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We calculate the low-lying meson and baryon masses in quenched QCD for three different 
couplings: p = 5.4, p = 5.7 and /3 = 5.9. The sizes of our lattices are 8s X I6 (p = 5.4) and IO’ x I6 
(p = 5.7 and p = 5.9). We use Kogut-Susskind fermions because they possess an explicit continuous 
chiral symmetry which we have shown to be broken spontaneously. We find that the meson and 
baryon masses and the resulting quark mass conform to the continuum renormalization group 
behaviour to a statistically significant degree. Furthermore, our results are in good agreement with 
the experimental masses and low-energy parameters for Amom = 200 MeV. This is also roughly the 
scale parameter one obtains from a variety of other quantities. 

1. Introduction 

In a recent paper [l] we have presented the first results of a calculation of meson 
and baryon masses in quenched QCD for light Kogut-Susskind quarks [2] on a 
large lo3 x 16 lattice. The Kogut-Susskind discretization of the fermion action has 
the property that it preserves an explicit, continuous chiral symmetry which we have 
shown [3] to be broken spontaneously. This is prerequisite to a successful description 
of the low-lying hadron spectrum which is most obviously influenced by the dynamics 
of chiral symmetry and its spontaneous breakdown. 

The widely used Wilson fermion action [4] explicitly breaks all chiral symmetries 
by operators which will become irrelevant deep in the continuum limit. In the region 
of couplings accessible to Monte Carlo calculations at present there is, however, 
no evidence that the Wilson action has recovered chiral symmetry enough to break 
it spontaneously. (A recent investigation [5] which addresses this question in SU(2) 
suggests that continuum chiral symmetry and its subsequent spontaneous breaking 
is indeed not yet realized.) This disfavours the Wilson discretization of the fermion 
action for spectrum calculations. In particular the standard procedure (for the 
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present state of the art see [6]) of extrapolating the mass measurements taken at 
large “pion” mass to zero “pion” mass to obtain the bound states of light quarks 
must be questioned in a theory that (perhaps) has not yet developed a Goldstone 
pion. 

To be sensitive to the physics of spontaneous chiral symmetry breaking, we have 
emphasized [I] that we must choose the invariant quark mass to be mq * Amom. This 
criterion is not fulfilled by any of the previous calculations [7,8]. Due to convergence 
problems with the Gauss-Seidel and hopping parameter exapansions they were 
made for quark masses of hundreds of MeV, and then the light quark physics is 
obtained by means. of extrapolations of unknown reliability. We have calculated 
with invariant quark masses in the range 10 to 80 MeV using the conjugate gradient 
algorithm and find very accurate convergence. 

So far our calculation [l] of meson and baryon masses was done at the single 
value of /3 = 5.7. We found that the experimental low-lying hadron masses and 
low-energy parameters are well reproduced for A,,,,,,,, = 200 MeV. This is also roughly 
the scale parameter one obtains from a variety of other quantities [9] - in contrast 
to Monte Carlo calculations [8] using Wilson fermions. (For a more detailed 
comparison of A parameters see the end of this paper.) For this A,,,, the lo3 x 16 
lattice has the physical volume of (2.8 fm)’ which (for antiperiodic boundary 
conditions) we found to be large enough to accommodate the dynamics of light 
quarks [l, 31. In the meantime our results for the meson and baryon masses have 
been confirmed by the Edinburgh group [lo]. 

To show that the masses we have calculated are those of the continuum theory, 
we must redo the calculation over a range of /3 values and demonstrate the correct 
renormalization group behaviour. In this paper we repeat our calculation at /? = 5.4 
and /3 = 5.9. Between these two values the lattice spacing varies by a factor of = 1.75 
which should reveal any significant nonadherence to the desired continuum 
behaviour. 

The paper is organized as follows. In sect. 2 we present meson and baryon 
propagators for Kogut-Susskind staggered fermions that are of interest to us here. 
In sect. 3 we discuss the essentials of our calculation and present the results for the 
correlation functions. The procedure of extracting the meson and baryon masses is 
also described. The masses and further results are presented in sect. 4. We conclude 
with some remarks in sect. 5. 

2. Meson and baryon propagators 

We assume that the reader is familiar with the notation of Kogut-Susskind 
staggered fermions [2, Ill. In this paper we shall study only those flavours of mesons 
and baryons that can be constructed out of operators which are local on the original 
lattice. These are [l l] for the mesons 
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and for the baryons 
?Pqz)= c &ABCrtt”r~~~q~‘r(z)[qg(Z)(~~~~~*~~)q~(z)l, (2) 

n 

where P labels the Dirac component and J; A label flavour and colour, respectively. 
In eqs. (I), (2) the quark fields are given by 

&f(z) =I rtt/Uy’(2)&,*(22 +T) , (3) 

where Uy’ (z) is the product of iink variables over a definite path going from 22 
to 2zS 7. The sum over n runs over the 24 sites of the hypercube labelled by z, and 
the 16 matrices r, associated with them form a basis of the Cifford algebra generated 
by the Dirac matrices ‘y&. The single-component fermionic fields x in eq. (3) (which 
act on the original lattice) are coupled by the action [I] 

In terms of these fields the mesonic and baryonic operators (I), (2) read 

p%) = c &AdfxA(2z +~hh(2z +~h!C@ +r]). (6) 
A.& 

We shall deal with nonlocal operators and the question of restoration of isospin 
invariance in a separate publication. 

The meson and baryon masses will be obtained from the exponential decay in 
time of the correlation functions of the mesonic and baryonic operators (1), (2). In 
this section we shall investigate these correlation functions in a little more detail 
than was possible in the letter [l]. 

2.1. MESONS 

For the mesons we consider the operators (1) being given by the following set of 
r*‘S: 

r, flavour 

x 

> 
T 

YOYS 
Y 

YOY > 
P 

Y5Y A, 
iYXY B 

1 E. (7) 
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The associated flavour quantum numbers are indicated in the second column by 
the lowest-lying meson in the corresponding channel. The meson called the E is the 
iso-singlet scalar state which is not to be confused with the S* or 6. All other states 
spanned by the local operators (1) are non-singlet states. The operators (7) exhaust 
all possible different local correlation functions. They lead to 

M,,W=C c GA(G t)(Ys@YshlA(G f)4B(O)(Y50YSh?B(W 
L A.B 

= j2; sB [2(kAbs 2~)~D(o)12) 

+(IxAk 2t + l)XB(0)12) +(k;(x, 2t - ~>xB(o)12>l, 

Mn,,(f) =; ,cR @AA(G t)(%%@%%)qA(i: f)4B(O)(YOY50YOYS)qB(O)) 

=32x c (-1) “+“‘+i3[2(]jA(4 2f)&J(0)]*) 
x A,B 

+(kA(& 2r + l)XB(o)l*) +(kAtx, 2f - 1)xB(o)l*)], 

My(t)=C 1 i (qAA(& t)(yi@Yi)qA(G t)qB(“)(Yi@ri)qB(o)) 
L A.B i=l 

+(IfA(x, 2t + 1)xB(o)(2) +(kAb, 2t- 1)xB@>12>], 

Mmy(r) =c c i (LfA(5 t)(?Oyi@yOYi)qA(% f)4B(0)(‘YOx@ yOyi)qB(o)) 
E A.B i=l 

x A.B 

+(hfA(X, 2t + 1kB(o)l*) +(kAb, 2t - l)xB(o)l’>] , 

Mysy(f)=C c i (qA(% t)(y5yi@y5Yi)qA(% t)~,(0)(y,yiOy5yi)qB(0)) 
z A.B i=l 

-(IL(x, 2 + ~)xB(O)I~)-~I~A(.Y 2t - ~)xB(O)I*)I, 

MyXy(t)=C 1 i (qA(% t)(rirj@Yi’Yj)qA(% f)4e(o)(rirjOYi’Yj)qB(O)) 
: A.B i,j=l 

icj 

=32~~B[(-~)“+(-l)i’+(-1)‘11[2(1~A(~,2~)xB(0)12) 

-(kA(x, 2t + ~)xB(O)I*)-(IXA(X, 2t- ~)x~(O)l’>l, 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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M,(t)=C c (QACz¶ t)(l@l)qA(5 ~)qB(wlOl)qB(w 
i A.6 

= 32; ,c, (-1)“‘+~2+~3[2(I~A(x, 2&(O)]*) 

-(I,&(& 2r + l)~S(o)j*>-(lfA(-? 2t- 1)k?3(“)~2>l, (14) 

where x = (i,, .?*, ;)a runs over the original lattice. At large t the correlation functions 
(8)-( 14) receive contributions from only a few low-lying states: 

Mys( t) = Kr(e-mw2r +e-nr7JT-2’)) +. . . , 

M,,(t) = KL(e-“‘n*’ +e-mm(T-2’)) +. a . , 

M,(t) = Kp(e-mn2’ +e-“‘JT-*‘)) +. . . , 

&fyoy( t) = Kb(emmo2’ +e-mJ’-2’)) +. . - , 

A&,(t) = KA,(e-“‘Al*’ +eemAIcT-*‘)) +a * * , 

Mvxv( t) = KB(e-%*’ +e-“‘B(T-2’)) + a . . , 

M,(t) = K, (e-rnc2f + e-mJT-2f)) + . . . , (15) 

where T is the temporal extent of the lattice. Throughout this paper we shall use 
antiperiodic fermionic boundary conditions. 

The correlation functions introduced earlier on [l, 121 (t = ?a): 

&“(f)=~ 1 [(-l)“+“3+(-l)i~+“+(-l)pt+p2](I~,&, t)xB(o)l*), 
x A,B 

w.(t)=C c t-11 i1+p2+‘3+‘(l&,(x, f)&(o)I*), (16) 
x A.B 

which extend over even and odd i, have twice as many entries as the correlation 
functions (8)-( 15) and are therefore preferred for Monte Carlo calculations. They 
are related to (8)-(15) by 

M,&)=32[2M,,(2t)+M,,(2t+l)+M,,(2t-l)], 

M,,,,(t) = 32[2&(2t) - Ms(2t + 1) - kfs(2t - l)] , 

M,(t)=32[2Mv-,(2t)+Mv-,(2t+l)+Mv-,(2t-l)], 

M,,(t)=32[2M,,(2t)-M,,(2t+1)-iI4,,(2r-1)], 

M&t) = 32[2M,v(2t) +M,v(2t + 1) +M,,(2t - l)] , 
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M,,,(r)=32[2Mv-,(2t)-Mv-,(2r+l)-Mv-,(2t-l)], 

M,(r)=32[2Ms(2t)+Ms(2t +l)+Ms(2r- l)]. (17) 

We may solve this set of equations for MPS( r), M~-J( t), MPv( t), Ms( t) by making 
use of the explicit form (15) of the correlation functions (8)-( 15). We obtain 

a))K,(e-m-‘+e-“‘w’T-“)+. * *, 
lr 

Kp(e-“‘p’ +e-‘“bT-‘) 

1 -cash (m,a) - 
8cosh (m,a) 

KtJe-“lp’ +e-‘“pv--‘)) 

+(-1)’ 
I +cosh (m,a) 
8 cash (mpa) Kb(emmpr +e-“‘pcT’-‘)) 

1 -cash (mA U) - 8 cash cmA,h, KA,(e-“‘~l’+e-“‘~,(T-” +- * * , 

1 - cash (m,a) - 8 cash (m,a) K’,(e-“I-’ +e-m-‘T-“) 

+(-1)’ 
[ 

1 +cosh (m,a) 
8 cash (m,a) K’,(e-“-’ +e-“‘ncT-‘)) 

1 -cash (m,a) - 8 cash (m,a) K,(e-“‘n’ +ewmecT-‘) 4 +* * - . (18) 

These are the correct expressions of (16) in terms of the physical masses. For 
m,a, mpa, mBa, mA,a, m,a 3 0 they go over into the ParametriZatiOnS given earlier 
on in refs. [l] (eq. (11)) and [7] with K,, ,... = 128C,,, ,.... 
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2.2 BARYONS 

The baryonic operator (2) transforms like a spin-f operator on the lattice. Baryonic 
states of definite parity, *l, correspond to the operators 

lp$qt, t)= !yJ pp 
( 1’ ?Pq-z& t). 

They lead to the correlation functions 

* (,?A&, zt + 1 kd22, 2r + 1 ),fC(% 2r + 1 )XA’(%d%d”)) 

* b?A(% 2t- 1)~0(2%2r-1)Xc(252t-1)~~~(O)~~~(O)~c~(O))l. (20) 

Note that the sum over the spatial lattice runs only over even lattice points. For 
large t this can be written (for antiperiodic fermionic boundary conditions) 

B+(t) = KN e-“‘N2’ + KN’ e-%.2’ + KN- e-“‘N-(7--2’) + . . . , 

B-(t) = -KN- e-“‘,-2’ - KN e-nS4(T-2’) - KN, e-“‘~.(T-2” +. . . , (21) 

where mN is the nucleon mass, mNs that of the first excited Jp =f+ state and mN- 
is the mass of the lowest Jp =f- state. 

In terms of the originally introduced correlation function [l] 

B(t)= c c EABCEA~B~&?A(X, ~IT?B(~, t)kc(x, ~)xA,(O)XB,(O)X~,(O>), 
s,..~z.s,=even A.B,C 

A’,B’.C’ 

eq. (20) reads 
(22) 

B,(t) = 32[2B(2t) f B(2t + 1) f B(2t - l)] . 

This may be solved for B(t) using (21). We find 

(23) 

B(t)=- i2{ ‘,‘,‘,) KN(e-!lINI _ ( _ 1)’ e-l~$.,‘-“) 

+ 1 +cosh (mr@) 
gcosh (mN,a) KN~(e-‘“N~‘-(-l)ie-“‘N.‘T-“) 

+l -cash (m,+) 8cosh (mN-a) K,-(e-“N-‘-(-l)‘e-“‘N-c’-‘)) 

-(-1)’ 
1 +COSh(m,-U) 8 cash (mN-a) KN-(e-f'lN-'-(-l)ie-'"N-('-')) 
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+1 -cash (~~a) 
8cosh(mNa) KN(e-“‘~‘-(-l)ie-n’~(T-‘)) 

+I -cash (rnr+z) 8 cash (mN,a) K,,(e-“‘“,‘-(-l)‘e-“‘“.(‘-‘) )I) +. . . . 

For rnNu, mN.0, MN-c + 0 (24) reduces to the form given in ref. [l] with KN..., = 
128G . . . . , KN- ,._. = -128C,- . . . . . 

The correlation functions (16), (22) and their parameterizations (18), (24) will 
form the basis of our calculation of meson and baryon masses to be discussed in 
the next sections. 

3. Calculation of quark propagators and correlation functions 

We follow the same procedure as in ref. [l] to calculate the quark propagators 

k~(x, t)xs(O)=[(~(U)+2ma)-'l~,,,, (25) 

for any given background gauge field configuration. The size of our lattice is g3 X 16 
at /3 = 5.4 and lo3 x 16 at p = 5.7 and /3 = 5.9. At /3 = 5.4 we have calculated a total 
of 96 quark propagators (x3 colours) on 6 independent gauge field configurations, 
at p = 5.7 we have computed 112 propagators on 7 configurations and at /3 = 5.9 
we have calculated 104 quark propagators on 13 independent gauge field configura- 
tions. The origin (x, t) = 0 is chosen so that the quark starts well away from the 
spatial boundaries and that the propagators calculated on the same background 
gauge field configuration are as independent as they can be. All calculations are 
done at 3 different quark masses: ma = 0.015, ma = 0.04, ma = 0.07 at /3 = 5.4 and 
ma = 0.01, ma = 0.03, ma =0.05 at p = 5.7 and /3 = 5.9. 

Our calculation of quark propagators gives, as a by-product, the chiral condensate 
131 

(where N = 3 Lz x L,, L,( L,) being the spatial (temporal) size of the lattice). To 
compare (&$) with our earlier results [3] obtained on the g4 lattice (using the Lanczos 
algorithm) and to check for finite volume dependences, we have plotted (tj$(m)) 
for the masses we consider here in fig. 1 together with our previous values. We 
observe no difference. This is to say that the g3 x 16 lattice at p = 5.4 and the lo3 x 16 
lattice at p s 5.9 is, for the quark masses considered, essentially of infinite volume 
as far as the the dynamics of spontaneous chiral symmetry breaking is concerned. 
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ma 

0 QOI 02 (103 QOL 1305 006 W7 CO9 a09 
ma 

WJ) I I I I I 4 I I I 

0.3- (4 

0.2 - 

0 WI QO2 0.03 CO4 W5 CO6 OD7 a38 OD9 01 
ma 

Fig. I. (a,@) as a function of the bare mass for (a) p = 5.4, (b) /3 = 5.7 and (c) /3 = 5.9. The solid lines 
are from ref. [3] on the g4 lattice. The solid circles are from the spectrum calculations in this work. 
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3.2. CORRELATION FUNCTIONS 

We obtain the correlation functions (16), (22) by multiplying together the 
individual quark propagators in the appropriate fashion and then averaging over 
the whole lot. To reproduce the exponential decay of the meson and baryon 
propagators over several orders of magnitude, we have to calculate the quark 
propagators to a high accuracy. We monitor the values of [ l] rf during the calculation 
and stop the iterative procedures once rf s lo-*. This, we have checked, guarantees 
an accuracy of the smallest elements of the quark propagators (i.e. the large-distance 
piece) of better than one per cent. 

In figs. 2-13 we show a selection of correlation functions we obtain at p = 5.4, 
/3 = 5.7 and p = 5.9. MPS (figs. 2, 6, lOa, b), which contains the rr and hence gives 
the largest signal, stands out by having very small errors (of the size of the solid 
circles or smaller) all the way down to t”=S. The correlation function M,-, (figs. 
3, 7, 1 la, b), being a combination of p, B, etc. propagators, shows an oscillating 
behaviour (the solid circles) over even and odd i as we expect. The same is also 
found for MPV which we have not plotted here for reasons of space. The amplitude 
of oscillation increases with increasing p (decreasing a) which favours the larger 

p=S.L 
mazO.04 

0.000l~ 
012365678 

't 

Fig. 2. The correlation functions M,, for p = 5.4 and ma = 0.04. The solid circles are the results of our 
calculation. The solid line is the fit as described in the text. 
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Fig. 3. The correlation function f&-,. for p = 5.4 and ma = 0.04. The solid circles are the results of our 
calculation. The open circles result from subtracting the fitted (oscillating) B contribution from MVTp 
When no open circles are drawn they coincide with the solid circles. The solid line is the fit as described 

in the text. 

values of p for determining ma. At p = 5.9 and t “3 7Mv-, tends to depart from the 
exponential decay and flatten off. The effect is most dramatic for the smaller quark 
masses (cf. figs. 1 la, b) and goes away for ma ~0.08. Smaller quark masses mean 
that the quark paths will spread over a larger volume of the lattice, and the larger 
i is the larger will be the volume be, until eventually they will feel. the boundary. 
The spatial extent of the lattice (in physical units) at p = 5.9 is about 30% smaller 
than at p = 5.7. This leads us to interpret the flattening off as a finite size effect. M, 
(figs. 4, 8, 12a, b) also oscillates, but with decreasing tendency as /3 increases. All 
mesonic correlation functions show an increasing admixture of higher excited states 
(i.e. departure from a single exponential) with increasing /3 which means that one 
must go to larger f (and eventually to larger spatial lattices in order not to‘run into 
conflict with finite size effects) to obtain the ground state mass. The baryonic 
correlation function B (figs. 5, 9, 13a, b) oscillates in a most striking manner. To 
elucidate its behaviour we call attention to eq. (24), according to which the nucleon 
contributes with equal sign to even and odd t^ while the N’ and N- contribute with 
opposite relative sign to even fand with equal relative sign to odd t^ (the overall 
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012365676 
^t 

Fig. 4. The correlation function MS for S = 5.4 and ma = 0.04. The solid circles are the results of our 
calculation. The open circles result from subtracting the fitted (oscillating) “pion” contribution from 
Ms. When no open circles are drawn they coincide with the solid circles. The solid line is the fit as 

described in the text. 

signs in (21) and (24) have been chosen such that KN, K,.,., K,.,- are positive). It 
appears that N’ and N- and their recurrences cancel nearly completely at even i 
which means that mN. = mN-, KNs = KN-, etc. This is not surprising. A straightforward 
analysis of the quark propagator yields in the limit of zero quark mass: 

B+(t) + B-( t) = O((&b)‘[e-“‘~2’ -e-“‘NcTm2’)]) z 0 , 

B+(f) - B-(t) = O(const [e-‘“N2’ +e-“‘NtT-“)]) , (27) 

which only leaves two possibilities: K,.., = 0(($$)3), mNS= mN-, KNs= K,.,- and 
mN = mN-, mN’ z mN'-, KN-KN-=O(($$J)~), KN*-KN*-=O((&!/)3) (where N’- 
denotes the first excited $- state). 

3.3. EXTRACTION OF HADRON MASSES 

To obtain the hadron mass spectrum, we fit our calculated mesonic and baryonic 
correlation functions by a few masses as we will describe now. 
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01 23L”5678 
I 

Fig. 5. The correlation functions B for p = 5.4 and ma = 0.04. The solid circles are the results of our 
calculations. The solid line is the fit described in the text. 

MpS: we fit MPS by two masses, m, and m+ The result is shown for a few of the 
correlation functions by the curves in figs. 2, 6, IOa, b. 

MV-,-: we fit M,-, by two masses, m,, and mg, at p = 5.4 and by three masses, 
mp, mps and mg, at /3 = 5.7 and p = 5.9. To demonstrate the quality of our fits we 
subtract the resulting B contribution from MVeT. This gives the open circles in figs. 
3, 7, 1 la, b. When no open circles are drawn they coincide with the solid circles, 
that means the B contribution has died off. The curves in the figures are our fits 
for Ka = 0 which should interpolate the open circles. In ref. [l] we have, at p = 5.7, 
fitted the 2 s t^ tail of M,-, by m, and mB which gives the same result for m,, 

M,,: we fit MPV by mA, and mP at p = 5.4 and by m&, mp and mPV at /3 = 5.7 and 
P = 5.9. We take m, and mp. from our fit of MV--,-. 

MS: there is only a noticeable oscillation of MS at p = 5.4. At this p we fit MS 
by two masses, m, and mrr. We do not fix m, at the value obtained from MPS. It 
appears that a much larger “m," is needed here to describe Ms. As in case of MV-T 
we subtract the resulting “C contribution from MS (when visible) which gives the 
open circles in fig. 4. The curve in that figure is our fit for K & = 0. At /3 = 5.7 we fit 
Ms by a single mass, m,. The result is the curve in fig. 8. In ref. [1] we have fitted 
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1m 1m 
-P -P 
-ID -ID 
-u-a -u-a 

‘.- ‘.- 
-.l -.l 
-m -m 

-23 N -23 N 
v -- v -- 
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B 
Id2 

i 

* B P=59 
- ma-003 

t B P-59 
- maz0.05 

Fig. 13. Same as fig. 5 but for p = 5.9 and (a) ma = 0.03, and (b) ma = 0.05. 

the 2~ t^ tail of MS by m, and m, which gives the same value of m, and indicates 
how stable the fits are. At /!I = 5.9 it is no longer possible to describe MS by a single 
scalar meson. We fit MS by mE and rn,, which results in the curves in figs. 12a, b. 

B: at even i the baryonic correlation function B falls, except for i = 0, very nicely 
on a single exponential curve (to be precise: e-“‘N” - e-‘“N(‘r-*‘)) as shown in figs. 
5, 9, 13a, b. This led us to conclude earlier on that the N’ and N- contributions 
cancel at even times. The slope of the curve gives us mN. At odd t^ we fit B by 
mN,= mN- in addition to the nucleon contribution. 

4. Meson and baryon masses 

We shall now discuss the results of the calculation. We begin with the pion and 
the determination of the quark mass. 

4.1. THE PION AND QUARK MASS 

The results for rnrr are shown in figs. 14-16 for all our calculations, that is for 
three values of p and three quark masses each. We find that m", vanishes linearly 
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01 - /’ 
0.3 - 

0.2- 
./’ 

/ 

bRaI 
M- 

os- 

O.l- / + / 

o /a01 a02 003 OOL 0% 006 007 ma 
I I I 1 , I I 

0 lo 20 30 LO 50 60 70 m,lMeV) 

Fig. 14. (m,a)* as a function of nm (m,) for p = 5.4. The solid circle on the linear extrapolation curve 
marks the position of the physical pion using (29), (30). 

with the quark mass, i.e. m$- m, which is what one expects for a Goldstone pion. 
The dashed lines in the figures are parameterized by 

p=5.4, (m,a)2=5.86 ma, 

p =5.7, (m,a)2=7.60 ma, 

@=5.9, (m,a)2=6.86 ma. (28) 

We obtain the quark mass by inserting the physical pion mass into the mass 
relations (28). For the lattice spacing a we assume the two-loop formula 

83.5 
a(P)=, - e-(4*‘/33)P(~jrr2p)51/121 . (29) 

mom 

a6- p= 57 

OS - 

0.2- 
/ 

O.l- t / 

o /Qpl Qp2 903 O.pL O.?S 906 a07 ma 
I I I I I I I I 1 1’ 

0 IO 20 30 LO 50 60 ‘lo 60 90 100 m,lMeVI 

Fig. 15. Same as lig. I4 but for p = 5.7. 
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Fig. 16. Same as fig. 14 but for p = 5.9. 

We depart from ref. [l] in determining the scale parameter. In this work we fit Amom 
to give the right rho mass at J3 = 5.7. We obtain (cf. later on) 

A ,,,=210MeV, (30) 

which we shall use throughout the present paper. (This is only slightly different 
from the previously used value of Amom = 200 MeV.) The quark mass that is of 
interest to us here is the renormalization group invariant quark mass, mq, ‘which is 
given by 

mq=e$c’m, 

477 3 
am0m= 11 In (7r/aA ,,,,,)*+~Inln(~/aA,,,)‘~2~(/3-2.742)’ (31) 

The quantitative connexion of the bare quark mass ma with mq is shown on the 
horizontal lines in figs. 14-16. For mq we find 

p = 5.4 ) mq= 11.5 MeV, 

p = 5.7 ) mq = 6.5 MeV , 

p = 5.9 ) mq = 6.3 MeV . (32) 

The solid circles in figs. 14-16 indicate the position of the physical pion mass on 
the curves (28). 

We observe that the renormalization group invariant quark mass scales for p a 5.7 
and that the mass value of ==6.5 MeV is in agreement with current algebra estimates 
(for a review see [13]). At p = 5.4 the quark mass comes out to be a factor of =2 
larger than that at p = 5.7 and /3 = 5.9. The reason is that /3 = 5.4 is for the pion 
already in the strong coupling region as we will see in more detail later on. 
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0 IO 20 30 LO 50 60 70 mq [IfleVI 

Fig. 17. The hadron masses, mHa as a function of ma (m,) for p = 5.4. The solid circles at the physical 
quark mass, m, = 6.5 MeV, indicate their experimental values using (29), (30). 

4.2. THE LOW-LYING HADRON SPECTRUM 

The RSUhS for mP, mA,, mp and the nucleon mass mN are shown in figs. 17-19. 
The solid circles at the previously obtained scaling quark mass mq = 6.5 MeV, denote 
their experimental values. It should be noted that in our calculation of the mass of 
the iso-singlet scalar state, m,, we have only taken the connected part (via a qq 
pair) of the correlation function into account (cf. eq. (14)). 

We may fit the dependence of mp, mA,, mE and mN on the quark mass by a straight 
line. The result is 

p = 5.4, m,a = 1.38+ 1.71 mu, 

mA,a =2.20+2.14 ma, 

m,a = 1.38+6.14 ma, 

T?lNU = 1.60+ lo.00 ma, 

p = 5.7, m,a=0.98+4.10 ma, 

mA,a=1.61+3.30ma, 

(33) 
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as- 
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Fig. 18. Same as fig. I7 but for p = 5.7. 

m,a = 0.88+5.70 ma, 

mNa= 1.21+9.00 ma, 

p = 5.9, mpa =0.75+3.51 ma, 

mA,a= 1.37+3.29 ma, 

m,a = 0.63+5.71 ma, 

(34) 

m,a=0.88+8.29 ma, (35) 
which correspond to the solid lines in figs. 17-19. Note that the dependence of the 
hadron masses (33)-(35) on the quark mass is rather weak over the range of quark 
masses we consider. We shall use the above linear mass fits to extrapolate the hadron 
masses to the physical quark mass of mq = 6.5 MeV. We obtain in MeV units 
bLl0, = 210 MeV) 

p = 5.4 ) m,=(750*40) MeV, 

m,,=(1200*110)MeV, 

m,=(770*110)MeV, 

m,=(915*80) MeV, (36) 
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Fig. 19. Same as fig 17 but for p =5.9. 

p = 5.1 ) mp = (770 f 90) MeV , 

m .,=(1250*90) MeV, 

m, = (690 f 50) MeV , 

m,=(960*100) MeV, 

p = 5.9, m, = (730 f 90) MeV , 

m,,=(1310*lOO)MeV, 

m, = (630 f 100) MeV , 

(37) 

m,=(860*120) MeV. (38) 

We find the mass to be stable against the fitting procedure. If at p = 5.7 we fit 
the 2< f< 14 tail of Mv-T by the p (and B) mass only, we obtain exactly the same 
value [l]. That this is a viable procedure can be seen from fig. 7 in which the open 
circles fall (for ?>2) on a single exponential. This also tells us that the rho mass 
quoted is not biased by contamination with excited states. At p = 5.9 we also 
reproduce the quoted rho mass (within errors) if we fit the 3 < i< 13 tail of ik&. 
by the p (and B) mass only. 



J.P. Gilchrist et al. 1 Meson and baryon maxses 51 

The hadron masses (36)-(38) are consistent with asymptotic scaling. Moreover, 
within the statistical errors mP, mA, and mN agree with experiment. We find this 
quire remarkable, in particular as A,,,,,,,, is not really a free parameter. As we shall 
see later on various other physical quantities also calculated on the lattice [9] narrow 
it down to Amom ~200 MeV. The E meson will mix with the O++ glueball state. But 
since me and the O++ glueball mass [14] are almost identical this will perhaps not 
shift either of the masses significantly. The proximity of m, and the O++ glueball 
mass might explain why the deconfining phase transition and chiral symmetry 
restoration occur at the same temperature [15]. 

We are not in a position yet to quote any reliable numbers for the B meson mass. 

4.3. RENORMALlZATION GROUP SCALING 

In QCD any value of the quark mass is conceivable. The more general statement 
of renormalization group scaling therefore is that the calculated hadron masses, 
when expressed in terms of a fixed scale via the continuum renormalization group 
eq. (29) for a(P) and in terms of a fixed, but arbitrary, renormalization group 
invariant quark mass (30), should not depend on /3. Accordingly we plot in fig. 20 

a01 
0 I 

a05 a06 Cl07 ma(P:57) 
I 

o I I I I 1 I 1 1 1 
IO 20 30 LO 50 60 70 60 90 IO0 m,(MeW 

Fig. 20. The hadron masses m,., in units of a-’ (p = 5.7) as a function of the renormalization group 
invariant quark mass m, (ma@ = 5.7)) combined for /3 = 5.4, 0 = 5.7 and p = 5.9. 
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the hadron masses obtained at the three different values of /3 in the dimensionless 
product form mua@ = 5.7) versus the renormalization group invariant quark mass. 
We obtain m,.,a(P = 5.7) from mua@) by the use of the two-loop formula (29). 

We find that within the statistical errors mP, rnA,, m, and mN scale more or less, 
for all invariant quark masses considered in this work. For the rho mass, which has 
the smallest errors, the agreement with the desired continuum renormalization group 
behaviour is quite remarkable. In case of the nucleon, on the other hand, the errors 
could hide a 0( 10%) systematic deviation. But this would not surprise us since at 
p = 5.9 the lo3 lattice is only 52 fm across, which is less than twice the (supposed) 
nucleon diameter, so that finite size effects might show up here. 

4.4. f, 

Using the current algebra relation 

fbd = 4~&&)in~ , (39) 

and the previously calculated [3] (li;JI)i”, as input, we can calculate f, from the 
slopes given in eq. (28). We obtain 

input [31: <&h!C L 
p =5.4 270 MeV 210MeV 

/3 =5.7 245 MeV 140 MeV 

p =5.9 230 MeV 120 MeV (40) 

(remember that we have changed A,,,,,,,, from 200 to 210 MeV). This is to be compared 
to the experimental value [13] of fr = (13 1.9 f 0.1) MeV. That f* does not scale at 
p = 5.4 is (again) due to the fact that p = 5.4 is for the pion already in the strong 
coupling region (see later on). 

4.5. RECURRENCES 

The results for m,, and m,+ are summarized in fig. 21 (in the same kind of plot 
as in fig. 20). Within the errors m,, scales for p 5 5.7, while at p = 5.4 m,, falls much 
below the “scaling” value. For m,,, we have only results for /I 2 5.7 (since at /I.= 5.4 
we fit the correlation functions by mP and mB only). Within the errors mPP scales 
also. In physical units (a-‘@ = 5.7) = 0.77 GeV) we obtain 

m,~=(1100*150)MeV, 

m,,, = ( 1600 f 200) MeV . (41) 

For the baryon masses mNt and mN- we obtain useful numbers only at p = 5.9 (cf. 
figs. 5, 9, 13a, b). But the errors are still too large to quote a value, in particular as 
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Fig. 21. Same as fig. 20 but for m,. and m,.. 

there is a strong admixture of higher states at odd i. It is interesting to note that 
the .rate of admixture of excited states does not depend significantly on the quark 
mass. 

4.6. COMPARISON WITH STRONG COUPLING CALCULATION 

The low-lying meson and baryon masses for Kogut-Susskind quarks have also 
been calculated in the strong coupling limit [16]. To answer the question of how 
far we are in the continuum region and to make the point that Monte Carlo techniques 
are indispensable for obtaining the correct continuum masses, even the mass ratios, 
we compare our results with the strong coupling calculations [16] in figs. 22 to 26. 
We (finally) see that for the pion (fig. 22) the continuum region begins only at 
p35.5 while for the rest of the masses /3 = 5.4 seems to be already well in the 
continuum region. The transition from the strong coupling to the scaling region is 
by no means smooth for the pion and the A, meson, what perhaps signals the 
presence of nearby singularities in the complex p plane. It is inconceivable that the 
strong coupling expansions will be able to reproduce this behaviour. Hence we are 
not surprised that the strong coupling calculations fail to describe the pion and the 
mass of the A, meson, while m,, and mN (which extrapolate smoothly) can be fitted. 
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Fig. 22. (m,a)‘/ma as a function of p. The solid circles are the results of our calculation. The horizontal 
dashed line is the result of the strong coupling calculation in ref. [16]. 
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Fig. 23. mpa as a function of /3. The solid circles are the results of our calculation. The horizontal dashed 
line is the result of the strong coupling calculation in ref. [ 161. 

Fig. 24. Same as fig. 23 but for m,,,a. 
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Fig. 25. Same as fig. 23 but for m,a. 

5. Conclusions 

In the present work we have calculated the lowest-lying meson and baryon masses 
at three values of p using the Kogut-Susskind discretization of the fermion action. 
We differ from previous spectrum calculations by computing the masses directly at 
the small quark masses of phenomenological interest. This eliminates the ambiguities 
associated with large extrapolations in the quark mass over hundreds of MeV. (Other 
authors calculate typically at mq 3 200 MeV.) 

We have shown that the hadron masses we have calculated, including the quark 
mass, adhere to a statistically significant extent to the renormalization group 
behaviour, implying that they are representative of continuum QCD. This, and the 
overall agreement with experiment, is encouraging and more than we could expect 
on these rather coarse lattices and from working at the “edge” of the continuum 
region. 

To go further into the continuum we have to go to larger lattices. We feel that 
/3 = 5.9 is as far we we can go on the lo3 lattice. Even here we begin already to 
observe finite size effects. To consolidate our results we are presently repeating the 
calculation on a 164 lattice. 

mNa 

strong coupling 

l- -- 

‘h 
scaling 

‘k 

3-- 

ost I A I I I I I t 

0 0.2 L.0 5.0 5.2 5b 56 90 60 

I3 

Fig. 26. Same as fig. 23 but for mNa. 
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The scale parameter Amom is known from several other physical quantities with 
varying accuracy. In the following table we have compiled some recent values 

A,,&3 = 5.7) from input 

210*30 MeV rho mass (this work) % 

195*25 MeV chiral condensate [3] (t,@)~& = 225 f 25 Mev [3] 

180*20 MeV gluon condensate [ 17,9]* (: Fp,&) = 336*lOMeV[lS] 

230 f 30 MeV string tension [ 19]** fi = 400 MeV 

200 f 35 MeV 2++ glueball mass [20] me = 1670*50 MeV(?) [21] (42) 

which centre around Amom= 200 MeV (one should be aware though that the string 
tension seems not to scale). Thus we may say that we begin to obtain a consistent 
picture of quark and gluon physics in quenched QCD. Wilson fermions, on the 
other hand, give a value of Amom which is about twice as large. 

The numerical calculations have been done on the Siemens 7.882 at the University 
of Hamburg and on the Cyber 205 at the University of Karlsruhe. We are grateful 
for the generous facilities provided by the computer centre of the University of 
Hamburg and for the support of the DESY directorate in purchasing time on the 
Cyber 205. We are indebted to Drs. D. Ponting and I. Duff for useful discussions 
and to Dr. Schafer from CDC for computational assistence. H.S. and M.T. thank 
Prof. F. GutBrod for the hospitality of the DESY Theory Group during part of this 
work, and J.P.G. thanks the SERC and the Royal Society for a fellowship. 

Note added 

We are aware that (continuum) parity is not an invariance of the classical lattice 
action. However we have reason to believe that it has already been largely restored 
(dynamically) at the present values of p: for example, we find flavour mixing in 
(I,&) to be very small. This has led us to parametrize the correlation functions in 
the form (15) and (21). Such details of the parametrization make only a small 
difference at large i, and in fact these differences would be masked by our present 
statistical and systematic errors. We will address this question in more detail when 
we have accumulated higher statistics. 

As far as the question of scaling is concerned we would like to add that the 
recently calculated p mass of Billoire, Marinari and Petronzio (preprint CERN-TH- 
3838) at p = 6.0 is in good agreement with our values, and renormalisation group 
scaling, if we use a linear extrapolation in quark mass on their data. Testing scaling 

l The second reference in [ 171 gives an earlier calculation which is consistent with ours. 
l * Ref. [19] gives recent calculations on large lattices. 
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(as we have done in this paper) is of crucial importance, because the accessible range 
of lattice spacings is such that one might well expect some quantities not to have 
yet reached their continuum limits. Indeed while the O++ and 2++ glueball masses 
[ 141 and the chiral condensate, (&$) [3] h s ow, at most, small violations of scaling, 
this appears not to be the case for the string tension [6] or the deconfining temperature 
(for a recent paper, and references, see Karsch and Petronzio, preprint CERN-TH- 
3797). 
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