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MONTE CARLO STUDY OF GLUEBALL MASSES IN SU(2) 
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The multi-hit technique proposed by Parisi, Petronzio and Rapuano for the measurement of correlations is applied to 
the calculation of glueball masses in SU(2) lattice gauge theory. The value of the mass gap (0 + glueball mass) turnes out 
to be me+ = (166 -+ 15) Alatt or (1090 -+ 170) MeV, ff recent string tension determinations are taken for the scale. 

One of the interesting predictions of QCD is the 
existence ofhadronic states made of pure gauge field 
quanta, so called "glueballs". After the first qualita- 
tive hints obtained in some phenomenological mod- 
els (like e.g. the bag model), the first quantitative re- 
suits about the glueball spectrum were obtained re- 
cently in lattice Monte Carlo investigations [ 1-3 ]. 
(For a review and an extensive list of references see 
ref. [4] .) These first calculations have several prob- 
lems. Some of them are more serious, like the neglect 
of light dynamical quarks (hence no mixing with 
quark states), some of them less serious, like too small 
lattices or statistics. In the long run, however, there 
is a definite hope that lattice Monte Carlo calculations 
will provide us with reliable predictions about the 
glueball spectrum. 

The first difficulty in the glueball mass calculations 
is that the typical value of correlations from which 
the glueball masses are extracted is small. Therefore, 
a large number of Monte Carlo sweeps (typically 104-  
105 ) is required to separate the signal from the noise, 
even at such moderate distances like d = 2, 3 (in lat- 
tice units). 

As we shall demonstrate in the present letter, the 
"multihit-technique" [5] reduces the fluctuations in 
the correlations used to extract glueball masses, hence 
it is conceivable that it allows for a better determina- 
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tion of the glueball spectrum. 
The idea of this method is to substitute observables 

~2' for £2, such that (I2') = (fD but 

(~'2) ~ (~2 ) ,  (1) 

where, in SU(N) gauge field theory, 

f DU exp(-S) a(v) 
( ~ ) -  f DU exp(-S)  (2) 

is the expectation value of ~2 with SU(N) lattice ac- 
tion S and SU(N) Haar-measure fDU. The expectation 
values (~2'2) and (I22) are measures for the fluctuations 
of I2' and I2. The multihit technique amounts to re- 
place the gauge field variables U(b) on link b by vari- 
ables U(b), where 0 0 )  is given by 

f dU(b) exp ((2/g 2) Tr [U(b) Uint] ) U(b) 
D ( b )  - . ( 3 )  

f dU(b)exp { (2/g 2) Tr [U(b) Uint] ) 

g is the bare coupling constant, Uin t is the sum of the 
products of link matrices U which interact with U(b). 
U(b) equals the average of U(b) at fixed interact- 
ing variables U. For SU(2), the integral in (3) can be 
done explicitly. The result is 

U(b) = [I2((4/g2)K)/ll((4/g2)K)]K.U~mlt , (4) 

where 11 and 12 are modified Bessel-functions and 
K = Idet Uint (b )[1/2. 

The multihit procedure may be simultaneously 
applied to gauge field variables U(bl)  ..... 
U(bn)(b 1 ..... bn, bn+ 1 .... b N are links of the lat- 
tice), for which 
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~/2 " ~ ' ~  + 1/2~~' ~ 
Fig. 1.2 X 2 a_nd 3 X 3 loops with "multihit links" b (thick 
links) where U(b) may be.substituted for U(b). 

~ [u(t ,~) ,  ..., u ( b , ) ,  t / ( b ,  + 1) . . . . .  U(bN)I > 

= ( ~ [ U ( b l )  . . . . .  U(bn) , U(bn+l) ..... U(bN)]}. (5) 

In the case of the standard (one-plaquette) Wilson- 
action this is satisfied if 

SbiNSb/=~ Vi--/:j ; i,/E {1 ..... n} .  (6) 

Here Sbi denotes the set of all plaquettes containing 
the link b i. 

If ~2 is the trace of products of U's along a single 
plaquette, only one U(b) may be replaced by U(b). 
In the case of products along closed 2 X 2 or 3 X 3 
loops, for instance, the combinations of fig. 1 are 
allowed by (6). 

For later use let us introduce 

O = Tr[U(b£)] , (7) 

where b£ is the boundary of a general closed planar 
loop. Such functionals are the building blocks for 
wavefunctions representing glueball states with spe- 
cific parity, momentum and spin. The planar loops 
can be characterized by a four-dimensional position 
vector x = (x, t) (x = space-, t = time-coordinate) and 
by a plane with space-like orientation / ( /E  { 1,2,3 }). 
The glueball operator with definite three-momentum 
p is given by 

O(p, t) = ~ .  alOx, t,] exp[i(p,x)] . (8) 
X,] 

The weight factors a/depend on spin and parity [4], 
and (p,x)  denotes the scalar product 

(v ,x )  = 2~(kiXl/N1 + k2x2/N2 + k3x3/N3).  (9) 

N1,2, 3 are the lattice sizes in space-like directions, 
Xl,2, 3 the lattice coordinates and kl,2, 3 are the inte- 
ger numbers characterizing momenta. (Here periodic 

boundary conditions are assumed in all directions.) 
Let us denote by N 4 the lattice size in the time di- 

rection, and by a the lattice constant. Then the corre- 
lation function 

G (p,d) = (O(p, t l )O(p  , t2)) - (O(p, t l ) ) (O(p , t2)) 

> ex p ( - I t  1 - t21aEp) 
I t l - t21~ ' l  

+ ex p [ - (N  4 - I t  1 - t2l ) aEp] (10) 

has (for large time distances d = It 1 - t21 ~N 4 /2  ) an 
exponential behaviour characteristic for the lowest 
energy Ep in the channels coupled to the operator O 
in question. (The second term is due to the periodicity 
in time.) In the Monte Carlo simulation the left-hand 
side of (10) is calculated as the following average: 

Nm N4 
1 ~ ~ SL(m,p , t )  

e(P'd;Nm)=NmN4 rn=l t=l 

X ~I [SL(m,p,t +d)+ SL(m,p, t -  d)] 

- SL(m, p, t (11) 

Nrn is the total number of measurements and, for in- 
stance, for the 0 + state 

3 
1 ~ ~x exp[i(p'x)]Ox't'/(m)" SL(m, p, t) = g /= 1 

(12) 

Here Ox,t,/(m) is the value of the gtueball operator 
Ox,t, J measured on the given gauge field configuration. 

In order to be able to replace more links in the 
glueball operator by multihit links, generally, large 
planar rectangular loops are the best. Very large loops 
are, however, weakly coupled to the lowest glueball 
states therefore, at a given/3 =-- 2/g 2.value, one has to 
find an optimum. In the present paper we use, in most 
cases, the planar 2 × 2 loop. At larger 3-values we also 
made some shorter test runs with planar 3 X 3 loops 
which looked, at such/3-values, even better than 2 × 2. 
On the basis of e.g. eq. (4) it can be generally expected 
that the multihit technique works better for smaller/3. 
The question, whether in the intermediate 3-range eq. 
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Table 1 
The measured correlations at fl = 2.3. 
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d jO,p 

0 +, 0 0 +, 1 2 +, 0 2 +, 1 

0 (5.8 ± 0.2) X 10 -4 (2.04 ± 0.04) X 10 -4 (3.70 ± 0.03) X 10 -4 
1 (2.0±0.1)× 10 -4 (5.9 ± 0.3) X 10 -s (6.6 ±0.6) X i0 -s 
2 (6.3 + 0.3) X 10 -s (1.33 ± 0.06) X 10 -s (6.8 ± 3.0) X 10 -6 
3 (2.2 ± 0.2) × 10 -s (4.1 ± 0.3) X 10 -6  -- 

4 (1.4±0.2) X 10 -s (2.2 ±0.4) x 10 .6 

(1.84 ± 0.04) × 10 -4 
(3.4 ± 0.2) × 10 -s 
(4.5 ± 0.5) X 10 -6  

(1.1 ± 0.2) × 10 -6  

(5.0 ± 3.0) X 10 -7 

(1) really holds for the glueball operators, can only be 
decided by a Monte Carlo experiment. 

The main part o f  our Monte Carlo data was taken 
on 84 lattice at # = 2.30 for the standard Wilson action. 
We took the continuous SU(2) gauge group and used 
the heat bath updating [6]. After every 4th sweep 
measurements o f  the 2 X 2 loop correlations were per- 
formed taking subsequently all four directions as the 
time. The final statistics amounts to 30000 measure- 
ments. (It took about 60 h on the IBM 3081D at 
DESY.) Besides the p = 0 time-slices also the three low- 
est momenta were projected out, belonging to (kl ,  k 2, 
k 3__~) = (1,0,  0); (0, 1,0) and (0, 0, 1), respectively. Be- 
sides the symmetric combination of  the three orienta- 
t ionsj  in eq. (12) (corresponding to the 0 + state) we 
also considered the combination with weights (2, - I ,  
- 1 )  giving the spin-pari ty  2 + state [4]. This is presum- 
ably the lowest excited glueball state [7]. The final re- 
suits for the correlation functions obtained by the 
multihit procedure are summarized in table 1. 

For the error estimate we divided the data, as usual, 
in bins of  variable length and determined the correla- 
tion (10), (11) within the bins. The result in one bin 
was considered as one measured value for the correla- 
tion. The error was then estimated from the set of  
these numbers. In case o f  sufficiently large numbers 
of  bins we also used the programs of  Whitmer [8] for 
the error estimate, although the simple way based on 
the standard deviation estimate gave, in general, similar 
e r r o r s .  

An important point is, that for a given time-dis- 
tance there is always a minimum bin length which is 
needed for a reasonable result. Below this the statis- 
tics within the bin is insufficient for the accurate can- 
cellation of  the two large terms in (11). It turns out that 

for too short bins the obtained value o f  the correla- 
tion, which has to be finally positive because of  the 
positivity of  the transfer matrix [9], has a tendency 
to be negative. This is, in fact, to be expected as the 
expectation value of  the time.slices occurring in the 
second term of (11)  is averaged over the time before 
taking the product (i.e. the square of  the average). 
Once the bin length approaches the minimum accept- 
able value, the negative correlation values disappear 
and the result tends to the true positive value from 
below. Since the saturation occurs earlier for the 
time slices with smaller distances, the result is an ap- 
parently higher mass if the statistics is insufficient. 
The actual behaviour for different time distances is 
shown in fig. 2, where the absolute values of  the mea- 
sured correlations are given as a function of  the bin 
length. (For large bin length this does, o f  course, not 
matter since all the values are already positive.) As 
can be seen, the slope of  the initial pieces of  the 
curves is roughly consistent with an 1/x/N'decrease, 
although there are also deviations. Fig. 2 also shows, 
that our 30000 sweeps are roughly the minimum on 
statistics which is needed to obtain the values of  the 
0 + correlation at all time distances on the 84 lattice. 

Since the multihit procedure was used also for d 
= 0 and 1, the corresponding values in table 1 are not 
the true correlations. Multihit links can only be used 
for non-interacting links and some of  the loops with 
d = 0 and 1 do interact. In the glueball mass calcula- 
tions we are, however, interested anyway in large dis- 
tance correlations, where the use of  multi_hit links is 
not restricted. Taking the values with d = 2, 3 ,4  in 
table 1, our estimate for the 0 + glueball mass is, from 
the p = 0 correlations, amo+ = 1.05 -+ 0.09. The energy 
value from the p = 1 correlation is aE 1 = 1.20 + 0.07. 
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Fig. 2. The absolute value R of the 2 X 2 loop correlation (11) 
measured with variable bin length n on an 84 lattice at a = 2.3 
R~b ct denotes the absolute value of the correlation for momen- 
tum p and spin-parity j~r at distance d. 

Assuming Lorentz-invariant energy-momentum dis- 
persion, this gives amo+ = 0.91 +-- 0.09, and the com- 
bined value from p = 0 and 1 is 

amo+ = 0.98 -+ 0 .09 .  (13) 

Using the two-loop/3-function, this gives 

m0+ = (166 + 15)Alatt = (1090 + 170) MeV.  (14) 

In the last step we used a recent high precision string 
tension measurement [10], which gave at/3 = 2.3, 
Vc~ = (63 -+ 4) Alart. For the value of,v/k-we took Vck - 
= 420 MeV. (Note that the number extracted at/~ = 
2.6 in ref. [10] is lower, namely V~" = (56 + 3) Alatt. 
This is due to the overshooting o f  asymptotic scaling 
between ~ = 2.3 and/3 = 2.6.) 

The value for amo+ in eq. (13) is somewhat ( 1 5 -  
20%) lower than the latest results [7,11 ] which were 
obtained on similar lattices and from similar statistics 
but not using the multihit technique. As can be 
seen from table 1, for the 2 +, p = 0 state we were un- 

able to determine the correlation function beyond 
distance d = 2. A subjective estimate from the 2+,p  
= 0 data could, however, be am2÷ --- 1.7-2.3.  In the 
case o f p  = 1 the correlation in the 2 + channel is well 
determined, but the energy is getting at larger dis- 
tances obviously too low. In fact, the lattice symme- 
try at p :~ 0 is smaller than for p = 0, therefore the 
different spins are mixed up [12]. This can be well 
observed in our results since the energies obtained 
from the largest distances are already almost as small 
as for 0 ÷, p = 1. Therefore we think at present p :/: 0 
states cannot be used for the excited glueballs. This 
casts doubt on the reliability o f  excited glueball mass 
values calculated, for instance, in ref. [11]. 

Besides the # = 2,3 data on 8 '~ we also obtained, 
by the same method, data at/~ = 2.5 on a 124 lattice. 
This has nearly the same physical size as the 84 lattice 
at ~ = 2,3.  We collected altogether 12000 measure- 
ments (in about 150 CPU hours on the Siemens 7.882 
computer of  the University of  Hamburg), but at the 
end it turned out that this statistics is perhaps a fac- 
tor 2--4 too low. In spite of  this, we briefly present 
also these results, because we think that it could re- 
fleet some of  the problems of  the earlier calculations. 
In this case a direct comparison of  the multihit tech. 
nique with the conventional method was also done 
by performing 6400 measurements without multihit. 
The obtained values o f  the 0 + correlation functions 
are given in table 2. The mass value one can extract 
from distances d = 2 and 3 is, say amo+ = 1.30 + 0.20. 
Within the errors, this is consistent with the numbers 
given in refs. [7, 11 ], but it is obviously inconsistent 
with the ~ = 2.3 result eq. (13) and scaling. In fact, 
using the scale factor ~ = 1.74 determined in ref. [10] 
from the quark-ant iquark potential, scaling would re- 

Table 2 
The  measured correlations at  fl = 2.5. 

d jO,p 

0 +, 0 0 +, 1 

0 (1.47 -+ 0.01) X 10 -4  (6.33 -+ 0.01) X 10 - s  

1 (4.27 -+ 0.01) × 10 - s  (1.73 -+ 0.01) × 10 - s  

2 (1.1 -+ 0.1) X 10 - s  (3.82 -+ 0.02) × 10 -6 

3 (3.1 +- 0.5) X 10 -6  (8.2 -+ 0.6) X 10 -7  

4 (2.6 -+5.2) X 10 -7  (1.5 -+3.9) × 10 -7  
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Fig. 3. The statistical noise N for different bin lengths n, as 
measured at # = 2.5 by the average absolute value of the ap- 
parent correlation at distance 4 and 5. Open squares: p = 0 
without multihit, full circles: p = 0 with multihit, open circles: 
p = 1 without rnultihit, and crosses: p = 1 with multihit. 

quire at fl = 2.5 amo+ .~, 0.56. There are two possible 
explanations o f  this failure. First ,  the physical dis- 
tance corresponding to d = 3 at fl = 2.5 is substantial- 
ly (by a factor o f  2.3) smaller than d = 4 at fl = 2.3. 
The mass determined at the same physical distance at 
fl = 2.5 can be considerably lower. Second, as explained 
in detail  in connection with fig. 2, insufficient statis- 
tics leads also to  a considerably higher mass. (As an 
example, i f  at fl = 2.3 a bin length of  6000 is chosen, 
the mass extracted form d = 3 and 2 is amo+ = 1.4, 
with a bin length of  4000 amo+ = 1.8 !) In our opinion, 
at such high fl-values substantially higher statistics is 
needed in order to have the appropriate bin length for 
the determinat ion of  large distance correlations. 

For  the comparison of  the statistical noise with 
and without  multihit  we plot ted in fig. 3 the average 
at distance d = 4 and 5 o f  the absolute value of  the 
apparent 0 +, p = 0 and 1 correlations for fl = 2.5. As 
it can be seen, the noise with mult ihi t  is roughly a fac- 

tor 2 smaller (corresponding to a gain of  about 4 in 
statistics). A similar comparison at fl = 2.3, with smal- 
ler statistics, gave at fl = 2.3 an even larger factor of  
about 3 - 4  (corresponding to about a factor 10 gain 

in computer  time). 
In conclusion, the multi_hit technique is rather use- 

ful for the determination of  glueball correlations, but  
still further efforts are needed in order to improve the 
glueball mass values obtained from lattice Monte Carlo 

calculations. 
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