that 

(~ba, O~ka ) = 1. (36) 

The projector Pa is then given by 

PA---- Iq~a><~AI0, (37) 

and eq. (35) may be rewritten as 

( A,Bo)r_ ~ = A- ' (  ff alOAr'Bl#a).  (38) 

To evaluate the asymptotic behaviour of (AtBo) r= ~ at large times t, we make use 
of eq. (31) once more to obtain 

(AtBo>r=oo = A - '  E (~kal0AT'Pxhlq~A> + O(e').  (39) 

Because of eq. (22), the terms on the r.h.s, of this equation are actually explicit 
functions of t so that we end up with an asymptotic expansion 

(A,no)T_  - A- '  E (40) 
t---, no X ~ o ( T ) \ { 0 }  

where px(t) is a polynomial of t with degree strictly less than ha. 
Eq. (40) establishes that (connected) two-point correlation functions always decay 

exponentially at large times. If the leading spectral value in eq. (40) is not real and 
positive, the exponential factor is multiplied by an oscillating amplitude. Such 
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anomalous behaviour has recently been observed at strong coupling and in the 
soluble 1-dimensional Ising model [10]. Also, the leading spectral value may have 
n x > 1, in which case the amplitude will be growing with a power of t. This situation 
is realized in the "improved" harmonic oscillator for a special value of the frequency. 

6. Recovery of the physical Hilbert space near the continuum limit 

The technical Hilbert space ~ that we have used so far contains many states with 
energies of the order of the cutoff, i.e. states, which are unimportant near the 
continuum limit. The point we wish to make in this section is that if we restrict 
ourselves to the subspace ~phy~ of all those states, which have small energy relative 
to the cutoff (~/A near 1 in other words), then the non-hermiticity of the transfer 
matrix can be transformed away by choosing a new scalar product and physical 
positivity is thus completely restored. A new scalar product relative to which T 
becomes hermitian, is suggested by eq. (17): 

(~, I/J)new = ((p, 0~P)old. (41) 

For the full Hilbert space %, this is not an acceptable scalar product, because 0 has 
eigenvalues + 1 and (if, f f ) ~  is therefore indefinite. Now define the subspace 

OCphys = E ~ch, (42) 
Ihl aeA 

where e is to be determined (0 < e < 1). Studying the improved free field theory and 
lattice gauge theories in a f'mite (physical) volume at weak coupling [5,12], we found 
that e can be chosen such that independently of the cutoff the following properties 
hold: 

(i) All spectral values ~ of T with IX l >/eA are real and positive. 
(ii) The new scalar product (41) is positive on ~phys, i.e. (Ik, ~k)new > 0 for all 

E%phys, ~*0"  
Thus, the new scalar product is acceptable on the physical subspace and the usual 

spectral theorem may be applied to show that n x = 1 for all X >/eA. Furthermore, 
the corresponding eigenfunctions can be chosen orthonormal relative to the new 
scalar product and the spectral representation (39) then assumes a form familiar 
from ordinary lattice gauge theories so that, for example, all terms contributing to 
the plaquette-plaquette correlation function are positive. Note that we have not 
rigorously proved the existence of an e with properties (i) and (ii) for lattice gauge 
theories in a large (physical) volume. It is, however, suggested by our perturbative 
and free field calculations and could perhaps be further corroborated by studying 
the asymmetric continuum limit, where the time-like lattice spacing is made small 
compared to the spacing in other directions. 
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The actual value of the minimal e with the above properties is of some practical 
interest, because it tells us up to what energy positivity may be expected to hold. An 
estimate of e can be obtained in weak coupling perturbation theory by determining 
the location of unphysical (but gauge independent) poles in the propagator. For 
Symanzik improved actions [6] this yields 

e -- 0.127 . . . .  (43) 

which is an encouragingly small number. It should, however, be noted that at 
intermediate values of the coupling constant go, a somewhat larger e than (43) may 
be required. 

7. Conduding remarks 

The loss of physical positivity in continuum limit improved lattice gauge theories 
is a regrettable fact, but, as we have seen, it does not imply fundamental difficulties. 
For example, the mass spectrum can still be read off from the exponential decay of 
suitable correlation functions at large times, as in ordinary lattice gauge theories. On 
the other hand, care must be paid, when applying the variational method to extract 
the mass spectrum from short time correlation functions (for a review see ref. [11]). 
Strictly speaking, this method breaks down, but in cases where the correlation length 
is so large that the contribution of the high-energy states to the relevant two-point 
functions is negligible, it may anyhow be practical. We have studied this question in 
the improved massive free field theory and found that as soon as the correlation 
length is larger than one lattice spacing, the systematic error in a typical mass gap 
calculation due to the contamination by high-energy states would be a few percent 
only. 

Recently, Parisi suggested the use of improved actions which contain only loops 
that extend over no more than one lattice in the time direction [13]. While this choice 
saves positivity, it spoils (discrete) euclidean invariance so that one will have to 
renormalize the speed of light. 
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