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We discuss the symmetry properties of a geometrically motivated mass term giving different masses to the four flavours 
of Susskind fermions. Using this mass term we calculate the fermion self-energy in weak coupling perturbation theory at the 

one-loop level as well as the relation between the fermion masses on the lattice and in the continuum. 

Among the different lattice fermion schemes, 
Susskind’s method [ 1,2] is distinguished by the fact 
that it has a deep geometrical foundation: It can be 

interpreted as the geometrically natural way of putting 
the Dirac-Kahler equation on a lattice [3-51 . How- 
ever, as compared to the Wilson formulation [6] or 
the SLAC fermions [7], it has the disadvantage of re- 
taining a part of the species doubling. The Susskind ac- 

tion describes four fermions of equal mass. But this 
degeneracy is no lattice artifact, it is already present 
in the continuum Dirac-Kahler equation. Therefore 
it seems possible to interpret the additional degree of 

freedom as some kind of flavour, as was originally pro- 
posed by Susskind. In order to formulate a more real- 
istic lattice model of QCD, based on the Susskind 
fermions, it is, however, necessary to lift the mass de- 
generacy of the different flavours. Several degeneracy 

breaking mass terms have already been discussed in 
the literature [8-161. Important questions concerning 
such mass terms are: Will they be stable under renor- 
malization and how do they modify the symmetries 
of the Susskind action? 

We want to study these problems for a geometrical- 
ly motivated mass term [ 141 and thereby substantiate 
the remarks concerning this point which were made in 

ref. [ 161. We use the notations of ref. [3] and write 
the action for the free euclidean Dirac-Kahler equa- 
tion in the four-dimensional continuum as 

I- {:<& (d - 0#$, + $m(& G)u1 . (1) 

Here @ is an inhomogeneous differential form: 

$= gp(x,H)dxH. 

The sum over H runs over all ordered sets of indices 

(multi-indices). Projection on flavour b is given by $ 
-+ $J v Pcb), where v denotes the Clifford product and 

p(b) = !_ c 
4 Kt’% 

eKqf) dxK . 

Here we have introduced the set of multi-indices % 

= (8, {12}, {34}, (1234)) related to the reduction 
group of ref. [3]. This choice of the reduction group 
corresponds to the use of the Weyl representation of 

the y-matrices. Furthermore 

770 (1) = _q12 (1) = g = (1) = 1 

-v1234 ’ 

v0 
(2) - (2) = _ (2) = -q1234 

- 7)12 7734 
(2) = 1, 

QK 
(3)=qf$+& @=l VKE%. (3) 

Now it is straightforward to write down an action 
which gives a mass mb to flavour b : 

mb(& $ v pcb) j (4) 

By transition to Dirac components according to the 

formulas given in ref. [3] this action becomes 
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Using (2) we get for the mass term 

($9 @ V dxK), , 

with 

4 

MK = c gcb)m 
b=l K b. 

(5) 

(7) 

Note that (4) is invariant under the replacement 

Q,+$vdxK, $+vdxK (KE%), (8) 

i.e. under the action of the reduction group. 

We introduce in euclidean space a hypercubic lat- 
tice with lattice spacing a and lattice unit vectors eP: 
(e,), = ~6~~. The cells of this lattice are denoted by 
(x, H), where x is a lattice point and H a multi-index. 
A general cochain (the lattice analogue of a differen- 

tial form) can be written as @ = C,,, cp(x, H) dxpH in 
terms of the elementary cochains dx,H defined by 

dxTH((x’, H’)) = ah6X,x’6H,H’ 

(h = number of elements in H) . (9) 

Furthermore, let 13 be the volume four-chain 
= xX(x, 1234). Applying the rules for the translation 
of continuum expressions into their lattice equivalents 
given in ref. [3] , we get for the lattice analogue of the 
action (1): 

$(& (Z - ;5 + m)#)@J). (10) 

Here x and ?? denote the dual boundary operator and 
the dual coboundary operator, respectively. 

What are the symmetries of this action? (See refs. 
[l 1,13,16] for related discussions.) Apart from the 

well-known U(1) (U(1) X U(1) for m = 0) symmetry 
of Susskind fermions, we have invariance under the 
discrete flavour transformations, the lattice transla- 

tions, and the lattice point group. The discrete flavour 
transformations are given by 

with dH = Cdx3H . 

X 
(11) 

Here we used the lattice Clifford product as defined in 
ref. [3 1. An element S of the lattice point group acts 

on a cochain r#~ according to the formula 

(S*@)((x,H)) = @(S-‘(x,H)). (12) 

The continuum analogue of (12) transforms the com- 
ponents cp(x, H) of 4 as antisymmetric tensors. The 
corresponding spinor transformation can be written as 
a product of this tensor transformation and an appro- 
priate flavour transformation [3,4,16] . A rotation 
about the angle Q in the p-v-plane, for example, has 
to be accompanied by the flavour transformation 

# -+ $ v [cos(cr/2) + sin(cy/2) dxp”] . (13) 

Comparing with the lattice flavour transformations 
(11) we see that (13) is available on the lattice only 
for (Y = 7~. Therefore we can define spinor rotations 
b,,, on the lattice only for rotation angle n: 

iiMV:= F~“oD;” , (14) 

where 

(DpLcv~)h =xA , if hfp, v 

(/J < v) . 
=-xk, ifh=p,v. (15) 

Analogous considerations may be applied to S,, the 
reflection with respect to a lattice hyperplane orthog- 

onal to the p-direction: 

(S,x)h = (_l)QXh . (16) 

They lead to the following spinor transformation gP 
on the lattice: 

SM:= Fc{/,j 0 S; , Cbcl) = {1234)\bd. (17) 

A mass term which gives different masses to the fla- 
vours and therefore breaks flavour invariance is no 
longer invariant under the tensor transformations, be- 
cause they contain a flavour transforming piece. It 
should, however, be invariant under spinor transforma- 
tions. Hence we require that the lattice analogue of (6) 
be invariant under BccV, 3, as well as with respect to 
the flavour transformations F,,, F,,, F,,,,, which 
correspond to the reduction group (compare (8)). It is 

198 



Volume 1429, number 3 PHYSICS LETTERS 19 July 1984 

straightforward to check that the mass term 

which is hermitian and reproduces (6) in the naive 
continuum limit, fulfills these requirements. Here k 
denotes the number of elements in K, and the transla- 

tion operator TeL is defined by 

TeL@ = c cp(x + eL, H)dX,H , 
x,H 

eL = C e, . (19) 
PEL. 

The introduction of the T’s is necessary in order to 
achieve invariance under DPV, fP. Note that 

,pK ($3 (TeL@) v@)u (v) (20) 

is invariant with respect to the tensor transformation 

REV, where R,, is a rotation about rr/2 in the F-V- 
plane, provided K n {p, v} = 8 or K n {p, v} = {p, v}. 
Consequently, (18) is invariant under rt/2 rotations in 
the l-2- and in the 3-4-plane, although correspond- 
ing spinor transformations cannot be defined. In the 

special case ml = m2, m3 = m4, where Ml2 =M34 
= 0, we even have invariance with respect to all Ri,,. 

What happens to these symmetries upon introduc- 
ing interaction with a gauge field? We couple the gauge 
field in such a way that the lattice gauge transforma- 
tions act at the center of the lattice cells. This coupling 

corresponds to the original Susskind formulation. The 
resulting theory with interaction has the same invari- 
antes as in the free case, provided the transformations 
of the fermion field are accompanied by suitable trans- 
formations of the gauge field (see refs. [16,17] for de- 

tails). Nevertheless, the restoration of Lorentz invari- 
ance in the continuum limit might be questionable, 
since (18) with four different masses is not invariant 

under all lattice rotations. Furthermore, one would 
like to know the connection between the bare masses 
mj on the lattice and the continuum masses. 

In order to study these problems, we have calcu- 
lated the fermion self-energy in weak coupling pertur- 

bation theory at the one-loop level. It turns out to be 
advantageous to use Susskind’s one-component formu- 
lation. Therefore we put 

cp(x,H)=x(x+,& $(x,H)=Y(x+;eH), (21) 

so that the x’s live on a lattice with lattice spacing a/2. 
They transform according to the fundamental represen- 

tation of the gauge group SU(N). For convenience we 
replace a by 2a, but retain the conventions that x de- 
notes a point with coordinatesx, = an, (np E 2) and 

that (e,), =atipv. In this way we get for the action ofthe 

fermions coupled to the lattice gauge field U,(x) 
E SU(N) 

x uK\L(XteL)x(x-eKt2eL). (22) 
The sign factors c,(x), oK(x) are defined by 

cJx) = (_1)(Xl+XZ+...+X~-l)Ia ) (23) 

og(x) = 1 > u12(x) = -(-ly[Z’Q ) 

~34(~)=-(-1y“” , 01234(~)=(-1)(~~+~~)“. (24) 

Moreover 

UH(x):=U~I(X-e~l)U~2(x-ee,l -eP2) . . . $&x-eH) 

(25) 

for H = (~1, ~2, . . . , ph}, p1 < p2 < . . . <ph. The ac- 
tion (22) is invariant under the gauge transformations 

x(x) -g(x)x(x) 3 mx> -+ wg-‘(4 1 

~,(x> +g(x + epl> up(xkl (x> , Ax> E SW9 . (26) 

For the gauge field we take the standard Wilson action 

+ c Tr(l-<(x)UL(x+eJYV(x+eP)g(x)) , (27) 
g X,&V 

with the gauge fixing term 

$C (C [A:(x)-AE(x -ep)])2. 
x,a P 

We have set U,(x) = exp(igaAE(x)Ta), where the Ta 
are the hermitian generators of SU(N) in the funda- 
mental representation. 

Calculating CX~(X)~~(X’)) (i,j = SU(N)-indices) at 
the one-loop level we get in the spinor basis 
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,C,, (w)ab(xj(2x +eH)jSi(2x’+eH,))(Y,)~d 
d (2a) 

=Tr -4 
s 

d4p exp[ip*(2x - 2x’)] 

-n/(2a) 

where as CI + 0 

(29) 

C(P),~; = h ((ij + +),,(Pj)bd + o(1) > 
j=l 

(30) 

(31) 

and ?H =Y~~Y~~...Y~~ forH= {1-11,1.+ . . ..IG~. .c11 
< ~2 < . . . <ph. The indices a, c are spinor indices, b, 
d are flavour indices, and ii is the matrix in flavour 
space which projects onto flavour j. Under the assump- 

tion mj > 0 for allj, we find for the self-energy Cj in 
the Feynman gauge [ = 1: 

C&p) = (g2/8n2)[(IV2 - 1)/2N] 

X [id C<‘)(p2) + md2)(p2) + A.] 
I J J J ’ 

with 

(32) 

Z;“(~2) = jd x x ln[a2(1 -x)(p2x + mj!)] + A 1 , 

0 (33) 
1 

xj2’(p2) = 2 Jdx ln[a2(1 -x)(p2x+mJ?)] +A2 , 

0 (34) 

A, = m2B1 + Cm3 + m4P2 , 

A2 = mlBl + Cm3 + m4)B2 , 

A3 = (ml + m2)B2 +m4B1 , 

A4 = (ml t m2)B2 + m3B1 . (35) 

The constants A 1, A,, B,, B2 are combinations of cer- 
tain integrals. Numerical computation yields the values 
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A, = 3.53,A2 = 6.52, B, = -2.72, B2 = --9.70. In the 
expression (32) Lorentz invariance is recovered. But 

some remnant of the flavour mixing on the lattice is 
still present in the continuum: The self-energy for fla- 
vour j depends on the bare masses of all other flavours 

through the A/-terms. 
Comparing (32) with the continuum expression for 

the fermion self-energy one can derive the relation be- 
tween the bare mass on the lattice and the renormaliza, 
tion group invariant mass in the continuum [ 18-201. 
The latter is usually defined as 

m” = [ln(p/A)] 2rG’PGm(p) . (36) 

Here m(p) is the running mass at a scale p, A is the 
continuum coupling constant A-parameter in some re- 

normalization scheme and yo, PO are the coefficients 
of the first term of the ym and /3 function, respective- 

ly. We have 

y. = ;(N2 - 1)/2N) (37) 

and in the quenched approximation PO takes the value 
11 N/3. One finds 

Ei = mi[(8n2/CjO)g-2 + !n(AL/A) 

+ In C - Ai/3mj] 2re/fle . (38) 

In this formula, AL denotes the lattice A-parameter. 
In the MS scheme we obtain 

lnC=$[A1 -A2 +f +q(yE - In 4n)] = -1.81, (39) 

where YE is the Euler-Mascheroni constant. In the 

MS scheme we get 

lnC=~(A1 -A2+$)=-0.83. (40) 

Note that Aj/mi depends only on the ratios of the bare 
fermion masses. 

Summarizing we can say that the mass term (18) 
does not generate new mass counterterms. This is a 

consequence of its symmetry properties. Furthermore, 
eq. (38) shows how the bare masses mj have to vary 
with a, if the bare coupling constant g depends on the 
lattice spacing in the usual way and iij is kept fixed. 
But it is, of course, an open question, whether this one 
loop result is sufficient in connection with present 
Monte Carlo simulations. 

I wish to thank Dr. J. Stehr for performing the nu- 
merical calculations and Professor H. Joos for many 

helpful discussions. 
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