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We perform a strong coupling expansion up to O(87) for the mass-gap 1n SU(2) lattice gauge
theory with mixed action A novel feature of the strong coupling expansion 1s discussed The strong
coupling series appears to approach the scaling region more smoothly and Padé approximants
become more stable than 1n the case with simple Wilson action The region of vahidity of a recently
proposed resummation of perturbation theory as applied to the determination of the asymptotic
scaling behavior 1s investigated Results of a strong coupling calculation for the heat kernel action,
which 1s related to the mixed action for a special choice of parameters, are also reported

1. Introduction

In recent years a lot of effort has been spent on the calculation of the mass
spectrum of pure Yang—Mills theory in the lattice formulation The lattice as a
non-perturbative cut-off admits, 1n particular, the analytic calculation of the mass
spectrum 1n the strong coupling regime [1-3]

The difficulty with lattice gauge theories 1s to obtain the conttnuum limit This 1s
especially true if one 1s concerned with strong coupling computations, because 1n
this case one 1s far from the physical region which 1s the weak coupling region in
an asymptotically free theory So far, however, the available strong coupling series
for the Wilson action are much too short to apply series extrapolation techniques
reliably

There are 1n principal two ways to proceed

(1) The brute-force method would be to make the available strong coupling series
for the simple Wilson action much longer Then there 1s some hope that 1n this way
one may get information about continuum physics Unfortunately, this 1s expected
to be impossible by means of a ““hand calculation”, due to the enormous amount
of time estimated And computer algorithms for a “machine calculation” are very
difficult to design

(1) A more skilful way 1s to improve the simple Wilson action such that, starting
from the strong coupling region, the weak coupling region 1s attained faster Follow-
ing this line one can check lattice action universality as a by-product

543



544 K Decker / Strong couphng expansion

Adopting this second point of view, 1n this paper we will modify the usual Wilson
action minimally by the inclusion of the trace over the boundary of a single plaquette
in the adjoint representation of the gauge group SU(2)

The orgamization of this article 1s as follows Sect 2 introduces the model, sect
3 1s devoted to the strong coupling expansion In sect 4, the continuum limit 1s
discussed 1n detail Sect 5 provides the summary and the conclusions The two
appendices provide the detailed discussion of a simple tube model introduced 1n
sect 3, and some results on the strong coupling expanston for the generalized heat
kernel action which 1s related to our model

2. The model

We consider euclidean pure Yang-Mills lattice gauge theory on a hypercubical
lattice with gauge group SU(2) in d =4 dimensions The action is given by
S=Y5,=% {B—f Re xe(Uy) +E21x( U, )IZ}, @.1)
p p df df ?
where the sum runs over all unoriented plaquettes U, is as usual the ordered product
of the group-valued gauge fields attached to the links in the boundary of p x; 18
the character of the fundamental representation of SU(2) and B, B, are coupling
parameters di= x¢{(1) The first term 1n (2 1) 1s the well-known Wilson action while
the second term represents the admixture of the adjoint representation, where we
have made use of the Clebsch—-Gordan decomposition

(®1=1800 (22)
If we perform the naive continuum hmit of (2.1), we agree with the continuum
theory 1f we 1dentify

B B 1L

= 2.3
2dy  d; g(2>, (23)

where g, 1s the bare coupling constant For later convenience we parametrize the
couplings as

Ba=KBs. (24)

3. Strong coupling expansion

The mass-gap m (corresponding to the lowest-lying glueball in the J¥ =0" sector)
can be determined via the asymptotic decay of the connected correlation function
[2] for two local operators O, and O, we get after rotation into the (1maginary)
time direction x,

I'(x4) =(0,(x4) 05(0)) —{O(x4)X 0x(0)) ~e N, 31D

X4—> 00
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hence

1
m=—Im —In I'(x,) (32)

X4 X,

In order to make an optimal projection on the glueball eigenstate, we choose O, ,
as linear combinations of space-like loops transforming trivially under the symmetry
group of the spatial sublattice We choose these loops to be plaquettes for simplicity
In addition we sum over all positions 1n the spatial sublattice in order to project
onp= 0 Hence O, can be wntten as

1
:Z Z X (Ux,x4 ‘,17) 5 (3 3)
\/3N5 X w,rv=123 ! i "

m<wv

01,2(x4) =

where N 1s the number of sites of the spatial sublattice
Making use of the cluster expansion of the generating functional of I', we obtain
a cluster expansion of the glueball mass m [2]
Br]‘ﬂr*ﬂrz}

} , (34)
Bt =Bc=Br,

where we have chosen B, = B¢, (B;= B,) for U, = U,,, z5€ O, (U,,= =U,4.5€ 0,)
in the lattice action (2 1) ¢(C) 1s the activity of the (multi-) polymer cluster
C=(XT", X3, ) and the combinatonal coefficients a(C) take into account the
multiphicities n,, n,, , of the polymers X, X,, ., and how they are connected
[4]. The properties of a(C) ensure that the cluster C 1s link-wise connected In
terms of the character expansion coefficients ¢, (B¢, B.) defined by

1 1
m=—11m—ln{ Yo ¥ dﬂg,agr In Z( B, Be,, Br,, B.)

X400 Xy 3N5xy.<uyy,<v

=—hmiln{3L LT diis,5a(O(C)

Nsxp.<V V,LL<V

x4->00 V4

Crp(Bf’ Ba) :J dUp er( U;l)eSp (3 5)
& (C) reads
$(C)=]] ¢(X.)
Cr(Bf’B )
= dU, —re P Pal .
0 fou 1 xSEe v a)

The polymers X, are closed surfaces composed of the plaquettes of the lattice To
each plaquette p of X, we attach an irreducible representation r,, of the gauge group
G Finally we have to sum over all non-equivalent irreducible representations of G



546 K Decker / Strong couphing expansion

For later convenmience we define in addition the expansion coefficients u, v, w
and x-

g1 Cl/z(ﬁf,ﬁa=f<,3f)
ulBrw) =2 col Br, Ba=KkBr) ’

-1 cl(Bf’ ﬁa = Kﬂf)
= dl »
v(fa k) co( Br, Ba= kBr)

w(Bg k) =d3), sz)z(ﬁﬁ:r,ﬂﬁa==‘;[i)f) ,

1 €2(Be, Ba= kPBr)
co( Br, Ba= kB¢

In general, starting from a polymer X with fixed geometry which may be as well
considered as a graph on the underlying lattice, we can get several polymer activities
& (X) depending on how the irreducible representations are distributed on X
Clearly, the number of different ¢»(X) and therefore the total number of nontrivial
coefficients 1n the strong coupling expansion of m depends on the order of the
computation and on the leading order of the character expansion coefficients
¢,(Br, B.) as a function of r For our model we have

¢(Br Ba) ~O(BY ), r=0,3,1, (3.8)

compared to the leading order behavior of the character expansion coefficients of
pure Wilson action

x(Bp k) =d; (37)

o(B)~O0(B™), r=0,31, . . (39)

Hence, qualitatively up to fixed order, we expect more nontrivial coefficients 1n our
model than in the model with simple Wilson action. However, the strong coupling
expansion 1n our model cannot be obtained by a naive application of the method
used 1n [2]

To 1illustrate this, consider the leading order polymer X, in the strong coupling
expansion of m, the long straight tube connecting p,, p» with U, € O,, U,,€ O,,
which has the activity

d)(XO) = ?u(Bﬂa K)U(sz, K)u(Bf, K)‘“’ (3 10)
(fig. 1). Then the leading order term m'® of the mass m = m'“+ Am 15
m'®=—41nu (3.11)

Provided O,, O, project on a state with definite mass m, the cluster expansion
exponentiates in the form

0 0 1
e =g MVt e Am g "{1 — Amt +5Am2t2 } , (312)
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Fig | The leading order polymer X, 1n the strong coupling expansion of the mass-gap m stretching n
the (imaginary) time direction x, p; ;€ O, ,, O being the operator generating a glueball when acting on
the vacuum

and corrections 4m to the mass m'” can be calculated by keeping the ¢-linear terms
1n the cluster expansion of I’

Now, a certain class of higher-order corrections consist of those 1-polymer clusters
X obtainable by the removal of n rings u* from X, and subsequent insertion of n
rings v* together with inner walls u at entrance and exit side of the v* rings (fig
2) The relative activity q§ = ¢(X)d(X,)~" which 1s responsible for the correction,

is given by N
(%) (313)
u

In the case of the Wilson action each ring contributes O(B*), which can be read
off from the leading order behavior (3 9)

But if we compute the same quantity for our model, we see from (3.8) that the
contribution of a single ring v*/u* is of O(1)!

Thus, all graphs of the type considered above, however large their extension,
contribute to order B*! Clearly, this 1s due to the geometry of X, and 1s therefore
a pecuhanty of the application of strong coupling expansions to glueball masses
In particular, a prior it 1s not clear whether these contributions exponentiate 1n the
form (3 12)

In order to prove the exponentiation of the corrections 1n question, we follow a
suggestion due to Munster we consider a model defined on a lattice which 1s a
three-dimensional tube having single plaquettes as space-like cross sections and

|
u
!
=p So- P,
-1 i
1 I'
V'

Fig 2 Class of 1-polymer clusters with relative activity $ =4u*(v*/u*)", which 1s investigated in the
study of the tube model



548 K Decker / Strong couphng expansion
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Fig 3 The tube model

extending infinitely 1n the time direction (fig 3) We choose an action such that the
character expansion of a single plaquette Boltzmann factor contains the trivial,
fundamental and adjoint representation only

The mass m,,» of the glueball whose wave-function consists of a single plaquette
1n the fundamental representation 1n the strong coupling limit can be determined as

e M= Ay,/A, (3 14)

where A, and A,,, are the highest and next-to-highest eigenvalues of the transfer
matrix T of the tube model We then compute m,,, independently by means of a
strong coupling expansion summing all n-ring contributions We performed the
calculation up to O(B8’) and found complete equivalence of both results, concluding
that the corrections (3.13) do exponentiate provided we sum over all n For details
see appendix A

Let us now return to the full 4-dimensional model again Defining

R, = il(%)— ke (3 15)

- 4 4
ne ut—ov*’

the strong coupling series becomes a power series 1n R, However, for the numerical
analysis, 1t 1s more convenient to expand v, w and x in terms of the expansion
parameter u(B, k) Factorizing the leading behavior of R,, the strong coupling
series can be put into the alternative form

,
m=—-4lnu+ Y m(x)u* +0(B8% (316)
k=1
The coefficients m, (k) are of generic type

k—1
i ={—is pol (o), G17)
1—(3k)
and are listed 1n table |
Since the group theoretical part of the strong coupling expansion (distribution
of irreducible representations on a graph with fixed geometry and matching of
representations at links shared by more than 2 plaquettes) 1s much more extensive

than 1n the case of Wilson action, it has been performed on a computer

4. The continuum limit

To obtain predictions for the glueball mass, the continuum limit a -0 has to be
taken Due to dimensional arguments, on a lattice a physical mass 1s related to the
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TABLE |

Expansion coefficients of the mass-gap as defined 1n (3 17)

m(k)=—«

1 1 2
m,(k) Z—ﬁ{——xé—hx4+xz+2}
1-(3x) 81 27

1 2 4 26 8 52 140 , 2
m3(K)={ : 4} {— k= K9+_K7+_‘K5—WK3——K}
1-(3x) 19683 19683 243 243 81 3

3
m(K):{ 1 }{_ O e M, 12755, 4L,
N 1—(3x)* 12754584 1594323 12754584 6561
13939 . 3643 . 3131 , 23 , 98}
- K ———Kk +——«k - K
157464 6561 648 27 3
4
m(K)={ 1 }{_ 49 o T4 e, 16772 286
: 1-(dk)* 11622614670 129140163 645700815 1594323
7981 . 31790 |, 322474 9022 . 407567 , 1088 , 2882
- K~ — K+ K —x' - K +——K ——«k
2657205 1594323 2657205 6561 65610 243 81
5
mﬁ(K):{ 1 }{_ 32 e 1987 oo 1021,
1-(3k)? 7625597484987 1129718145924 564859072962
N 449299 . 1349831 o 89255 o 3826303
- - K
627621192180 627621192180 774840978 7748409780
792335, 36251183 |, 509951 | = 35872267
+ K+ K = K = K
86093442 860934420 2125764 10628820
423779 , 443621 , 2752 , 20984}
K- — K +——kKk " ————
26244 65610 135 405
(<) { 1 }"{ 64 " 646223 . 3065 2
mo(k)= - -
7 1-Gr)*) | 617673396283947" 17204855095950516 3050238939948
5474477 . 216859 ’s 8091577 ., 318601 .
- o= K
320275094369454 " 5648590729620 2636009007156 104603532030
102562366 37497961 7441824287 28865041

19 17 15

+ K K K K
366112362105 104603532030 488149816140 860934420

25041217 | 239715407 , 844079939 . 1971371 s 13201 . 704 }
- Kk + K — K+ K™+ K +——«k
1004423490 31886460 24800580 98415 32805 9

13

For « =0 we find the expansion coefficients for the simple Wilson action as expected

lattice spacing a and the bare coupling constant g, via

m=21(g,) @1)
a

1e. 1n order to keep the mass finite, g, has to be tuned simultaneously as a—>0 In
asymptotically free theories the continuum physics 1s expected to be recovered in
the weak coupling region g,—>0 In this domain the simultaneous change a0,
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g0~ 0, while keeping m finite 1s controlled by the perturbative solution of the
renormalization group equation and one obtains in a 2-loop calculation the well-
known relation

m = Gz (Bogd) *Phexp (- 1+ O = Cut, (@)
a 2Bogo

where B, and B, are the first 2 universal (renormalization scheme-independent)

coefficients of the perturbative expansion of the B-function and A, 1s the lattice

A-parameter which sets the mass scale of the theory The constant C,, provides a

non-perturbative relation between the physical mass m and A,

Given this context, the following questions arise naturally which 1s the fastest
way of connecting strong and weak couphing regions? Does the strong coupling
series, once a suitable scheme of analytic continuation has been chosen, exhibit the
scaling behavior (4 2) 1n the weak coupling region?

Consider the phase diagram of the class of 2-parameter actions specified by (2 1)
(fig 4) As indicated by the dashed lines, lines of contant bare coupling constant
8o run through the parameter space with a slope —3 The fastest way to reach small
bare couphng constants is therefore achieved, if one runs along lines with slope +2
Then, however, one will pass at least one of the first-order transition lines indicated
in the figure But this means that we will encounter non-analyticities on our way,
which will give trouble for the strong coupling expansion In this case the situation
would be even worse than in the case of simple Wilson action where even the
well-separated critical endpoint can be traced 1n the glueball mass

Now, 1n order to cure this problem, one can choose a straight line with negative
slope Doing this we stay away as far as possible from the transition line and its

Ba

I e S

| .

2
9go=00
1 |

Fig 4 The phase diagram of our mixed action model The dashed lines are lines of constant bare
coupling constant g;, the + symbols are Monte Carlo data from [16]
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critical endpoint However, this 1s dangerous too, because we are now staying in
the vicinity of the strong coupling region g,

The solution to this subtle problem is based on an analysis by Bitar, Gottlieb and
Zachos [5] Their results have already been successfully applied to a Monte Carlo
computation [6]

Bitar et al considered 1-plaquette, n-parameter actions (n =2, 3) which coincide
with our action for n=2 up to the defimition of the couplings B¢, 8. They then
applied Migdal’s approximate renormalization group transformations [7], 1€ they
computed the sequence of effective large-distance actions projected to the space of
1-plaquette actions, obtained by successive upscaling of the lattice spacing by a
factor A >1 Although this procedure is inexact for d > 2, 1t is believed to keep the
essentials of the dynamics

Starting from various bare couplings B¢ and 8, they found that all renormalization
trajectories coalesce in one single line which becomes straight for 8= 0 8, with an
approximate slope of x =—0 32 with our conventions (to be precise, this 1s only
true 1f B¢ and B, are chosen 1n the interesting regton right of the line connecting
the origin and the triple point. Trajectories starting from B; and B, left of this line
unify 1 the 8, axis) Hence, actions which have B,/B¢=—0 32 are, 1n the sense of
the Migdal approximate renormahzation group transformations, the renormalized
descendants of actions with larger bare couplings, or stated differently, they represent
the same physics as actions which have a larger correlation length. Thus, this class
of effective large-distance actions 1s closer to the continuum himit due to the relation
1/ éa =m Once this line 1s reached, all actions stay invanant under the truncated
Migdal renormalization group transformation (apart from the change of the couphing
constant) until the infrared fixed point at 8,=0= 3, 1s reached. This (fixed) line
1s an approximation to the projection of the renormalized trajectory of Kogut
and Wilson [8] to the subspace of l-plaquette actions Actions which approxi-
mately exhibit such a behavior are known to be of the generalized gaussian
type [9], 1¢ of heat kernel [10], Manton [11] or mixed action type with B8,/8;=
-032

As Lang et al [12] have demonstrated 1in a Monte Carlo simulation, heat kernel
and Manton action show a smoother approach of the continuum limit and improved
scaling For the heat kernel action we have confirmed these features within the
framework of strong coupling expansions. Moreover, lattice action universality 1s
ratified For a summary of the results see appendix B

In fig 5 we plot the strong coupling series over B; for various negative values of
x In particular for larger negative k, the strong coupling series seems to exhibit a
smoother crossover to the weak coupling behavior, though 1t fails to show scaling
behavior However, compared to the Wilson case, no qualitative improvement in
the series can be observed This is believed to be due to the short series available
In addition, we computed [4/3] Padé approximants for the same choice of «, which
appear to be more stable than n the Wilson case and mimic the strong couphng
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Fig 5 The strong coupling series (3 16) plotted over 8; From left to right we have x =0, —0 1, -02,
—03, =032, —04 The expected scaling behavior according to (4 4) 1s indicated by the dashed lines

series to good accuracy n a large range of coupling constants, but also fail to
indicate scaling behavior at weaker coupling (fig 6)

The problem still to be solved 1s how the constant C,, 1s to be determined. The
usual procedure [2] 1s to assume a rapid crossover from strong to weak coupling
behavior in the region of collapse of the strong coupling series. C,, is then determined
by fitting A, to the strong coupling curve, A, being computed by some perturbative
method However, if one performs an ordinary 2-loop perturbative calculation, as
Otto and Randeria report [6], totally nonsensical results are obtained This was
also found by Bhanot and Dashen [13] who computed the string tension n the B¢

ma

)OC_II|IIIIIIIIllll"l'T]'l"lllll

L4149

SO

1

llllll

05

\
N B I T |

05 10 15 20 25 30 35 B

Fig 6 The strong coupling series of fig 5 together with the corresponding [4/3] Padé approximants
Starting from the left, we have strong coupling series with x = —0 | and [4/3] Padé approximant (dashed
hine), strong couphing series with x = —02 (full line) and [4/3] Padé approximant (dashed line) etc
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and B, plane by a Monte Carlo experiment For negative 8, they mamifested large
disagreements with scaling

This 1s by no means surprising' looking at (2.3) we conclude that a negative 3,
results 1n a large bare coupling g, This can be seen, too, from the phase diagram
fig 4 Staying in a region of large bare coupling, low-order perturbation theory
cannot be expected to give correct results Hence, there 1s need for an improved
scheme to compute A

In ref [14] Grossman and Samuel performed a resummation of perturbation
theory They showed that 1n a large-N (gauge group SU(N)) approximation, the
class of 1-plaquette, 2-parameter action under consideration 1s equivalent to the
1-plaquette, 1-parameter Wilson action, but with an effective coupling B.s, which 1s
given by

5Ba
2.Beﬁ ’

at weak coupling By this method they then cured the problems of [13] and verified
asymptotic scaling for the string tension Monte Carlo data Relying on (4 3), Otto
and Randena [6] also confirmed scaling of the mass-gap

Motivated by this success, our method 1s as follows for fixed «, we express the
asymptotic scaling behavior in terms of B.q

1 . B,/282 1
AL( Beff) = ;(%(;) €Xp (_%Beﬁ> s (4 4)

and determine C,, such that this function fits the corresponding strong coupling
curve The strong coupling curves stay unaffected by this procedure, hence they still
fail to exhibit scaling behavior For the fits plotted over B¢ see fig 5. The «
dependence of the C, parameter 1s shown n fig. 7 For decreasing «, the «
dependence becomes weaker, 1 e the mass determination more stable. Hence we

Beﬂ:Bf+ZBa_ (43)

200 T T T T
Cm

1501 -

1 1 1

1
-1 -02 -03 -Q4 n

Fig 7 The x-dependence of the C,, parameter as defined 1n (4 2)
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Ba
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Fig 8 Lines of constant ma as determined from the strong coupling sertes (full lines) together with the
predicted curves (dashed lines) which are lines of B.q = const

conclude (approximate) universality for mixed action around the fixed hine slope
k = —0.32 For comparison, recall the value C,, =127 from the O(B®) Wilson action
calculation

To get an impression whether the large-N resummation performed 1n [14] 1s
applicable in the crossover region, we plot 1n fig 8 lines of constant ma together
with the lines of constant 8.4 according to (4 3), which should match in the region
of validity From the figure 1t can be deduced

For ma =1 the prediction fails, however, one does not have to worry about 1t
because we are well beyond the crossover where we have no reason to trust the
strong coupling series any more

For ma =2 we have good agreement for the interesting region —0.2 x = —0 32
The predictive power even grows for increasing ma (ma =3,4), where, already
being in a region of rather large coupling, the weak coupling result (4 3) 1s a prion
not expected to be useful any more

5. Summary and conclusion

We have presented a strong coupling expansion of the mass-gap (which corre-
sponds to the lowest-lying glueball 1n the J© =07 sector) up to O(B7) with mixed
fundamental and adjoint action for the gauge group SU(2) We find low-order
corrections due to graphs of arbitrary size as a novel feature in the strong coupling
expansion These corrections are shown to exponentiate in the desired way The
strong coupling series plotted for fixed ratios of adjoint and fundamental coupling
approach the scaling region more smoothly than the corresponding series for simple
Wilson action Padé approximants are more stable than 1n the case of Wilson action
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too However, as expected, series and approximants fail to exhibit scaling behavior
qualitatively and quantitatively Nevertheless, using the tangent method we confirm
umversality for mixed action as well as for the heat kernel action, which are
approximately equivalent for a special choice of parameters Finally, we indepen-
dently checked the validity of the large-N resummation [14] already used in other
calculations with mixed action [14, 6]

It 1s a great pleasure to thank Gernot Munster for many suggestions and illuminat-
ing discussions through all stages of this work. I would like to thank Prof. F.
Gutbrod, Prof. H Joos, Prof G Kramer and Prof P Soding for supporting this work

Appendix A
THE TUBE MODEL

The model 1s defined on a straight tube of 1-plaquette cross section stretching in
the (1imaginary) time direction* (fig 3). It 1s geometrically equivalent to the leading
order polymer X,. The action is defined as

S=Y5,+% S, (A1)
Ps Pt

where the first (second) sum runs over space-like (time-like) plaquettes only The
distinction between space-like and time-like plaquettes permits, 1n general, different
actions to be defined for space-like and time-like oriented plaquettes. As a by-
product, 1t improved the visualization of the contributing graphs in the strong
coupling expansion as mentioned 1n sect 3

The 1-plaquette actions S, and S, are defined as

eSps(Ups) =1 +2ule/2( Ups) +3vle( Ups) s

Cs"t(U"')= 1+2“1X1/2( Upl)+3thl(Up() s (A2)
where we dropped an overall normalhization factor [4]
To construct the transfer matrix T, we consider a single ring of fig 3 (fig 9)
Recalling that T 1s the time translation operator for imaginary time, we get

T(x y):J ﬁ dU, 5.2 ﬁ eSa(Uilxa b, 3)) oS, (Y)/2
Gi1=1 =1 (A 3)
=T(x(X), x(Y)),

X =U,U; UL U,
(A4)

Y = U,U,U;MU;,!

where the second line of eq (A 3) follows from gauge invariance.

Now T 1s of the form A'/?BA'/?, A and B being symmetric matrices depending
on x(X), x(Y), and since we aim at the determination of the eigenvalues of T, we

* The tube model has also been discussed 1n a variational approach by Patkos [17]
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b,
X
X2 M
Yo
b2 by
x
X, Y, ‘.

bs
Fig 9 A single ring of the tube model (fig 3) together with the symbols referred to in the text
may consider as well the asymmetric transfer matrix
T=BA, (A5)

which 1s easier to deal with Making use of the property (A 3), which holds of course
for T too, we get

T(X), x(Y) =Y t,x(X)x:(Y), (A 6)

t,:=‘[ dX dY X (X x.(Y ) T(x(X), x(Y)) (AT)
G

Performing the bond integrations b, b,, , b, and subsequently the integrations
over X and Y we get for the transfer matrix elements

1 2u 3,
(trs)r,?:0,1/2,l = 2usuf u?(l +3vs) 2usu:‘ (A 8)
3o.vf 2u.v; vl +30,)

Application of ordinary non-degenerate Rayleigh-Schrodinger perturbation theory
in the non-diagonal part of (A 8) up to 7th-order yields the eigenvalues A, and A,
to the desired accuracy Then the mass can be computed using eq (3 14)

A
m1/2:"lnAl_/2 (A9)

¢

Appendix B

STRONG COUPLING EXPANSION OF THE MASS-GAP WITH GENERALIZED HEAT
KERNEL ACTION FOR GAUGE GROUP SU(2)

Consider euclidean pure Yang-Mills lattice gauge theory on a hypercubical lattice
in d =4 dimensions The SU(2) generalization of the heat kernel action [10]

SHK:lnH K(Upa%gz)’
p

e @ +2mn
K(Uyg')=N ¥ “B——

ne—co SIN @,

exp [—-gz—z(<pp+27m)2] , (B1)
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(N 1s the normalization constant; the coupling constant g 1s related to the bare
coupling constant g, by 1/g*=1/gi+75) results 1n a particular simple character
expansion of the 1-plaquette Boltzmann factor

S =Y d, e 2y, (U,), (B2)

C, being the eigenvalue of the SU(2) Casimir operator in the irreducible r-representa-
tton The usual SU(2) parameters u, v and w defined as 1n (3.7) read

u(q)=q""?,
v(g)=q*,
wiq)=q'¥*, gq=e*/* (B 3)

Making use of the O(B®) result for Wilson action, the strong coupling expansion
1s computed as
my=—41n u(q) +4¢° —3q*-264°— 124" +34°
+19049 _1509'°+364''-619¢'>— 729" +0(q") (B 4)

Using the tangent method of ref [2] and the correct expression for AT® we compute
Ch¥ =139,

We say that we have universality, if for 2 different actions $ and S’ with correspond-
ing lattice scale parameters A; and A}, we have
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Fig 10 The strong coupling series for the Wilson and generalized heat kernel action (full lines) together
with the expected scaling behavior (dashed lines) The curve which “scales earlier” corresponds to the
heat kernel action
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Recalling CY =127 for the O(B*) calculation with the Wilson action, we get

HK
A;;“Y =326 (B.6)
In [15], Gonzales et al determine
HK
ALLW =307, (B7)

by application of the background field method, while they quote an experimental
value of
AP

AV

—420%02 (B 8)

from Monte Carlo measurements of the string tension.
Our result 1s 1n good agreement with the theoretical value, thus umversality of
the mass-gap for the Wilson and heat kernel action may be concluded (fig 10)
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