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Abstract. By means of a spectrum conserving transformation, we show that one 
of the 3 coefficients in Symanzik's improved action can be chosen freely, if only 
spectral quantities (masses of stable particles, heavy quark potential etc.) are to 
be improved. In perturbation theory, the other 2 coefficients are however 
completely determined and their values are obtained to lowest order. 

1. Introduction 

Symanzik's improvement programme [1-6] for lattice gauge theories (and other 
lattice theories) is designed to systematically reduce the cutoff dependence of on- 
and off-shell amplitudes near the continuum limit. Mainly, this is achieved by 
choosing an improved lattice action, which, at the first level of improvement, is 
equal to the standard one-plaquette action plus a linear combination of 3 
operators 1 of dimension 6 with perturbatively calculable coefficients q(g2) (go: 
bare coupling constant, i=  1, 2, 3). In addition, gauge invariant lattice operators 
are in general also intrinsically cutoff dependent and, in order to obtain improved 
correlation functions, must therefore be corrected by subtracting a combination of 
higher dimensional operators. The necessity of such subtractions has been 
explicitly demonstrated by Symanzik in the case of the non-linear o--model [3. 
Sect. 4]. 

For the computation of the coefficients c~(g~), the intrinsic cutoff dependence of 
operators is a potential source of difficulty, because it must be carefully 
disentangled from the "dynamical" cutoff effects, which are to be cancelled by 
improving the action. This problem can however be entirely avoided, if only the 
improvement of spectral quantities (e.g. the static quark-antiquark potential at 
physical distances) is required. Such quantities are independent of the choice of 
"interpolating" operator field and it therefore makes no difference whether the 
operators one uses have or have not been corrected. 

In this paper, we show that the requirement of on-shell improvement places 
only two constraints on the coefficients q(g~) so that without loss one may choose 
c3(goZ)=0, for example, c~(g 2) and c2(g~) are then completely fixed and can be 

Heisenberg foundation fellow 
1 By abuse of notation, we use the word "operator" for any Euclidean (C-number) field, which 
can be composed t~om the fundamental gauge field 
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computed straightforwardly by evaluating two distinct spectral quantities in 
perturbation theory. We are presently performing such a calculation to one-loop 
order and shall here only quote the tree level result (Sect. 4). 

In view of the rather non-trivial conceptual structure of the improvement 
programme, we include two preparatory sections, which are slightly more 
extensive than absolutely necessary. First, we explain what is meant by the 
(classical) dimension of lattice operators and present an efficient method to 
compute it (Sect. 2). Improved lattice gauge theories are introduced subsequently, 
emphasizing the necessity to formulate an improvement condition. In Sect. 4, we 
establish the main result announced above by constructing a transformation, 
which shifts the parameters in the improved action, but leaves the spectrum 
unchanged up to O(a 4) (a: lattice spacing). Apparent discrepancies with previous 
calculations of the coefficients c~(9 z) are resolved in Sect. 5 and conclusions are 
drawn in Sect. 6. 

2. Classical Dimension of Local Lattice Operators 

Consider SU(N) lattice gauge fields U(n, #) living on a four-dimensional hyper- 
cubic lattice with sites n ~ Z ~. A simple example for the kind of operators to be 
studied below is the plaquette operator 

C ( n ) = Z T r { l l - U ( n , # ) U ( n + f t ,  v )U(n+f ,# ) - lU(n ,v )  -1} (1) 

(ft: unit vector in the positive #-direction). Some characteristic features of (9(n) are 
a) (9(n) is a gauge invariant polynomial of link variables U(m, v) located near n. 
b) C0(n) moves covariantly under space-time translations of the lattice gauge 

field. 
All operators that we shall consider later have these general properties, and no 

further properties are required to unambiguously define the classical dimension of 
an operator. 

Any given smooth continuum gauge field Au(x), x ~ IR 4, can be arbitrarily well 
approximated by lattice gauge fields U(n, #) in the following way. Let "a" denote a 
small distance and superimpose a lattice on N 4 with sites x = an, n ~ Z 4. The 
(continuum) parallel transporter from an + aft to an in the field A.(x) is then given 
by the familiar path ordered exponential z 

1 
U (n, #) = T expa ~ dt A,(an + a f t -  taft). (2) 

o 

For sufficiently small spacing a, U(n, #) will be a slowly varying lattice gauge field 
"triangulating" A,, and one expects that lattice operators (9(n) evaluated in this 
field approximate local (continuum) operators formed from A.. Indeed, inspecting 
Eq. (2), one easily establishes the existence of an asymptotic expansion 

(Q(O) at'~'O ~ akOk(O), (3) 
k=O 

2 We use a notation, where A~ is an anti-hermitian, traceless N x N-matrix 
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where Ok(X) is a polynomial of Au(x ) and its derivatives. Due to the gauge 
covariance of Eq. (2) and the gauge invariance of (9(0), the Ok'S are actually gauge 
invariant, too. 

We now define the dimension of a lattice operator (9(n) to be the smallest k for 
which Ok ~ O. For example, in case of the plaquette operator we have 

a 4 
(9(0) = - ~ -  ~ Tr{F~,(0)F~v(0)} + O(aS), (4) 

F~,v = OF, A ~ - ~A~ + [A u, A~] , (5) 

so that its dimension is equal to 4. We emphasize that the dimension of lattice 
operators does not depend on how precisely one approximates continuum gauge 
fields by lattice fields. In particular, Eq. (2) could be replaced by 

U (n, #) = expa A~(an) 

without affecting the leading term in the expansion (3). For the actual computation 
of the dimension of complicated lattice operators, Eq. (2) is preferable, however, 
because it allows us to take full advantage of gauge invariance. 

When (9(n) transforms as a scalar field under rotations and reflections of the 
lattice, the operators Ok that can occur in the small "a" expansion (3) are severely 
restricted. In particular, Ok = 0 for odd k, and the lowest operators assume the 
general form 

O4 = ro Z T r ( F , , F , 0 ,  (6) 
/ t ,V 

06 = rl Z Tr(DuFu,DuFuv) + r2 ~. Tr(DuFvoDuF~ ~) 
lz, V It ,  V,O 

+r3 E Tr(DuF.eD~F~o)+EOuG.. (7) 
I~, V,O R 

Here, the numbers r~ depend on the operator (9(n) considered and 

DuF~o = OuFvo + [Au, F j  . (8) 

G u is a linear combination of the fields 

Y'. Tr(FvoDuF~), Z Tr(Fu~DoFo~), ~Tr(Fu~DuFuv), 
V,O V,Q V 

which we shall never need to work out explicitly. The coefficients r~, on the other 
hand, will be required frequently, and the remainder of this section is therefore 
devoted to the question of how to compute them efficiently. 

Let us begin with the small 'a' expansion of the simple operator 

(gu~(n) = Tr { U(n, #) U(n + ~, v) U(n +f,  #)-  1 U(n, v)- 1 }. (9) 

For any given fixed pair of indices/~ + v, choose the gauge 

Au(x) = 0 for all x, 

A~(x)=0 for all x with xu=0 .  (10) 

(guv(O) then reduces to 

(g,~(O)=Tr{Texpa!dtA~(a~+(1-t)af)}. (11) 
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Furthermore, at x = 0, we have 
p q ~P ~q+ 1A = D,,D~F~ (12) so that -v  v .  __~, , 

1 2 A~(af~ + (1 -- Oaf) = aFu~ + ~ a [D~ + 2(1 -- t)Dv] Fu, 

1 3 2 +-6a [Du+3(1-t)D,Du+3(1-t)2D2]Fu,+O(a4). (13) 

Expanding the exponential in Eq. (11), noting TrAy=0 and using (13), quickly 
yields the result 

1 4 1 5 (gu~(0) = N + ~ a Tr(Fu~Fu~ ) + ~ a Tr[Fuv(D" + D~)Fuv ] 

1 6 2 3 2 + ~ a Tr {Fu~Fu~Fuv + Fu~(D, + ~ D uD~ + D~)Fu~ 

+ 3(D u + DOF.~(D. + D~)Fu~ } + O(a7). (14) 

This is a relation between gauge invariant quantities and it therefore holds for all 
gauge fields A u, including those which do not satisfy the gauge condition (10). 

More complicated operators than (gu~ can be treated similarly by writing them 
as a sum of (gu]s plus traces of products of gauge covariant plaquette matrices 
such as 

P,~(n)=U(n,#)U(n+f~,v)U(n+fi,#) -~ U(n,v)-a-l~. (15) 

Proceeding as above, these can be expanded and one obtains, for example, 

2 1 3 P~,(0)=a Fu,+~a (Du+D~)Fu, 

3 z la4{3F,~Fu~.+(D~ +~D,D~+D~)Fu~} +O(aS). (16) 

Because P~.'s are always multiplied by other P~'s, it is not necessary to go beyond 
O(a 4) in Eq. (16). In this way, all the operators encountered later can be expanded 
up to order a 6 with little effort (see Sect. 3.3 for explicit results). 

3.  I m p r o v e d  L a t t i c e  G a u g e  T h e o r i e s  

3.1. O(a 2) Scaling Violations 
Suppose we are given an SU(N) lattice gauge theory with action S[U] and bare 
coupling constant go. Euclidean expectation values of gauge invariant combin- 
ations Q of the field U(n, #) are defined by 

(Q} = 1 S ~ [ U ]  Q[U]e -swl, (17) 
/_, 
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where Z is a normalizing factor such that (1)  = I and 

~ [ U ]  = 1V[ dU(n, l~) (18) 

[dU denotes the normalized Haar  measure on SU(N)]. 
Physically interesting quantities M such as the masses of stable particles and 

their scattering amplitudes 3 can (in principle) be extracted from the Euclidean 
correlation functions of suitable local lattice operators. Initially, when expressed in 
lattice units, these quantities only depend on go and a set of external space-like 
lattice momenta collectively denoted by k( - rc =< ki = rc for each component ki) 4. In 
order to study the continuum limit, it is convenient to introduce a lattice spacing 
"a" by defining scaled quantities m through 

re(p, go, a) = a-~ M(ap,  go), (19) 

where 6 is the engineering dimension of M and p = k/a a "physical" momentum. 
In a lattice gauge theory with perfect scaling it would be possible to find a 

function Oo(a) such that 

a d re(p, 9o(a), a) = 0 (20) 

for all quantities m. For a generic action this will however not be possible and, 
according to perturbation theory, the best one can achieve is approximate scaling 
near the continuum Iimit, i.e. for a ~ 0  we then have 5 

a d re(p, 9o(a), a)= O(a2). (21) 

Note that there are many functuions Oo(a), which lead to approximate scaling. For 
what follows, it is helpful to remove this ambiguity by choosing once and for all a 
physical condition, which fixes 0o(a) uniquely. For example, one may require that 
the mass gap is equal to 1 GeV for all a. Or, more suitable for perturbation theory, 
that the force between heavy quarks is equal to CgZ/4r~ G e W  at a distance of 
1GeV -1 [g a fixed small number, the "renormalized" coupling, and 
C = (N z - 1)/2N]. Ultimately, it does not matter what condition is chosen, but we 
shall assume that it is the same for all theories considered and that it has the 
general form 

mo(~o( a), a) = tho , (22) 

where mo is some spectral physical quantity and rh o a fixed value. 
It is possible that different lattice actions S and S' yield the same physical 

amplitudes within an error of order a 2k. In more precise terms, this means the 
following. Any given physical quantity can be computed in the two theories so that 
one has two sets of functions re(p, go, a) and m'(p, go, a) (the bare coupling constant 
go is just a parameter in the action and we are free to denote it by the same symbol 

3 I.e. fuU propagator amputated, connected n-point functions evaluated on the (lattice) mass 
shell 
4 Other external length scales may occur but are omitted here for simplicity 
5 We use a sloppy notation, where O(a 2) may also stand for a term of order aZOnaf 



64 M. Liischer and P. Weisz 

in all theories). In particular, jo(a) and 0;(a) may be determined and the 
approximate physical equivalence of S and S' is then expressed through 

re(p, Oo(a), a) = m'(p, O'o(a), a) + O(a2k). (23) 

Due to universality, a large class of actions are expected to have identical 
continuum limits and are hence equivalent up to O(a2). Examples of actions S' that 
are physically indistinguishable from a given action S [i.e. no error term in 
Eq. (23)] are also easily constructed by local, gauge covariant substitutions of the 
field variables U(n, lz). Such transformations affect correlation functions, but do 
not change spectral quantities. This fact will be exploited in Sect. 4. 

3.2. Improvement Conditions 

The aim of Symanzik's improvement programme is to reduce the O(a z) scaling 
violations in Eq. (21) down to O(a 4) by choosing an improved lattice action. 
Actually, in his study of the ~b4-theory [2], Symanzik was able to show that not 
only spectral quantities can be improved, but also the (properly normalized) 
n-point functions of the fundamental field in momentum space. In the 2-dimen- 
sional non-linear a-model, the situation turned out to be not so simple, in 
particular, the n-point functions of the lattice spin field d~ could not be improved by 
merely choosing an improved action [3]. However, the n-point functions of a 
corrected field operator 

~ ' = ~  + el(go)(~- [2 ~)~+ez(go) [] 4, (24) 

can be improved, provided the coefficients ~ are chosen appropriately and 
provided one subtracts certain contact terms from the correlation functions. For 
gauge theories, no in depth analysis of O(a 2) scaling violations has yet been made 
and it is not known whether e.g. the improvement of uncorrected (but normalized) 
Wilson loops is possible to all orders of perturbation theory. 

An improvement condition is a statement specifying which quantities are to be 
improved. In general, different improvement conditions require different improved 
actions. Moreover, some do not determine the improved action uniquely and still 
others may be inconsistent as discussed above. Here we shall adopt the "minimal" 
improvement condition, which requires that the error term in Eq. (21) be reduced 
to O(a 4) for all low lying energy values m 6. This includes, in particular, the force 
between heavy quarks at physical distances and the spectrum of the field 
excitations in a periodic (space-) box of physical size [8]. Because of the relation 
between finite size effects on the mass spectrum and scattering amplitudes [9], we 
expect that the improvement of the energy spectrum implies the improvement of 
the latter, too. In any case, lattice theories satisfying our condition will be called 
"on-shell improved." 

The scalar field theories for which Symanzik has worked out the improved 
action are also on-shell improved. His improvement conditions can however be 

6 Energy values can be read offfrom the exponential decay of correlation functions at large 
times. Equivalently, they can be identified with the eigenvalues 2 of the transfer matrix T of [7] 

through m = - }-ln(2/A) (A: ground state eigenvalue of 
a 
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Table 1. List of the sets 50i ofdementary loops cg on the lattice. Only the 
loops of Fig. 1 occur in the improved action. The other loops are 
generated by the field transformation discussed in Sect. 4 

Set Description of elements No. of 
elements/site 

500 Plaquettes (Fig. ia) 6 
ow 1 Rectangles (Fig. lb) 12 
502 Parallelograms (Fig. le) 16 
50~ Bent rectangles (Fig. ld) 48 
5°4 Double plaquettes (Fig. 2a) 6 
505 Twisted rectangles (Fig. 2b) 12 
506 Bent twisted rectangles pig. 2c) 48 

more restrictive. For example, in the ~4-theory, the requirement that all n-point 
functions of the field be improved completely determines the coefficients on the 
improved action, while some of them remain free, if only on-shell improvement is 
required (cf. Sect. 4). 

3.3. Ansatz for the Improved Action 
Following [4] the improved action is written as v 

3 2 2 S [ U ] - 0  ~-, c,(9o) Z 5e(cg), (25) 
~ 0  i = 0  ~g ~ 5 ~  

where the ~ ' s  denote sets of elementary loops c£ on the lattice as described by 
Table 1. A given set ~ contains all loops of a definite shape that can be drawn on 
the lattice. Loops cg that differ by orientation only are considered equal and the 
weight ~(cg) is defined by 

y(cg) = Re Tr [11 - U(Cg)], (26) 

U(Cg) being the ordered product of the link variables U(n, #) along cg. Finally, the 
coefficients ci(9 2) are regular at 0 2 = 0 and are normalized such that 

c0(g02) d- 8c1(9 2) d- 8c2(g g) Jr- 1 6c3(0 2) = 1. (27) 

This is merely a convention. It could always be enforced by renormalizing 9o, if it 
should not hold initially. 

The structure of the improved action becomes more transparent if we rewrite it 
in terms of local lattice operators. Thus, pick a set of operators (9~(n), scalar under 
rotations and reflections, such that 

Z 5e(cg) = Z (9,(n). (28) 
¢gc Sai n 

7 Our notation differs from [46] by an interchange o f c  2 with c a 
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Fig. la--d. Elementary loops cg on the lattice, a and b are planar loops, while c and d extend in 3 
dimensions. Dashed lines are drawn to guide the eye 

Table 2. List of the coeffÉcients ri [-Eqs. (6) and (7)] 
that  occur in the small "a" expansion (3) of the 
operators (gi(n) defined in Sect. 3.3 

F O r 1 F 2 r 3 

1 0 0 eo -¼ 2~ 
5 0 0 (9~ - 2  
1 1 ± 

(92 - 2  ~ ~ 6 
1 0 ± (93 - 4  ~ z 

0 0 604 -- 1 

(95 0 -½ 0 0 
7 0 ( 96  --4 ~ - 7  

Following the method explained in Sect. 2, the classical small "a" expansion (3) of 
the (9is can be worked out. The results are listed in Table 2. 8 It follows from these 
that (90 is an operator of dimension 4 and that the operators 

(9~ =(91-8(90, 

(9~=(92-8(9o, 

(9~ = (-93 - 1 6 ( 9 o ,  

(28a) 

(28b) 

(28c) 

8 Note that  the coefficients r~ are independent of the choice of the operators (9 i as long as (27) 
holds. The divergence terms ~ O~ Gu, on the other hand, are dependent and we shall (and may) 

assume that  ~_,O~,Gu=O for all operators (9i 
tL 
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are all of dimension 6. In terms of these operators the improved action reads 

2 (9o(n)+ E ci(g~)(9~(n) (29) 
S= 02o i=1 

In other words, this is the Wilson action plus a linear combination of 3 operators of 
dimension 6. 

Actually, the operators (9~, i = 1, 2, 3, from a basis in the space of all operators of 
dimension 6, which transform as a scalar field under rotations and reflections. 
Namely, any such operator (9 can be represented by 

3 
(9 = E 2,(9~+ Z@S~,+N,  (30) 

i=1  /~ 

where fgu and N are lattice operators of dimension 5 and 8 respectively and @~ 
denotes a lattice derivative (@,f(n)=f(n+fi)-f(n)). Thus, up to operators of 
dimension 8, the Ansatz (29) is the most general one can write down. 

As already pointed out, the improvement programme has not yet been shown 
to work in the case of gauge theories. However, in view of the experience with 
scalar theories, we are confident (and shall here assume) that there is at least one 
choice of the coefficients ci(g 2) such that the theory described by the action (25) is 
on-shell improved. There is also a further structural property of improvement, 
which we expect to hold and which we shall make use of in Sect. 4. Namely, 
suppose S is an on-shell improved action and suppose we add a term 

2 2 o(n), (31) 
g0 

where e is infinitesimal and (9(n) a dimension 6 lattice operator scalar under 
rotations and reflections. In general, this leads to O(a 2) scaling violations in the 
energy spectrum, and we expect to be able to cancel these effects by adding another 
term of the form 

2 3 
x s  ° 2 , = Ai (go, S)(9i(n), (32) 

g ~ n  i = t  

where the coefficients A~(g~; S) are computable in perturbation theory (as we shall 
see in Sect. 4, they are however not uniquely determined). Decomposing the 
operator (9(n) as in Eq. (30), we may take 

¢ 2. ~ 2. &(go, S)=,~+ & (go, S). 

Now, ~ is an operator of dimension 8 and it therefore does not induce O(a z) effects 
at the tree level of perturbation theory. Such effects may however show up at 
one-loop order, but to cancel these, it is sufficient to choose A~(g2; S)= O(g2), so 
that altogether we may assume 

(33) 

We emphasize again that although the properties just described are highly 
plausible they really have the status of an unproven hypothesis at present. 
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3.4. Applicability of Ordinary Perturbation Theory 
The only practical way known today to calculate the coefficients ci(g~) is by weak 
coupling expansion about the (locally) pure gauge configurations. Also, all 
structural statements [Eq. (33) for example] ultimately rely on perturbation 
theory. Now it can happen that for an action S of the form (25) the classical vacuum 
U(n, #) = 1 is a false vacuum, i.e. that there are other field configurations with S < 0. 
In such a case the perturbation expansion about the pure gauge configurations is 
not relevant to the continuum limit and any conclusions based on it may be 
completely misleading. For example, we have found an action, which is on-shell 
improved at tree level of ordinary (false) perturbation theory, but turns out to be 
unimproved when expanded about the absolute minima of the action. 

Perturbation theory enters our analysis at many places and the conclusions 
reached therefore apply only incases where the improved action S is positive for 90 
~ 0  in the sense that 

S [U] > 0, (34) 

for all lattice gauge fields U(n, #), except for (locally) pure gauge configurations. 
This condition restricts the admissable tree level coefficients ci(0) to some convex 
domain P in the plane defined by Eq. (27). P could be determined numerically, but 
it is easier to establish some inequalities, which in many cases of interest are 
sufficient to decide whether the improved action is positive or not. For example, if 

8 
C o + $ 2 < 0  or Co+8C3<0, (35) 

one can show quickly that the action is not positive by exhibiting a field 
configuration with S < 0 (details are given in Appendix A). On the other hand, if 

Co+8~ ~ + ~ C 1 q - 3 2 ~ 3  > 0  , (36) 

1 
where for all i, ~=~(c~-Ic~l), one can prove that the action is positive and that 

ordinary perturbation theory is hence trustworthy. Note, however, that the 
domain P is certainly larger than the region characterized by the inequality (36). 

4. Isospectral Transformation of Improved Actions 

In order to determine the coefficients c~ in the improved action (25), we have 
computed the energies of a number of excited states of the lattice gauge field 
enclosed in an L x L × L space box with twisted periodic boundary conditions (the 
twist is introduced for purely technical reasons to simplify the perturbative 
calculations). We found that in all cases considered the O( a 2) scaling violations 
could be removed at tree level provided, 

1 
c1(0)-c2(0)-c3(0) = 12' (37) 

c2(0)=0. (38) 
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To this order, Eq. (37) also insures the improvement of the heavy quark potential 
at physical distances [4]. Equation (38) is however a new result (cf. Sect. 5). 

While our computations prove that the relations (37) and (38) are necessary for 
on-shell improvement, it is not immediately clear that they are also sufficient, 
because we have only considered a subset of spectral values. This question is 
resolved by our main result, which is summarized by the following 

Theorem. Suppose S is an on-shell improved action of the form (25). Then there 
exist coefficients A~(g2; S) such that 

S + e E A~(g2; S)O~(n) (39) 
i=1 

is an on-shell improved action to first order in e, and such that 

A 1(0; S)= 1, (40a) 

A2(0; S)=0,  (40b) 

A 3 (0 ;  S )  = 1, (40c) 
for all actions S. 

Postponing the proof of the theorem, we note that at one-loop order (and 
A 2 beyond) the coefficients ~(9o; S) must be expected to depend on S so that a 

non-linear differential equation must be solved to integrate up the infinitesimal 
transformation (39). According to Eqs. (40), this differential equation however 
degenerates to a linear one at 92 = 0 and it immediately follows that all actions S 
with coefficients ci(# 2) satisfying (37) and (38) are tree-level improved. Thus, to 
lowest order 92 , the most general on-shell improved action is given by 

5 
Co(0) = ~ - 24x, (41a) 

1 
c1(0)= - ] ~  + x ,  (41b) 

c2(0) =0,  (41c) 

c3(0)=x, (41d) 

where x is a free parameter restricted only by the requirement that the action be 
positive (cf. Sect. 3.4). In particular, it is necessary that 

5 
x < - - .  (42) 

72 

On the other hand, all values x with 

1 
Ixl < i6 '  (43) 

yield a positive action and are hence allowed. For example, x = 0 is possible, but 
1 

x = ~ [which would imply ci(0)=0] violates (42) and is therefore excluded. 
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Fig. 2a-e. Elementary loops cg generated from the one plaquette loop by the field transformation 
(46). a winds twice around a single plaquette 

Our theorem is also useful at higher orders of g 1. For suppose we have already 
calculated the c~'s up to the ( ~ -  1) th loop order and suppose we wanted to compute 
the next order coefficients c~ e). Then, by choosing the parameter e in Eq. (39) 
proportional to gZe, one deduces that these are only determined up to a shift 

+ y, 

c(e) ~ ,,(t) (44) 2 ' r  t '2 

+ y, 

where y is arbitrary. In particular, we may choose 

c3(g 2) = 0 ,  (45) 

to all orders in perturbation theory. This choice is the most convenient one for 
weak coupling calculations, but we emphasize that for Monte Carlo simulations it 
may be advantageous to take Ca + 0  to keep away from phase transitions at 
intermediate values of g~. Incidentally, we note that Wilson [10] also chose c3 = 0 
for his improved action for a reason not disclosed to the reader. 

We now proceed to prove the theorem. Essentially, the idea is to invent a 
transformation • of lattice gauge fields U(n, #), which does not affect the energy 
spectrum but which changes the improved action by an additive term of 
dimension 6. Allowing for an error of order a 4, the transformed improved action 
may then be replaced by the standard improved action (25) with new coefficients c~ 
so that altogether we have constructed a transformation, which shifts the c,'s, but 
which does not generate O(a 2) scaling violations. 

q~ maps any given lattice gauge field U(n, #) onto a new field t.7(n, #). In order to 
preserve the basic structure of the action, this mapping should be local and 
invariant under rotations and reflections of the lattice. We are thus led to make the 
Ansatz 

iT(n, #) = e ~x.(") U (n, #), (46) 

where e is infinitesimal and Xu(n) the anti-hermitian traceless part of another field 

Xu(n) = Y~(n)- Yu(n) + - 1/N Tr[ I~(n) - Y~(n) +3, (47a) 

Y.(n)= 1 Z { U(n. v) tJ(n + u(n + v) V(n, 
4 ~  

- U(n, #) U ( n -  f + ft, v)- ~ U ( n -  f, #) ~ U ( n -  f, v)}. (47b) 
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Fig. 3. Graphical representation of [7(n,/z) [cf. Eq. (46)]. The vertices n and n +/~ are indicated by 
dots, link variables by arrows and the whole drawing is in the ~, v)-plane 

The transformed field U(n, #) is shown graphically in Fig. 3. Note  that it depends 
on the old field U(n, It) in a gauge covariant fashion. 

In the classical continuum limit one finds (cf. Sect. 2) 

1 3 4 X u = ~ a ~ D~F~, + O(a ) (48) 
and • reduces to 

A u ~ A u + = a ~., D~F~, + O(a3). 
2 v 

It follows that for any lattice operator (9 with dimension d we have 
(9[~7] = O[U] + e~[U],  where ~ is an operator of dimension d + 2. In particular, 
the improved action (29) transforms as 

S[~]=S[U]+e~o~{~o(n)+i~=lc i (9~)~(n)} ,  (49) 

~o and the ~ ' s  being operators of dimension 6 and 8, respectively. 
We are now ready to complete the proof of the theorem. Thus, suppose S is an 

improved action of the form (25). As discussed at the end of Sect. 3.3, we may 
replace S by 

S -  e ~o(n) + ci(g~)~+(n) - E A i(go, S) e,(n) (50) 
i=1 i= l  

without affecting the energy spectrum except perhaps at order a +. In Eq. (50), the 
coefficients Ai are given by 

3 
c ~'+2~A~k~"2" S ~ (51) At"2"S~-Ae°~"z'S)+ Z ktvoJ i ~o, ~. 

k=l  

Secondly, we perform a substitution of integration variables in the functional 
integral (17) replacing U(n, #) by U(n, It). Because this change of variables is local, 
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the exponential decay of correlation functions of local operators is not affected and 
the energy spectrum is exactly the same as before. The action, however, changes 
according to Eq. (49), and in addition there is a Jacobian, which is calculated in 
Appendix B. Collecting all terms, the new action reads 

where C = (N 2 - 1)/2N. Finally, we replace g 2 by g2 o - e2Cg4o, after which the action 
(52) assumes the form (39) with 

Ai(g~;S)=A,(gZ;S)+ 2Cg2o (1 2 0 \ 2 -go  )Ci(go). (53) 

Since all transformations applied conserve the energy spectrum up to at most an 
error of order a 4, we have thus generated a new on-shell improved action. It 
remains to show that the coefficients A~(g2; S) satisfy Eqs. (40). Using Eq. (33), we 
have 

At(0; S) = A~°(0; S) = 2,, (54) 

where the 2{s are to be determined from the classical expansion (30) of the operator 
~o. To this end, we first recall that ~0 is obtained from the single plaquette operator 
(9o by replacing U(n, #) by U(n, #) and subtracting the old (9o. Thus, with the help of 
Fig. 3, one finds 

1 
~o = ~ {(91 + (93--2(94-- 05- -  (96}, (55) 

where here and below divergence terms and 
neglected. Next, from Table 2 it follows that 

and hence 
required. 

operators of dimension 8 are 

(94 = 4(90, (56a) 

(gs = 8(9o- (91, (56b) 

(96 = 32(9o- (93, (56c) 

~o=-24 (9o+(91+(93 .  In other words, 2 1 = 2 3 = 1  and 22=0  as 

5. Comparison with Earlier Calculations of Improved Actions 

A computation of the coefficients Ci(g 2) to lowest order was first attempted in [4] 
and the following two relations were obtained: 

1 
c1(0)-  12' (57) 

c2(0)+c3(o)=0. (s8) 

Later, Curci et al. [6] provided an argument for 

c2(0) = c3(0) = 0 (59) 
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by studying the heavy quark potential at one-loop order. Equation (59) was also 
derived from a purely classical consideration in [5]. Taken together, the 
conclusion was that the choice 

5 1 
c°(0)=3 ' c1(0)= 12' C2(0)=C3(0)=0 (60) 

is necessary for improvement. 
At first sight, there seems to be a discrepancy with our result, which asserts that 

there is a whole one-parameter family of tree level improved actions of which (60) is 
but one member [cf. Eqs. (41)]. The origin of this mismatch is that the authors of 
[-4-6] use improvement conditions, which differ from the one adopted here 
(Sect. 3.2). It is instructive to trace in each case how the improvement condition 
influences the outcome of the calculations. In [4], for example, the requirement 
was to improve all physical size Wilson loops. This includes in particular the heavy 
quark potential at physical distances L, which to lowest order of perturbation 
theory is given by 

2 a 2 

(61) 

(C = (N 2 -  1)/2N as before). Now we can see that while the improvement of all 
Wilson loops leads to Eqs. (57) and (58), the single relation (37) already insures the 
improvement of the quark potential and this would in fact be the only result that 
can be extracted from the calculations of [-4] once one adopts our on-shell 
improvement condition. 

In their work, Curci et al. consider the Fourier transform V(p) of the heavy 
quark potential at one-loop order. Besides other O(a 2) contributions, there are two 
terms proportional to 

3 
aZln(a2p 2) and aZ(P2) -z Z p~ln(a2p2). 

i=1 

If one requires V(p) to be improved, the coefficients of both terms must vanish and, 
in conjunction with Eqs. (57) and (58), this yields c2(0)= c3(0)= 0. However, from 
the point of view of our improvement condition, we do not expect V(p) to be 
improved, because it is a sum of energy values V(L),  which also includes energies of 
the order of the cutoff(V(L)for L = a, for example). On the other hand, for physical 
L the O(a 2) contributions to the quark potential at one-loop order are propor- 
tional to a2L  - 3 l n L / a  and a2L  - 3. Now it turns out that the first term disappears as 
soon as (37) holds, and no further relation for the tree-level coefficients ci(0) is 
obtained from the second term, because it can be made to vanish by adjusting the 
one-loop coefficients. Summing up, we have found that also at one-loop order 
Eq. (37)is in fact the only constraint on the coefficients ci(O), which is implied by the 
improvement of the quark potential at physical distances. In the framework of our 
improvement condition, Eq. (38) is therefore a new result. 
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In [5] a purely classical argument in favour of Eqs. (60) was presented. The 
starting point was the small "a" expansion of the improved action S, which reads 

1 4 f 2 2 S=--q-~_2 S d x ~  Tr(F,vF~O--;cga ~, Tr(D~F~D~F~Q) 
Zgo (u, v 0 ~, v, ( 1)2 - 2c 1 - 2c 3 + ~ a Z Tr(D,F~,,DuFuO 

Iz,  V 

//2 2 "X 2 O(a4)}. -t  + cga (62) 

The classical action may be considered a generating functional for the vertex 
functions at tree level and one may therefore expect them to be improved, if the 
O(a z) terms in Eq. (62) are absent. This is the case if and only if the coefficients ci(0) 
assume the values (60). On the other hand, for the on-shell improved actions (41), 
Eq. (62) reduces to 

S= _ l_~ d4xl y~tu,v Tr(Fu~Fu~) - Zc3(O)a2 ,,~,Q ~ Tr(DuFuQDvFv°)+ O(a4)} ' 

so that at the classical level on-shell improvement apparently means the 
improvement of the action for solutions of the equations of motions only. 9 

We fin ally remark that Symanzik was quite aware of the possibility to shift 
parameters in the improved action by making use of the Schwinger-Dyson 
equations. He has, however, never considered doing so at the tree level, probably 
because he primarily wanted to improve the correlation functions of the 
fundamental lattice field without explicit subtractions of the field operator. 

6. Concluding Remarks 

From a practical point of view, our main results are 
a) that one coefficient in the improved action remains free if only spectral 

quantities are to be improved, and 
b) that the most general tree level on-sheU improved action is characterized 

by 1 
q(O)-c3(O)= 12 and c2(0)=0. 

(We remind the reader that the improved action must also be positive. See 
Sect. 3.40 

One particularly natural choice of the undetermined parameter in the action 

is c3(g0 2) = 0 

not only because perturbative calculations are greatly simplified, but also 
because in addition to the spectral quantities many other quantities get improved 
as well, at least to lowest order of perturbation theory. 

One may also try to fix the free coefficient in the action by adding a further 
improvement condition, for example that all physical size (and properly norma- 

9 We do not know of an independent argument to this effect and we are therefore unable to 
prove Eqs. (37) and (38) by inverting the above reasoning 
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lized) Wilson loops should be improved. However, one must be very careful not to 
run into inconsistencies, especially so beyond the tree level. The danger is that at 
some stage one gets more independent equations than there are free parameters in 
the action. For this reason we prefer to stick to spectral quantities, which are 
anyhow the only objects of physical significance. 

Appendix A: Positivity of Improved Actions 

8 
We first show that the improved action S cannot be positive if Co + ~C2 < 0. TO this 
end, choose 

The sums 

[ (- 1)~" 11 .-1 U(n,#)= ( - 1 )  ~"0 , s ,=  Z nv. 
v = 0  

"..  
0 

(A1) 

Z = Z ~(cg) (A2) 

are then easily evaluated and one finds 

E = 24Ns, E = ~ = 0, E = 64N~, 
0 1 3 2 

where Ns is the number of sites in the lattice (we assume periodic boundary 
conditions for convenience). It follows that 

2 8 
S= ~o 24N~(co + ~C2) <0, 

i.e. the action is not positive. 
Next, suppose Co+ 8c3 <0. Then, replacing s, in (A1) by 

2 

s,=6,3 Y, nv, (A3) 
. = 0  

we have for this configuration 

S= ~o12N~(co +8C3)<0, 

and it follows again that the action is not positive. 
Finally, we prove that the inequality (36) implies the positivity of the improved 

action. The basic ingredient in the proof is the following corollary of the 
Cauchy-Schwarz inequality: 

Lemma. Suppose U and V are two unitary matrices. Then 

Re Tr(1 - UV) < 2Re Tr(1 - U) + 2 Re Tr(1 - V), (A4) 

where the equality holds if and only if U = V = 1. 
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Now let cg be any rectangular loop as shown in Fig. lb. Writing it as product of 
two plaquette loops cg 1 and cg z, the lemma yields ~((£)<25°(cg0+25¢(qf2). 
Summing over all rectangles, we have 

52 ____ 8 Z .  (A5) 
1 o 

Similarly, one derives 

=< 80Z'3 o 523 <3252.o (A6) 

These inequalities together with ~2 > 0 imply 
i 

(A7) 

Thus, if (36) holds, the improved action is bounded from betow by a positive 
multiple of the Wilson action and is hence positive. 

Appendix B: Computation of the Jacobian of the Transformation 

The calculation of the Jacobian of • can be greatly simplified with the help of a 
lemma from the general theory of Lie group (e.g. [11, Chap. X]). Thus, let G be a 
Lie group with Lie algebra (5, d/a(g) a (right-) invariant measure on G, and 4~: G-o G 
a differentiable invertible mapping. For every g e G a linear mapping q~0:(5~(5 
can be defined through 

~(etZg). ~(g)- 1 = exp {tq~o(Z ) + O(t2)} (B 1) 

for all Z ~ (5. The lemma alluded to above then reads 

Lemma. For every integrable function f: G ~I1~ the following substitution rule holds: 

j dta(g)f(g)= ~ d#(g)[det cpgif(~(g)). (B2) 
G G 

In our case, the group G is equal to the set of all lattice gauge fields, i.e. it is 
isomorphic t o  [SU(N)]gNs, where N~ is the number of sites in the lattice. 
Correspondingly, the Lie algebra (5 is identified with the set of all fields Zu(n ) of 
traceless anti-hermitian N x N-matrices. For example, if the group element g 
stands for the field U(n, #), we have the correspondence 

e tz. g ,-* e tz"("). U(n, #). (B3) 

Inserting this into the definition (46) of the transformation ~, it is trivial to 
compute ~0o, and one finds to first order in e, 

det(o0=l + e N ( N 2 - 1 )  52 [ ~ ( ~ ) - N ] .  (B4) 
~geSOo 

This is in fact the Jacobian we are looking for, because the integral (B2) has exactly 
the form of the functional integral (I 7), if we identify d#(g) with the measure N[U] 
[Eq. (18)]. 
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