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We perform a strong couphng expansion up to O(fl 7) for the mass-gap in SU(2) lattice gauge 
theory with mixed actmn A novel feature of the strong couphng expansmn is discussed The strong 
couphng series appears to approach the scahng regmn more smoothly and Pad6 approxlmants 
become more stable than in the case with simple Wilson actmn The regmn of validity of a recently 
proposed resummatmn of perturbatmn theory as applied to the determination of the asymptotic 
scahng behavior is investigated Results of a strong couphng calculatmn for the heat kernel action, 
which is related to the mixed actmn for a specml choice of parameters, are also reported 

I. Introduct ion  

In  recent  years a lot of  effort has been  spent  on the calcula t ion of the mass 

spect rum of  pure Yang-Ml l l s  theory m the lattice formula t ion  The lattice as a 

non-per tu rba t ive  cut-off admits,  in part icular ,  the analyt ic  ca lcula t ion of the mass 

spect rum in the strong coupl ing  regime [1-3] 

The difficulty with lattice gauge theories IS to obta in  the c o n t i n u u m  limit This is 

especially true if one is concerned  with strong coupl ing computa t ions ,  because in 

this case one is far from the physical region which is the weak coupl ing region in 

an asymptot ica l ly  free theory So far, however,  the avai lable strong coupl ing series 

for the Wilson act ion are much  too short to apply series ext rapola t ion techniques  

rel iably 

There are in pr incipal  two ways to proceed 

(1) The brute-force method  would be to make the avai lable strong coupl ing series 

for the s imple Wilson act ion much longer  Then  there is some hope that in this way 

one may get in fo rmat ion  about  c o n t i n u u m  physics Unfor tuna te ly ,  this is expected 

to be impossible  by means  of a " h a n d  ca lcula t ion" ,  due to the enormous  a m o u n t  

of t ime est imated And  computer  algori thms for a "mach ine  ca lcu la t ion"  are very 

difficult to design 

(u) A more  skilful way IS to improve the simple Wilson act ion such that,  starting 

from the strong coupl ing  region, the weak coupl ing  region is a t ta ined fas ter  Follow- 

ing this l ine one can check lattice act ion universal i ty  as a by-produc t  
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Adopting this second point of view, in this paper we will modify the usual Wilson 
actmn minimally by the mclusmn of the trace over the boundary of a single plaquette 

m the adjolnt representation of the gauge group SU(2) 
The orgamzatmn of this article is as follows Sect 2 introduces the model, sect 

3 is devoted to the strong coupling expansmn In sect 4, the continuum hmlt is 

discussed in detail Sect 5 provides the summary and the conclusmns The two 

appendices prowde the detailed discussmn of a simple tube model introduced in 

sect 3, and some results on the strong coupling expansion for the generalized heat 

kernel action which ~s related to our model 

2. The model 

We consider euchdean pure Yang-Mllls lattice gauge theory on a hypercublcal 

lattice with gauge group SU(2) in d --4 dimensions The action is given by 

/ S = ~ S p = ~  ~ Re xf(Up) + I)(f( Up)l 2 , (2.1) 

where the sum runs over all unonented plaquettes Up is as usual the ordered product 
of the group-valued gauge fields attached to the hnks m the boundary of p Xr is 

the character of the fundamental representation of SU(2) and fir, fla are coupling 
parameters df = Xr(1) The first term in (2 l) is the well-known Wilson action while 

the second term represents the admixture of the adjomt representation, where we 

have made use of the Clebsch-Gordan decomposition 

I 1 ~@~= 1@0 (2 2) 

If we perform the naive continuum hmIt of (2.1), we agree with the continuum 

theory if we identify 

f l r + f l a  1 (2.3) 
2dr dr go 2' 

where go xs the bare couphng constant For later convemence we parametrlze the 

couphngs as 

~ a  = K / ~ f .  (2 4) 

3. Strong coupling expansion 

The mass-gap rn (corresponding to the lowest-lying glueball m the JP = 0 + sector) 

can be determined via the asymptotic decay of the connected correlation function 
[2] for two local operators O~ and 0 2  we get after rotation into the 0magmary) 

time direction x4 

1"(x4) = ( O l ( x 4 ) O 2 ( O ) ) - ( O l ( X 4 ) ) ( 0 2 ( O ) )  ) ~ e  - ' ~  , (3 l) ~a~ oc~ 
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hence  

1 
m = - hm - - I n  F(x4) (3 2) 

x4~c~ X 4 

In o r d e r  to make  an op t ima l  p ro jec t ion  on the g luebal l  e lgensta te ,  we choose  O i ,  2 

as l inear  c o m b i n a t i o n s  o f  space- l ike  loops  t r ans fo rming  t r lwal ly  u n d e r  the symmet ry  

g roup  o f  the spa t ia l  subla t t lce  We choose  these  loops  to be p laque t t e s  for  s lmphc l ty  

In a d d m o n  we sum over  all p o s m o n s  in the spa t ia l  s u b l a m c e  in o rde r  to pro jec t  

on p = 0 Hence  0~,2 can be wri t ten as 

~ l ~. x f (U-x ,  x4I&, ~) ( 3 3 )  
O1'2(X4) ~/3N~ _~ .,~=,.23 

¢x~l, 

where  N~ is the n u m b e r  o f  sites o f  the spa t ia l  subla t t lce  

M a k i n g  use o f  the  c luster  expans ion  o f  the  genera t ing  func t iona l  of  F. we ob ta in  

a c lus ter  expans ion  o f  the g luebal l  mass  m [2] 

m = - hm - -  In 
X4~O0 X4 X, v y, lx'<v' 

= - hm - -  In Y~ 
X4 v,~ <v'  

d~Ot3, 8~, 2 In Z(flf ,  tic,, flf~, ft.) r } 

d28~3f Of~f~ a(C)ck(C)l } ,  (3 4) 
I 2 C ~fl=~f=~f 2 

where  we have chosen/3f  = 13f, ( ~ f  = j~f2 ) for  Up, = U x, x4 ¢,~ • Oi ( Up2 = U_y.o ~ , ; / •  02) 

m the la t t ice  ac t ion  (2 1) ~ ( C )  IS the act ivi ty  o f  the (mult i - )  p o l y m e r  c luster  

C = (X] ' , ,  X~ 2, ) and  the combina to r i a l  coef f ioen ts  a(C) take into account  the 

mul t ip l i c i t i e s  n~, n2, , o f  the po lymer s  X~, )(2, . ,  and  how they  are connec t ed  

[4]. The  p roper t i e s  o f  a(C) ensure that  the c luster  C is hnk-wlse  connec ted  In 

terms o f  the  cha rac te r  expans ion  coef f ioen t s  Crp(/3r, fla) def ined  by  

~b(C) reads  

Crp(flf, f la)  = IG d Up X,~(Upt) eso (3 5) 

4 , ( c )  = H 4,(x,)  
1 

peX, rp Co(/~f, f la)  Xrpt p) ( 3 . 6 )  

The p o l y m e r s  X, are c losed  surfaces  c o m p o s e d  o f  the p laque t tes  o f  the lat t ice To 

each p laque t t e  p of  X, we a t tach  an i r r educ ib le  r ep resen ta t ion  rp o f  the gauge  g roup  

G F ina l ly  we have to sum over  all non-equ iva len t  wreduclb le  r epresen ta t ions  o f  G 
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For later convenience we define in addition the expansion coefficients u, v, w 

and x" 

u(~, K) = df:~ c~/~(~, :Ca = ,<~r) 
eo(/3~,/3~ = K/3~) ' 

V ( # r ,  ,<) = d~- '  c~( /3f , /3~ = K/:3f) 
Co(/3~,/3a = ~/3,)  ' 

C3/~(/3r, /3a = K/3f) 
w( f, K ) = d ; ; 2  ' 

x(flf ,  K) = d21 ¢2(~f, ~a = Kflf) (3 7) 
CO(]3f, ]~a = Kj~f) 

In general, starting from a polymer X with fixed geometry which may be as well 

considered as a graph on the underlying lattice, we can get several polymer activmes 

4)(X) depending on how the lrreduoble representations are distributed on X 
Clearly, the number of different ~ ( X )  and therefore the total number of nontrlvlal 

coeffioents m the strong couphng expansmn of m depends on the order of the 

computation and on the leading order of the character expansion coefficients 

cr(/3f,/3a) as a function of  r For our model we have 

Cr([~f,[~a)~O(~[r+l/2]), r = 0 ,  l, 1, , (3.8) 

compared to the leading order behavior of the character expansion coefficients of 

pure Wilson action 

c,(flf)~O(~2~), r=0,½,1,  . . (39) 

Hence, qualitatively up to fixed order, we expect more nontrwtal coefficients In our 

model than in the model with simple Wilson action. However, the strong coupling 
expansion in our model cannot be obtained by a naive application of the method 

used In [2] 
To illustrate this, consider the leading order polymer Xo in the strong coupling 

expansion of m, the long straight tube connecting Pl, P2 with Up e O~, Up2C 02, 

which has the actwlty 

6 ( X o )  -- d~u(flf , ,  K)u(flf2 , K)/.~(flf, K )  4 ,  , (3 10) 

(fig. 1). Then the leading order term m (°) of the mass m = m(°)+Am Is 

m (°) = --4 In u (3.11) 

Prowded O1, 02 project on a state with definite mass m, the cluster expansion 

exponentmtes m the form 

e-"'=e-"'°" e-'a"t=e-~°)t{1- Amt + l  Am2t 2 } ,  (312) 
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A A A A  A A A i ~  

p,P b'V V " " "  V ' V v p "  P2 

( t 

Fig l The leading order polymer X o in the strong coupling expansion of the mass-gap m stretching In 
the 0magmary) time &rectlon x 4 p~ 2 ~ Ol 2, O being the operator generating a glueball when acting on 

the vacuum 

and  correct ions Am to the mass m (°) can be calculated by keeping the t -hnear  terms 

in the cluster expans ion  of F 

Now, a certain class of higher-order  correct ions consist  of  those 1-polymer clusters 

X ob ta inab le  by the removal  of n rings u 4 from Xo and  subsequent  inser t ion of n 

rings v 4 together  with inner  walls u at en t rance  and  exit side of the v 4 rings (fig 

2) The relative activity q~ = ~b(X)~b(Xo) - l  which is responsible  for the correction,  

is given by 
/ V4\" 4uEt-~ ) (3 13) 

In  the case of the Wilson act ion each ring contr ibutes  O(/34), which can be read 

off f rom the leading order  behavior  (3 9) 

But if  we compute  the same quant i ty  for our  model ,  we see from (3.8) that the 

con t r ibu t ion  of a single ring v4/u  4 is of  O(1)) 

Thus,  all graphs of the type cons idered  above,  however  large their extension,  

cont r ibute  to order/32) Clearly,  this is due to the geometry of  Xo and  is therefore 

a pecuhar l ty  of the appl ica t ion  of s trong coupl ing  expans ions  to glueball  masses 

In par t icular ,  a priori  it is not clear whether  these cont r ibu t ions  exponent ia te  in the 

form (3 12) 

In order  to prove the exponen t i a t ion  of the corrections in quest ion,  we follow a 

suggest ion due to Muns te r  we consider  a model  defined on a lattice which is a 

th ree -d imens iona l  tube  having single plaquet tes  as space-like cross sections and  

. d  . A  A .  A , t  p I l l  l i r a  In 
Pl I /  up" v , v v V v P2 

n I I 
u v u 

A A /q /! A • 

--p.V" " - !J  l;Pp  
/i A A .,q 

. L jii li~z 
I 

v 

Fig 2 Class of l-polymer clusters with relative acnvlty ~ =4/~2(V4///4) n, which IS investigated m the 
study of the tube model 
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Fig 3 The tube model 

extendmg mfinttely in the time dlrectton (fig 3) We choose an action such that the 

character expanston of a smgle plaquette Boltzmann factor contams the trtvtal, 
fundamental and adjomt representation only 

The mass ml/2 of the glueball whose wave-function consists of a single plaquette 

in the fundamental representation m the strong coupling limit can be determined as 

e m,/2 = AI/2/Ao, (3 14) 

where Ao and A j/2 a r e  the htghest and next-to-htghest etgenvalues of the transfer 

matrtx T of the tube model We then compute m~/2 mdependently by means of a 

strong couphng expansion summmg all n-rmg contrtbuttons We performed the 

calculation up to 0(/3 7) and found complete equtvalence of both results, concluding 

that the correcttons (3.13) do exponenttate provided we sum over all n For details 

see appendix A 

Let us now return to the full 4-&menslonal model agam Definmg 

R~ = ~ ( v4"~ " - 1)4 
n=l  ~ / / 4 /  / /4__ /24 '  (3 15) 

the strong couphng sertes becomes a power series m R~, However, for the numerical 

analysis, it ~s more convenient to expand v, w and x m terms of the expansxon 

parameter u(/3r, K) Factorizing the leading behavior of R~, the strong couphng 
sertes can be put into the alternatwe form 

7 
m = - 4  In u + ~ m k ( K ) U  I" +0( /3  8) (3 16) 

k 1 

The coefficients mk(K) are of genertc type 

rnk(K)= I--(~K)4J po l (K) ,  (3 17) 

and are hsted m table 1 
Since the group theoretical part of the strong couphng expansion (&stributton 

of trreduoble representattons on a graph wtth fixed geometry and matchmg of 
representations at hnks shared by more than 2 plaquettes) is much more extenstve 

than m the case of Wilson action, it has been performed on a computer 

4. The continuum l imit  

To obtain pre&ct lons  for the gluebal l  mass,  the c o n t i n u u m  l imit  a ~ 0 has to be 

taken D u e  to d lmens tona l  arguments ,  on a lattice a phystcal  mass  ts related to the 
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TABLE [ 

Expansion coefficients of  the mass-gap as defined m (3 17) 

549 

m](K) = -K 

m3(K)= K 1 ' -  K9 + 8~K7 + 52 KS_I40K3_2K 
19683 19683 243 243 81 3 

[ 1 )  3 ' 49 43 12755 41 

12754584 1594323 12754584 6561 

13939 K8 3643K6+3131K4 23K2 98~ 
1 5 ~  --6561 648 --27 - -3 - J  

; 1 / 4 ;  74 16772 286 
m S ( K )  = 949 K21 _ _ K I 9  + K I V j  - KI 5 [ ,_( ,  )4j [ 11622614670 129140163 645700815 1594323 

7981 K13----31790 Kll+ 322474 Kg+9022KT_407567Ks+lO88K3_2882K] 
2657205 1594323 2657205 6561 65610 243 81 I 

,o2  m6(r ) = 32 K28 _ K26_ K24 
7625597484987 1129718145924 564859072962 

449299 134983 I 89255 3826303 
Jr K22q-  K 20 - - K  18 __ KI6 

627621192180 627621192180 774840978 7748409780 

792335 36251183 509951 35872267 
K I 4 +  K I 2 _ _ - - K  l0  K 8 

+ 86093442 860934420 2125764 10628820 

423779K6_443621K4+2752K~ ____20984 / + 
26244 65610 135 "-- 4 0 5 J  

{ ~ } 6 {  646223 3065 mv(K ) = 64 K 3 3  K3 ] + K2 9 

617673396283947 17294855095950516 30502389939948 

5474477 216859 8091577 318601 
K 27 _ _  K2 '~ K23 + K 21 

+320275094369454 5648590729620 2636009007156 104603532030 

102562366 37497961 7441824287 28865041 
K I 9 - f  K 17 __ K 15 _ _ K  13 

+ 366112362105 104603532030 488149816140 860934420 

25041217 11 239715407 844079939K7 1971371KS+I3201K3+704K/ 
- -  K 4 K 9 + 

1004423490 31886460 24800580 98415 32805 9 ) 

For K = 0 we find the expansion coeffioents for the simple Wilson action as expected 

lattice spacing a and  the bare couphng  cons tan t  go vta 

m = l f ( g o )  , (4 1) 
a 

1 e. m order  to keep the mass finite, go has to be tuned  s tmul taneous ly  as a --, 0 In 

asymptouca l ly  free theories the c o n t i n u u m  physics is expected to be recovered m 

the weak couphng  region g o ~ 0  In thts d o m a m  the s tmul taneous  change a ~ 0 ,  
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go -->0, while keeping m finite ts controlled by the perturbatlve solution of the 
renormahzat lon group equation and one obtains In a 2-loop calculatton the well- 
known relation 

m = Cm 1 (¢tog2o)-o,/2~g exp - { 1 + O(go2)} = CmAL (4 2) a ' 

where /30 and ~1 are the first 2 untversal (renormaltzation scheme-mdependent)  
coefficients of  the perturbatlve expansion of the ~-function and AL ts the lattice 
A-parameter  which sets the mass scale of  the theory The constant Cm provides a 
non-perturbatlve relation between the physical mass rn and AL 

Gtven thts context, the following questtons artse naturally which ts the fastest 
way of  connecting strong and weak coupling regions? Does the strong coupling 
series, once a suitable scheme of analyttc continuation has been chosen, exhibit the 
scaling behavior  (4 2) m the weak coupling region? 

Consider  the phase diagram of the class of  2-parameter actions spectfied by (2 1) 
(fig 4) As indtcated by the dashed lines, lines of  contant bare coupling constant 
go run through the parameter  space with a slope -½ The fastest way to reach small 
bare coupling constants is therefore achteved, if one runs along hnes with slope +2 
Then, however, one wtll pass at least one of  the first-order transttion lines mdlcated 
in the figure But this means that we wtll encounter non-analyticitles on our way, 
which will give trouble for the strong couphng expansion In this case the sttuatton 
would be even worse than in the case of  s~mple Wilson action where even the 
well-separated crtttcal endpomt  can be traced m the glueball mass 

Now, in order to cure thts problem, one can choose a straight lme with negatwe 
slope Domg thts we stay away as far as posstble from the transttion lme and its 

~3a 
- ~  ~ ~ I 1  _ 1 o 1 ~  - 

  ::032 g; 
i I 

Fig 4 The phase &agram of our mixed actton model The dashed hnes are hnes of constant bare 
couphng constant go, the + symbols are Monte Carlo data from [16] 
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critical endpolnt However, this is dangerous too, because we are now staying in 

the vicinity of the strong coupling region go -> oo 
The solution to this subtle problem is based on an analysis by Bitar, Gottheb and 

Zachos [5] Their results have already been successfully applied to a Monte Carlo 

computation [6] 
Bitar et al considered 1-plaquette, n-parameter actions (n = 2, 3) which coincide 

with our action for n = 2 up to the definition of the couplings fir, fla They then 
applied Migdal's approximate renormahzation group transformations [7], 1 e they 
computed the sequence of effective large-distance actions projected to the space of 

l-plaquette actions, obtained by successive upscahng of the lattice spacing by a 

factor A > 1 Although this procedure is inexact for d > 2, It is beheved to keep the 

essentials of the dynamics 
Starting from various bare couphngs flf and/3a they found that all renormahzatIon 

trajectories coalesce in one slngte line which becomes straight for flf~ > 0 8, with an 
approximate slope of r = - 0  32 with our conventions (to be precise, this is only 

true if/3f and fla are chosen in the interesting region right of the line connecting 

the origin and the triple point. Trajectories starting from fir and /3a left of this hne 
unify in the /3a axis) Hence, actions which have [3a/flf~-- --0 32 are, in the sense of 

the Migdal approximate renormahzatlon group transformations, the renormalized 

descendants of actions with larger bare couphngs, or stated differently, they represent 

the s a m e  physics as actions which have a larger correlation length. Thus, this class 
of effective large-distance actions is closer to the continuum hmlt due to the relation 
1/~a = m Once this hne is reached, all actions stay lnvariant under the truncated 

Mlgdal renormalizatIon group transformation (apart from the change of the coupling 

constant) until the infrared fixed point at fir= 0 = fla IS reached. This (fixed) line 
is an approximation to the projection of the renormahzed trajectory of Kogut 

and Wilson [8] to the subspace of 1-plaquette actions Actions which approxi- 

mately exhibit such a behavior are known to be of the generalized gaussian 

type [9], i e of heat kernel [10], Manton [11] or mixed action type with fla/flr~- 

- 0  32 
As Lang et al [12] have demonstrated in a Monte Carlo simulation, heat kernel 

and Manton action show a smoother approach of the continuum limit and improved 
scahng For the heat kernel action we have confirmed these features within the 

framework of strong coupling expansions. Moreover, lattice action unlversahty is 

ratified For a summary of the results see appendix B 
In fig 5 we plot the strong coupling series over/3r for various negative values of 

K In particular for larger negative K, the strong coupling series seems to exhibit a 

smoother crossover to the weak coupling behavior, though it falls to show scahng 
behavior However, compared to the Wilson case, no qualitative improvement in 

the series can be observed This is believed to be due to the short series available 
In addition, we computed [4/3] Pad6 approximants for the same choice of K, which 
appear to be more stable than m the Wilson case and mimic the strong coupling 
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ma 

100 . . . . . . . . . . . .  i , , , ~ i , , , , i , , , , _  

05 

I I I I I I I I I l l I I I I I I I II I II I i II I 

05 10 15 20 2 5 30 35 ~3f 

Fig 5 The strong couphng series (3 16) plotted over fir From left to right we have K = 0 , - 0  l ,  - 0 2 ,  
- 0  3, - 0  32, - 0  4 The expected scahng behawor according to (4 4) is m&cated by the dashed hnes 

series to good accuracy in a large range of coupling constants, but also fall to 
indicate scaling behavior  at weaker coupling (fig 6) 

The problem still to be solved is how the constant Cm IS to be determined. The 
usual procedure [2] is to assume a rapid crossover from strong to weak coupling 
behavior  in the region of  collapse of the strong coupling series. Cm is then determined 
by fitting A L to the strong coupling curve, AL being computed by some perturbatlve 
method However, if one performs an ordinary 2-loop perturbatlve calculation, as 
Otto and Randerla report [6], totally nonsensical results are obtained This was 
also found by Bhanot and Dashen [13] who computed the string tension in the /3r 

m a  

5O 

10 

05 

' '  ' 1  ' ' ' '  I ' ' ' '  I . . . .  I '~  ~ -  

05 l0  15 20 25 

\ \  

h alil~ i i ~ l  

3.0 :~5 13f 

Fig 6 The strong couphng series of fig 5 together with the corresponding [4/3] Pad6 approxlmants 
Starting from the left, we have strong couphng series with K = - 0  I and [4/3] Pad6 approxlmant (dashed 

hne), strong couphng series with K = - 0  2 (full hne) and [4/3] Pad6 approxlmant (dashed hne) etc 
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and/3a plane by a Monte Carlo experiment For negative fla they manifested large 

disagreements with scaling 
This ts by no means surprising" looking at (2.3) we conclude that a negative fla 

results in a large bare coupling go This can be seen, too, from the phase diagram 
fig 4 Staying In a region of large bare coupling, low-order perturbation theory 
cannot be expected to give correct results Hence, there is need for an improved 

scheme to compute A L 

In ref [14] Grossman and Samuel performed a resummatlon of perturbation 
theory They showed that in a la rge-N (gauge group SU(N) )  approximation,  the 
class of  1-plaquette, 2-parameter action under consideration ts equivalent to the 

1-plaquette, 1-parameter Wilson action, but with an effectme couphng fleA, which is 

given by 

fie. = f l r+2 /3a-  5 f l a  (4.3) 
2fle~' 

at weak couphng By this method they then cured the problems of [13] and verified 
asymptotic scaling for the string tension Monte Carlo data Relying on (4 3), Otto 

and Randerta [6] also confirmed scahng of the mass-gap 
Motivated by this success, our method is as follows for fixed K, we express the 

asymptotic scaling behavtor  m terms of fle~ 

l ( fleff~ 13'/2"~ 1 
AL(fle~):a\~o / exp ( - ~ o f l e ~ )  , (44)  

and determine Cm such that this function fits the correspondmg strong coupling 
curve The strong coupling curves stay unaffected by thts procedure, hence they still 
fail to exhibit scahng behavior For the fits plotted over fir, see fig 5. The K 
dependence of the Cm parameter  ts shown in fig. 7 For decreasing K, the K 
dependence becomes weaker, i e the mass determination more stable. Hence we 

200[ , , , , 

)50 

100 
I I I I 

-01 -02 -03 -04 

Fig 7 The K-dependence of the C,, parameter as defined m (42) 
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3a 

- 0 1 -  . - 

-10 ~13.,,= .. \ ,,\ 
~g,2 =** , . , ,  :,,s 

I I I 
1.0 20 30 13f 

Fig 8 Lines o f  constant m a  as determined f rom the strong couphng series ( ful l  hnes) together with the 
predlcted curves (dashed hnes) whlch are hnes of/3cer = const 

conclude  (approximate)  umversahty  for  mixed action a round  the fixed hne slope 
K = -0 .32  For  compar ison,  recall the value Cm = 127 from the O(fl  8) Wilson act ion 

calculatxon 
To get an impression whether  the l a rge -N  resummat ion  performed m [14] is 

applicable in the crossover  region, we plot m fig 8 hnes o f  constant  ma together  
with the hnes o f  constant  flen according to (4 3), which should  match m the region 

of  val i&ty From the figure it can be deduced  

For ma = ! the pre&ct lon  fails, however,  one does not have to worry about  it 

because we are well beyond the crossover where we have no reason to trust the 

strong coupl ing series any more 
For  ma = 2 we have good  agreement  for the interesting region -0 .2  ~> K t> - 0  32 

The pre&ctlve power  even grows for increasing ma (rna = 3, 4), where, already 
being m a region of  rather large couphng,  the weak coupl ing result (4 3) is a pnor t  

not  expected to be useful any more 

5. Summary and conclusion 

We have presented a strong couphng  expansion of  the mass-gap (which corre- 

sponds  to the lowest- lymg glueball m the J P =  0 ÷ sector) up to 0( /3  7) with mixed  
fundamenta l  and ad jomt  action for the gauge group  SU(2) We find low-order  

correct ions due to graphs o f  arbitrary size as a novel feature in the strong couphng  
expansion These corrections are shown to exponentiate  in the desired way The 
strong couphng  series plotted for fixed ratios o f  adjolnt  and fundamenta l  couphng  
approach  the scahng region more smoothly  than the cor responding  series for simple 
Wdson  actton Pad6 approxlmants  are more stable than m the case o f  Wilson act ion 
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too However,  as expected, series and approximants  fall t o  exhibit scaling behavior  
qualitatwely and quantitatively Nevertheless, using the tangent method we confirm 
universality for mixed action as well as for the heat kernel action, which are 
approximately equivalent for a special choice of  parameters Finally, we indepen- 
dently checked the validity of  the la rge-N resummatmn [14] already used m other 

calculations with mixed actmn [14, 6] 

It is a great pleasure to thank Gernot  Munster for many suggestions and illuminat- 
ing discussmns through all stages of  this work. I would hke to thank Prof. F. 
Gutbrod,  Prof. H Joos, Prof G Kramer  and Prof P Soding for supporting this work 

Appendix A 
THE TUBE MODEL 

The model is defined on a straight tube of 1-plaquette cross section stretching m 
the 0magInary)  time direction* (fig 3). It is geometrically equivalent to the leading 

order polymer  Xo. The action is defined as 

S = E  S p + E  Spt, (A.I)  
P~ Pt 

where the first (second) sum runs over space-like (time-like) plaquettes only The 
distinction between space-like and time-like plaquettes permits, in general, different 
actions to be defined for space-like and time-like oriented plaquettes. As a by- 
product,  ~t ~mproved the visualization of the contributing graphs m the strong 

coupling expansion as mentioned m sect 3 
The l-plaquette actions Sp, and Sp, are defined as 

eSp(Vp) = 1 + 2UsXl/2(Up,) + 3 vsx, (Up,), 

eSpt (upt) ---- 1 -k- 2 u t X 1 / 2 ( U p , )  q- 3 ~)tXl ( U p , ) ,  (m 2) 

where we dropped an overall normalization factor [4] 
To construct the transfer matrix T, we consider a single ring of fig 3 (fig 9) 

Recalling that T ~s the t~me translatmn operator  for ~magmary t~me, we get 

fiG 4 4 T(x,,y,)= I] dUb, espy(x)~2 [I eSp,(o'(x"b"Y'))eSp~(v)/2 
i=1 I=l (A3)  

= T ( x ( X ) ,  X ( Y ) ) ,  

X = Ux, UT,' Ux2' Ux, (A.4) 

r = uv4 uy, u . '  Uv,' 
where the second hne of eq (A 3) follows from gauge lnvarlance. 

Now T is of  the form AJ/2BA ~/2, A and B being symmetric matrices depending 
on x(X) ,  X(Y),  and since we aim at the determination of the mgenvalues of  T, we 
* The tube model has also been &scussed m a variational approach by Patkos [17] 
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bl 

x~ x~y 3 y~ 
b3 

Fig 9 A single ring of the tube model (fig 3) together with the symbols referred to m the text 

may consider as well the asymmetric transfer matrix 

= BA,  (A 5) 

which ms eas~er to deal with Makmg use of the property (A 3), which holds of course 
for T too, we get 

7"(x(X), X(Y)) = Z t.~xr(X)x,( Y ) ,  (A 6) 
r, 

t,,= fGdX dYx,(X ')Xs(Y ' )7"(x(X) ,x(Y))  (A7) 

Performing the bond integrations b~, b2, , b4 and subsequently the integrations 
over X and Y we get for the transfer matrix elements 

1 2us 1 
(trs) . . . .  0.1/2.1 = 2UsU4t U4(I+3Vs) 2UsU 4 ] (A8)  

3v~v~ 2usv4t v4(l +3vs)] 

Apphcat lon of ordinary non-degenerate Raylelgh-Schrodinger perturbation theory 

m the non-diagonal part of  (A 8) up to 7th-order yields the elgenvalues A0 and A~/2 
to the desired accuracy Then the mass can be computed using eq (3 14) 

ml/2 = -In/~1/2 (A 9) 
)to 

Appendix B 

STRONG C O U P L I N G  EXPANSION OF THE MASS-GAP WITH G E N E R A L I Z E D  HEAT 

K E R N E L  ACTION FOR G A U G E  G R O U P  SU(2) 

Consider euclidean pure Yang-Mills lamce gauge theory on a hypercubtcal lattice 
in d = 4 dimensions The SU(2) generahzatton of the heat kernel action [10] 

SHK = In H K(  Up, ½g2), 
P 

K(Up, ½g2)=N ~, ~ o p  exp - (~Op+2~rn) 2 , (B 1) 
.= ~ sin ~p 



K Decker / Strong coupling expansion 557 

(N is the normallzaUon constant; the coupling constant g ts related to the bare 
coupling constant go by l / g  2= 1 / g ~ + ~ )  results In a particular simple character 

expansion of the 1-plaquette Boltzmann factor 

e S . . . .  E dr e g2Cr/2Xr(Up), (B 2) 
r 

Cr being the elgenvalue of the SU(2) Castmlr operator  m the irreducible r-representa- 
tion The usual SU(2) parameters u, v and w defined as m (3.7) read 

u(q) = q3/2 ,  

v ( q )  = q 4 , 

w(q) = q~5/2, q .= e -g2/4 (B 3) 

Making use of  the 0(/38) result for Wilson action, the strong couphng expansion 

is computed as 

m 0 + = - 4 1 n  u(q) +4q 3 - 3 q  4 - 2 6 q  6 -  12q 7+9qs 

+ ~ o o q 9  150q~O+36q~,_619q,2_72q~3 +O(q,5) (B 4) 

Using the tangent method of ref [2] and the correct expression for A ~K we compute 
c ~ K = 3 9 .  

We say that we have unlversahty, if for 2 ddterent actions $ and S' with correspond- 

lng lamce scale parameters  AL and A[,  we have 

Cm A [  
= - - .  (B5) 

C "  AL 

m ~  

100 

50 

10 

05 

O0 
. . . . . . . .  I , h ,  ,Xl , , , ,  , 

OS 10 15 20 25 30 

Fig 10 The strong couphng  series for the Wdson and generahzed heat kernel action (full hnes)  together 
with the expected scahng behavior (dashed hnes) The curve which "scales earher"  corresponds to the 

heat kernel action 
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R e c a l h n g  c W =  127 fo r  the  0 ( /38)  c a l c u l a t i o n  wi th  the  W i l s o n  ac t ion ,  we  get  

A ~  ~ 
= 3 26 (B.6) 

AL 

In  [15], G o n z a l e s  et al d e t e r m i n e  

A "K 
- 3 07 ,  (B 7) aw 

by a p p l i c a t i o n  o f  t he  b a c k g r o u n d  f ield m e t h o d ,  wh i l e  t h e y  q u o t e  an  e x p e r t m e n t a l  

v a l u e  o f  

A "K 
")(~ + 0  9 (B 8) 

AL w ----4 " " - 0  8 

f r o m  M o n t e  C a r l o  m e a s u r e m e n t s  o f  t he  s t r ing  t ens ion .  

O u r  resu l t  is m g o o d  a g r e e m e n t  wi th  the  t h e o r e t i c a l  va lue ,  thus  u n l v e r s a h t y  o f  

the  m a s s - g a p  fo r  the  W d s o n  a n d  h e a t  k e r n e l  a c t i o n  m a y  be  c o n c l u d e d  (fig 10) 

References 

[1] J Kogut, D K  Sinclair and L Susskmd, Nucl Phys B114(1976)199 
[2] G Munster, Nucl Phys B190 [FS3] (1981) 439, B205 [FS5] (1982) 648 (E) 
[3] N Klmura, DESY 84-010 (Jan 1984) 
[4] G Munster, Nucl Phys BI80 [FS2] (1980) 23 
[-5] KM Bltar, S Gottheb and C K Zachos, Phys Rev D26 (1982) 2853, 

M Imachl, S Kawabe and H Yoneyama, Prog Theor Phys 69 (1983) 1005 
[-6] S Otto and M Randena, Nucl Phys B225 [FS9] (1983) 579 
[-7] A Migdal, ZhETF 69 (1975) 810, 1457, ETP 42 (1975) 413,743 
[8] K G  Wdson and J Kogut, Phys Reports 12C (1974) 75 
[9] D Horn and C K Zachos, ANL-HEP-PR-83-56 

[-10] J M Droutte, Phys Rev D18 (1978) 1174, 
P Menottl and E Onofn, Nucl Phys BI90 [FS3] (1981) 288 

[-11] N S Manton, Phys Lett 96B (1980) 328 
[12] C B Lang, C Rebbl, P Salomonson and B S Skagerstan, Phys Lett 101B (1981) 173 
[13] G Bhanot and R Dashen, Phys Lett l13B (1982) 299 
[14] B Grossman and S Samuel, Phys Lett 120B (1983) 383, 

Yu M Makeenko and M I Polykarpov, Nucl Phys B205 [FS5] (1982) 386 
[15] A Gonzales-Arroyo and C P Korthals-Altes, Nucl Phys B205 [-FS5] (1982) 46 
[16] G Bhanot and M Creutz, Phys Rev D24 (1981) 3212 
[17] A Patkos, Phys Lett IlOB (1982) 391 


