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We consider the 2d 0(3) o-model. Lattice topological charge and universality are reconciled 
by an appropriate (quasi) local definition of the topological charge. Numerical calculations are 
carried out on square and triangular lattices. The results are satisfactory within limitations coming 
from the Monte Carlo method. 

1. Introduction 

For 2d CP N models and 4d non-abelian gauge theories a topological charge 
separates the classical fields into various topological sectors. Within the semi-classi- 
cal expansion quantities related to the topological charge can be investigated, and 
topology has been argued to be important in the pattern of chiral symmetry breaking 
[1]. The role of topology on the quantum level is, however, not well understood, 
because fields contributing to the Feynman path integral are typically discontinuous 
on a physical scale [2]. This means that within the lattice regularization one has to 
impose a certain notion of continuity on the scale of one lattice spacing in order to 
insure that topological sectors exist in the continuum limit. 

In the case of the 2d CP N models a lattice topological charge was introduced in 
ref. [3]. For  simplicity we will mainly consider the 2d 0(3) o-model (CP 1 model) in 
this article*. For this model the topological charge of ref. [3] amounts to dividing the 
lattice into triangles and to summing up the signed minimal areas of the spherical 
triangles, which are spanned on S 2 by the spin vectors. The following properties are 

* Generalization to the C P '  models is straightforward. 
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important: 
(i) The topological charge takes integer values and sums up from a local charge 

density: 

Q = Y',q(p)= 0, _+1, _+2 . . . . .  (1.1) 
P 

Here the sum goes over all plaquettes (squares or triangles) of the 2d lattice 
considered (periodic boundary conditions are assumed). 

(ii) The classical continuum charge density qcl(X) [4] is obtained in the classical 
continuum limit 

lim q(p) = qct(xp) (1.2) 
a ~ 0  

(Xp is the coordinate of the centre of the plaquette p). 
(iii) The topological charge Q is defined (by (1.1)) up to configurations which are 

of measure zero in the functional integral. These configurations are called excep- 

tional and there exists a fixed e 0 > 0 such that for any exceptional configuration 
there exists at least one link £ with S~ >1 e o. S e is the action of link 2' (normalized to 
l im~_ o¢(St) = 0). 

From (1.2) it follows that 8Q = 0 for an infinitesimal variation 8 of the spin fields. 
Varying fields continuously the topological charge can only change by passing 
through an exceptional configuration. The lattice topological charge Q separates 
field configurations on a finite periodic lattice into sectors of integer charge and the 
exceptional configurations form the boundaries between topological sectors in the 
lattice theory. 

In weak coupling perturbation theory one considers small fluctuations around a 
constant field. Consequently, with the above properties of the lattice topological 
charge, the topological susceptibility 

Xt = lim I ( Q  2) ( 1 . 3 )  

vanishes to all orders of weak coupling perturbation theory. By dimensional argu- 
ments Xt is therefore expected to scale with the dimension of [m2], m being a 
physical mass. This means 

X, = a-2consttexp( - 4~rfl)(1 + O(1 / f l ) ) ,  fl -~ ~ .  (1.4) 

The 0(3) o-model is, however, a special case, because the power law of eq. (1.4) may 
be modified by the ultraviolet divergence [5] of the instanton scale size integration 
and the continuum limit of the topological susceptibility may not exist. For 
exploratory Monte Carlo (MC) studies the problem is of minor importance, as the 
MC data are not sensitive to the power law behaviour. 
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The first MC calculations were carried out in ref. [3] and the scaling law (1.4) 
failed completely. In subsequent papers [6-8] the wrong scaling behaviour of the 
topological susceptibility was diagnosed to be due to short-range fluctuations of the 
topological charge, called "dislocations" in ref. [6], with such a small action that they 
overwhelm the contribution of slowly varying fields. Due to Li~scher [7] the minimal 
action of a dislocation of topological charge I QI = 1 is given by 

S D = 6.69 . . . .  (1.5) 

corresponding to the spin configuration of fig. 1. The configuration itself is excep- 
tional, but in any neighbourhood unexceptional configurations of charge [ Q[ = 1 are 
found. 

We delegate a preciser discussion to sect. 3 and adapt first a heuristic picture: on 
the lattice dislocations are local maxima of the action and therefore very different 
from instantons [4], for which the action is a local minimum everywhere*. For 
fl--, oo dislocations become dilute (in units of the lattice spacing a) and their 
contribution to the topological susceptibility behaves as 

Xa = a-2constoflP 'exp(-flSd) forf l  ~ o0. (1.6) 

As S O < 4~r in the 0(3) o-model, dislocations give for large fl the dominant 
contribution to the topological susceptibility (using the above definition [3] for the 
topological charge). They are non-universal short-distance fluctuations and their 

* Due to the breaking of scale invariance instanton-like configurations do not exist in the lattice 0(3) 
o-model [6, 7] (with the standard action). 
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contribution to the topological susceptibility has to be regarded as an unphysical 
infinity. There are similarities to renormalization: we have an infinite unphysical 
contribution to the topological charge, which has to be subtracted. But the infinite 
contribution ,;,anishes to all orders of perturbation theory, and no normalization 
conditions can be formulated to extract the physical finite part. Presently this is the 
only example of a non-perturbative infinity. Several attempts have been made to 
cure the problem. 

In ref. [6] a heuristic definition for a physical background charge Q~ was used and 
within large statistical errors MC data for the corresponding background susceptibil- 
ity were consistent with scaling (1.4). Liascher [7] recognized that in the CP ~' models 
with N >/2 appropriate actions (for N >/3 for instance the standard actions) exist, 
such that the contribution of the short-range fluctuations no longer dominates the 
physical contributions. A decisive disadvantage remains: no prescription is given 
which is conjectured to give the same (physical) topological susceptibility on all 
different actions of the whole universality class. Should we blame the action or the 
definition of the topological charge, if unphysical results are obtained? Universality 
is no longer manifestly formulated. (All actions with identical classical continuum 
limits are supposed to be in the same universality class, for a review see [9].) 

Martinelli et al. [8] tried to remedy the situation by introducing a non-local 

definition of the lattice topological charge. Their "block topological" charge suffers, 
however, from kinematical ultraviolet divergencies [10]. The authors of ref. [8] 
propose then a regularized definition, but it is not obvious to what extent the 
continuum limit is expected to be uniquely defined. 

One of the present authors [11] proposed a (quasi) local universal definition of the 
topological charge. Roughly speaking it amounts to dividing the previous [3] charge 

Q into 

Q = QB + QD, (1.7) 

where QD is the dislocation charge and Qa the physical background charge. In the 
case of Li~scher's appropriately chosen actions the dislocation charge vanishes and 
Q = Qw In the present paper we elaborate several details and carry out an 
exploratory MC study. Our MC data for the physical topological background 
susceptibility X a = (1 /V)~Q~)  are consistent with the scaling behaviour (1.4). The 
computer  implementation of the new topological charge requires a number of logical 
decisions to be made by the computer. 

The paper is organized as follows: in sect. 2 basic notation is introduced. The 
universal definition of the topological charge is given in sect. 3. Details of its 
computer implementation are contained in sect. 4, where also our MC results are 
presented. Finally concluding remarks are given in sect. 5. 
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2. Preliminaries 

The  ( s tandard)  action of the 2d 0(3)  o-model  is defined by 

S = ~',S t ,  S t =  1 - s.t)sj(z).  (2.1) 
£ 

The  sum goes over  all links 2' of the lattice and i(2'), j (2 ' )  are the endpoints  of  link 
2'. V acuum expecta t ion values are calculated with respect  to the part i t ion function 

z =  fl--I dsje -as (2.2) 
J 

The  p roduc t  goes over  all sites of the lattice and with s~ = (cos Oj, sinOjsin%, 

sinOjcosq~j) the measure  is given by 

1 ," + 1 r2~r 
f ds j = -d-g  J_ d cos OJ Jo d eP i - (2.3) 

In our  investigation we will consider square and tr iangular  lattices with periodic 
b o u n d a r y  condit ions.  For  the tr iangular lattice our convent ions are as in ref. [12]. 

The  lattice is spanned by the unit vectors el = (1, 0) and e2 = (½, ½ ¢3-), the bounda ry  
condi t ion is P ( x ) =  P(x  + L1~1)= P(x  + L2~2), the volume is V = ½¢-3LIL 2, and 
the lattice is approximate ly  square with the choice L~ --- ½v~-L 2. 

Let  us repeat  the definition [3] of the topological charge. We consider first the 
t r iangular  lattice. To  each triangle p three spins are attached. Up  to exceptional 

configurations 

5 1 " ( 5 2 X 5 3 ) = 0 ,  1 + 5 1 " 5 2 + 5 2 " 5 3 + $ 3 " $ 1  ~<0, (2.4) 

three spins s l, $2,53 ( 52 = 1) on the sphere S 2 define uniquely (by interpolat ing along 

the geodesics) a minimal  spherical triangle with angles a~, a 2, a 3 and area A = a 1 + 
a 2 + a 3 - 'rr. The  signed area is Ao(S l, s 2, s3) = oA, 0 = sign[51 • (52 x s3) ], and with 
the def ini t ion 

q ( p ) =  ~----~Ao($1,$2,$3). (2.5) 

of  the topological  charge density, the topological charge Q = Y'.pq(p) satisfies the 
requi rements  (i)-(iii)  of the introduction. 

For  an except ional  configurat ion we find at least one link 2' with St>~ e0 a, and 

f rom eq. (2.4) we see 

eo a = 4. (2.6) 
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On the square  lattice there are two equally good definit ions of  the topological  
charge,  according  to the two possibilities of  dividing the square p into triangles: 

1 
qx(P) = -4--~{Ao(Sl,S2,S4)+Ao(s3,sa,s2)}, (2.7a) 

1 
q2(P) = -~-~ ( Ao(S2,S3,Sl) + Ao(s4,sa,s3) }. (2.7b) 

For  except ional  configurat ions at least one link 2' with St>_-e~ exists, and f rom eq. 
(2.4) 

e~ = 1 (2.8) 

follows. Also, we have for fields with S e< e~ (all £ )  ql(p)  = q2(P). Otherwise 
qx(P) - qz(P) = 0, + 1 is possible. 

It  is instruct ive to note [8] that in the CP a gauge language the topological  charge 
densi ty  (2.5) can be defined in close analogy with the discussion of the topological  
charge  in the cont inuum,  and the charge density at a triangle is identical with the 
f ract ional  pa r t  of  a surface integral a round a triangle. Let us fix the CP a gauge, for 
ins tance  by  the requirement  z~(x) real, where x denotes  a site of  the lattice. Then  
the z ( x ) =  (zl(x), z2(x))  field of  the CP ] model  is uniquely related to the s-field 
(2.1) by means  of s ~ = ~ao'~a2tj (o' Pauli matrices),  and fur thermore  

u(x,f,):= e(x+;,)z(x) =e,,~.~,, 
I~(x + ~)'z(x)l 

{(+1,o), (o, +1) (2.9) 

def ines  uniquely  a phase q,(x, fi) ~ ( -~r ,  ~r)*. Let S = ( (x  l,/2a), (x2, fi2) . . . .  (x/, ~/)) 
be a closed self-avoiding curve along the links £i  = (xi ,  fi,), (i = 1 . . . . .  f )  of  the 
lattice. S is the "sur face"  of a connected region. The  fractional par t  qF(S) of  the 
surface  integral  is defined by 

1 qF(S)=~-~arg[u(xa,fh).U(Xz,fi2). . .u(x/,#/)],  (2.10a) 

with the convent ion  - ½ < qF < ½" In terms of phases we get 

f 
2~rqF(S ) = ~ q~(x,, fi,) + 2~rK(S),  (2.10b) 

i=1  

where  the integer K(S) is defined such that - ½ < qF < ½ holds, qF(S) is gauge 
invariant ,  in part icular  also under  gauge t ransformat ions  which are singular at a 
cent re  of  some  plaquette.  

* Exceptional configurations q, = _+ ~ are excluded. 
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By taking boundaries of appropriate triangles the definitions (2.5) and (2.7) are 
reobtained. For the square lattice we add a third definition by taking S to be the 
boundary Op of the plaquette p: 

1 4 
q3(P):= qF( OP) = ~ ,_~-'1 ~( x''fi') + K( gp)" (2.11) 

It is easy to show that eq. (2.8) remains valid. 

3. Universal topological charge 

3.1. SCALING BEHAVIOUR AND DISLOCATIONS 

Let us consider a model with asymptotic scaling behaviour 

~= aconstfleexp(½afl)(l + O( ~ ) ), /3 - ,  o0 ,  ( 3 . 1 )  

for the correlation length ~. This means a physical mass 2, like the topological 
susceptibility, is expected to scale like/3- 2Pexp(- aft),/3 ~ oo (see also [131). 

Let 8 > 0 be fixed. By a dislocation D 8 we understand a lattice spin configuration 
with the following properties: 
(a) A set A 8 of link-wise connected plaquettes exists such that 

(i) each plaquette p ~ A 8 contains at least one interior link 2' ("interior" with 
respect to As)  with action S t >  8; 

(ii) for links £ from the boundary OA 8 we have S t > 8. 
The set A 8 will be called the dislocation region in the following. 

(b) A constant spin s (s 2= 1) exists such that if we set all spins s~, which are not 
attached to plaquettes p ~ A~, equal to s, = s, the configuration thus obtained has 

(i) S t <  8 for all links £ ~  A~, 
(ii) topological charge I Q I * 0. 
(Definitions of the CP ~ topological charge are as in the previous section and for 

the CP N (N >i 2) model as in ref. [3].) 
Let S O be the smallest action of such a dislocation. Our model is supposed to have 

classical instanton solutions and consequently 

SD:= lim S~ ~< Sinst  (3.2) 
8 ~ 0  

holds, where Sinst is the continuum one-instanton action and S D is, in the I Q I ~ 0 
sectors, the minimal action on an infinite lattice. For the 0(3) o-model S D is given 
by eq. (1.5) and 

Sinst = 47r (ref. [4]). (3.3) 
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Relying on part i t ion function (2.2), the probabili ty that for fl large (8 fixed) a 

dislocation,  conta ining a particular plaquette P0 of  the lattice, occurs is proport ional  
to fl e 'e-as~.  This gives rise to a dilute gas of  dislocations, contr ibut ing according to 

eq. (1.6) to the topological susceptibility. Assuming the scaling behaviour (3.1), this 
implies: dislocations are harmless if 

S D > a ,  (3.4a) 

but  dislocations will overwhelm the physical long-range fluctuations if 

S D < or. (3.4b) 

Dislocat ions are non-universal as is seen easily by studying the modified parti t ion 
funct ion 

z,= f l l  dsj I - Io (e  - Se )e  -as .  (3.5) 
! .g 

The  p roduc t  I-I t is over all links of the lattice. Z of  eq. (2.2) is obtained by setting 
e = 2. The minimal I Q[ ~: 0 action is now 

SD(e ) = lira S~D(e), (3 .6 )  
8~0 

and one recognizes 

lim SD(e ) = Sinst. (3.7) 
e--*0 

In case of  the CP t model this means SD(e ) has to increase from 6.69 to 4~r, when e 

varies f rom 2 down to 0. 

For  the CP  N models one has a = 8~r/(N + 1) and Sinai = 4~r, implying that a 

value e c exists, such that dislocations become harmless for e < e¢. Li~scher [7] has 
shown that for N >/3 this is already the case with the s tandard action. The CP x 

model  is a special case, because a = Sin~t = 4~r. Consequently the physical result* X t 
for the topological  susceptibility is obtained in the limit 

Xt = lim lim lim Xt(e, fl, V). (3 .8 )  
e~0 fl~oc V ~  

In contras t  any choice e < e c is sufficient for the CP z model. To exhibit the order  of  

limits we have also included the volume V and coupling constant  fl dependence in 
eq. (3.8). 

* Ignoring the ultraviolet problem. 
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3.2. TOPOLOGICAL CHARGE 

Instead of relying on particular actions, we like to incorporate the considerations 
of the previous subsection into the definition of the topological charge. Otherwise 
the concept of universality is obscured. In fact the authors of ref. [14] take the 
original definition [3] of the topological charge more seriously than universality and 
suggest new universality classes. In view of our results we see, however, no reason for 
introducing such radical innovations. 

The new charge 

Q*B = O - Q~ (8 > 0 "cut-off" parameter) (3.9) 

is constructed [11] to give identical physical results on all actions of the whole 
universality class. The physical topological susceptibility X B, defined by 

1 8 2 lim lira lim -~((QB) ) XB = 
8--.0 B~O V--o= 

(3.10) 

is supposed to scale according to 

xa=a-2constBfl-2Pexp(-afl)(l +O(fl)), fl~oo, (3.11) 

and for different actions the different consta are related by perturbative A-parame- 
ter calculations. 

The physical background charge Q~ is defined by subtracting from the old charge 
Q the charge Q~) of dislocations with S t > 8 at at least one link £. The precise 
definition of Q*D is 

QSD= Y"{A, p~A, q ( p ) - q F (  8A8)' (3.12) 

Here the first sum goes over all dislocation regions as introduced in the previous 
subsection, q(p) stands for one of the definitions (2.5), (2.7) or (2.11), qF(S)  is 
defined by (2.10) and S -- OA 8 is the boundary of A 8. 

Examples of dislocation regions are depicted in fig. 2. Let P0 be a particular 
plaquette of the lattice. For 8 fixed, f l - ,  oo the probability P(As)  of finding a 
region A 8 D Po on the lattice is estimated by 

P ( A , )  < const Be"e -~a8 (3.13) 

Here n is the number of interior links £ ~  A 8. For fl large typical dislocations 
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I l l l i ~ l [  
I o n i a n  
I l l l ~ l  

Fig. 2. Three examples of dislocation regions which would contribute in (3.12). Links with Se> 8 are 
dotted. 

regions are small. Properties of the topological charge Q~ (8 > 0 fixed) are: 
(i) Q~ sums up from a (quasi) local charge density. Putting together eqs. (3.9) and 

(3.12), we find 

Q~= Y'. q(p)+Y'~qv(OAs). (3.14) 
p A~ 

p~  UA~ 

In the continuum limit, all dislocation regions A s , contributing to (3.14) have area 
zero. We call this property (quasi) locality. 

Proof: Let G be a region of fixed physical size, i.e. fixed in units [~] of the 
correlation length. Then the number of plaquettes inside G increases proportionally 
to fl2eexp(a~), fl ~ oo. Therefore, the probability (3.13) of finding inside G a 
dislocation region A with n interior links goes to zero if n > a/6. On the other hand, 
for possible A s 

a 
n ~< ~- (3.15) 

holds. Consequently the area of any A 8, contributing to Q~, goes to zero in the 
continuum limit. 

(ii) Q~ takes integer values 0, + 1 . . . . .  
This follows immediately from eqs. (3.14) and (2.10b). 

(iii) Q~ = 0 for a dislocation D 8 (as defined in subsect. 3.1). This is of course the 
most important property. 

Proof: For  small 8 all boundary spins of A 8 are in the same half-sphere as the 
fixed spin s. Eqs. (3.14) and - ~ < qF(OAs) < ½(2.10) imply Q~ = 0. 

(iv) qF(OAs)q:Ep~afl(p) if and only if [Ep~Afl(P)I > ½. This shows how 
unphysical contributions (IEq(p)l > ½ from a region of area 0) are now suppressed. 
Remember: IqF(OAs)l < ½ always. 

(v) Conjecture: Assume an e c (as defined after (3.7)) exists, then 

0 < 81 , 8 2 < e~ (3.16a) 

implies 

lim lim X~'(B,V) = lim lim X~(fl, V). (3.16b) 



B. Berg, C. Panagiotakopoulos / Universal topological charge 363 

The conjecture is plausible but difficult to prove, because the continuum limit is 
involved. 

Remarks :  

(i) Q[  is defined up to exceptional configurations. For 6 small enough (6 < e a, e n 
see (2.6), (2.8)) exceptional configurations are those for which qF(0As)  (at one or 
more As) is not defined (this means q F ( 0 A s ) =  + ½). Q[  may be well defined by 
(3.14), although the dislocation charge Q~ (3.12) is not defined. 

(ii) The 0(3)  o-model is a particularly bad case, because e c = 0 and therefore the 
limit 6---, 0 in the definition of X8 (3.10) has, in principle, to be carried out. In 
practice finite 6 may, however, already give reasonable results, as is indicated by the 
existence of quasistable configurations [6] of topological charge I Q[ ~ 0. In view of 
the computational simplicity of the 0(3) model and our limited computer time, we 
decided to carry out a MC simulation for this model. 

4. Numerical results 

Let us first describe the computer implementation of the topological charge Qa 
(3.14). For all links £ and all plaquettes p of the lattice logical variables L ( £ )  and 
P(p) are introduced. Initially all these variables are set equal to F = "false". Then we 
scan through all links £ of the lattice and set P(p,) = T = " t r u e "  (i = 1,2) for the 
two neighbour plaquettes of any link £ with S~ > & After, in this way, all P(p) have 
been assigned to their final values, we scan again through all links of the lattice and 
put 

= T 

happens with respect to the logical variables of the two neighbour plaquettes*. 
Otherwise the value L(~') = F is kept. In that way the P(p) = T plaquettes are inside 
dislocation regions A 8 and L ( £ )  = T links define boundaries of dislocation regions 
A 8. The computation of the boundary contributions qF(0As)  to the topological 
charge proceeds now in the following way. 

We make a loop over all links £. 
(i) if L ( £ ) =  F we go immediately to link £ +  1. 
(ii) If L ( £ )  = T we compute (using the CP 1 language) the contribution of this link 

~P to qF(OqAs). Then we set L ( £ ) =  F and search in anti-clockwise direction for a 
new link £ '  (which exists) with L(£ ' )  = T. We proceed until we hit the starting point 
of link £. Then we go on like as before (i) with link £ + 1. 

* The plaquettes may be triangles. 
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F F!FIF F- 
F T i t i t  F 

F t ! t i t  F 
F FIF]F 

Fig,. 3. A dislocation region, which requires special care. Links with S e> 8 are dotted. Thc boundary 
contributions to the charge are taken with orientations as indicated by the arrows. 

Special care is taken to exclude configurations which are closed by cyclic boundary 
conditions, and to treat correctly configurations as shown in fig. 3. MC results are 
obtained on square and on triangular lattices. 

4.1. SQUARE LATTICE 

We work on a 100 x 100 lattice. A sweep is defined by upgrading each spin on the 

lattice once in the mean. We use random upgrading. Our final statistics are obvious 

from table 1. 
In table 2 our results for the mean action per link (S t ) ,  for the magnetic 

susceptibility 

Xm = V $, , ( 4 . 1 )  

and for the magnetic defect 

~m := 2" 105B4e -4*BXm (4.2) 

TABLE 1 
100 × 100 square lattice: 

NCquil. = no. of sweeps for equilibrium, Nmult,pu~,t ~ = no. of sweeps before each measurement, 

Nmeasurements = no. of measurements 

J~ Ncqud grauhiplicll} Nmea.,urement.~ 

1.4 7231 5 1500 
1.5 8138 5 1671 
1.6 7176 5 3261 
1.65 9215 10 3254 
1.7 8212 10 9050 
1.75 9149 10 3985 
1.8 8000 10 7534 
1.85 9692 20 4683 
1.9 8636 25 4382 
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e v e n ~ / ~  3 

# (st> ×m 8m 

1.40 0.438 67+ 7 1.17 +0.12 
1.50 0.398 151 + 20 1.00 +0.13 
1.60 0.365 325 _+ 69 0.79 ± 0.17 
1.65 0.349 755 + 76 1.11 -.-0.11 
1.70 0.336 964 + 70 0.85 z 0.07 
1.75 0.3230 1577 + 47 0.816 + 0.024 
1.80 0.3117 1822 + 74 0.574 _+ 0.023 
1.85 0.3016 1937 -+ 88 0.363 + 0.016 
1.90 0.2920 2183 + 47 0.243 +_ 0.005 

a r e  c o l l e c t e d .  W i t h i n  s t a t i s t i ca l  e r r o r s  t h e  d a t a  a re  c o n s i s t e n t  w i t h  o ld  r e su l t s  [15, 3]. 

S c a l i n g  o f  t h e  m a g n e t i c  s u s c e p t i b i l i t y  l o o k s  b e t t e r  t h a n  be fo re .  

M e a s u r e m e n t s  o f  the  t o p o l o g i c a l  c h a r g e  Q ~  f irs t  r e q u i r e  p r e l i m i n a r y  inves t i -  

g a t i o n s  a b o u t  r e a s o n a b l e  va lues  for  t he  c u t - o f f  p a r a m e t e r s  8. O u r  c a l c u l a t i o n  o f  Q~  

b r e a k s  d o w n  if, o n  the  ave rage ,  m o r e  t h a n  a b o u t  30% of  t h e  p l a q u e t t e s  get  " t r u e "  

a s s i g n e d .  W e  d e c i d e d  to f i rs t  m a k e  h i s t o g r a m s  o f  t he  a c t i o n  p e r  l ink  d i s t r i b u t i o n .  

10(2 

7 = . 

5C 

2 = . 

Mean  v a l u e  

I I I ---'--'--I ~_ 

25 50 75 boxe lOOs 

B. Berg, C. Panagiotakopoulos / Universal topological charge 

TABLE 2 
100 X 100 square lattice: 

average action per link ~ S t ) ,  magnetic susceptibility X,~ and magnetic defect $m 

Fig. 4. Histogram of the action per link distribution at ,8 - 1.4. In the horizontal axis there are 100 boxes 
covering the range 0 ~< ( S t )  ~ 2. The vertical axis gives the number of events. (500 sweeps on a 502 

lattice: total number of events 2.5 • 106.) 
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TABLE 3 
100 x 100 square lattice: 

percentage of "' true" plaquettes for different cut-offs 8 

fl• 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

1.40 24.8 19.7 15.4 11.8 8.8 
1.50 24.8 19.4 14.9 11.3 8.3 6.0 
1.60 25.9 19.8 15.0 11.1 8.1 5.8 4.0 
1.65 23.3 17.6 13.1 9.5 6.8 4.8 3.3 
1.70 28.0 21.2 15.7 11.5 8.2 5.8 4.0 2.7 
1.75 25.7 19.1 14.0 10.0 7.1 4.9 3.3 2.2 
1.80 23.7 17.3 12.5 8.8 6.1 4.2 2.8 1.8 
1.85 21.9 15.8 11.2 7.8 5.3 3.6 2.3 1.5 
1.90 27.8 20.1 14.3 10.0 6.8 4.6 3.0 1.9 1.2 

For fl = 1.4 an example is given in fig. 4. The finally used cut-offs are collected in 
table 3. In the region up to fl = 1.9 the lowest possible cut-off is 8 = 0.7. Otherwise 
too many plaquettes become " t rue"  assigned. 

For  the topological charge density at a single plaquette we use three different 
definitions q,(p) ( i =  1,2,3), see eqs. (2.7) and (2.11). Dislocations for which the 
q,(p) differ at a plaquette are called 1-plaquette dislocations in [6]. From table 4 we 
recognize that for 8 ~< 1.0 all three definitions of Q~B agree. This is a consequence of 
eq. (2.8). Already with the cut-off values 8 = 1.1 and 8 = 1.2 we find from table 4 a 
strong suppression of the 1-plaquette dislocations. 

In the cut-off region 8 ~< 1.3 the obtained values ((Q~,)2) are nearly identical for 
i =  1,2,3. For larger cut-offs the ((Q~3) 2) values are lower than the ((QSB)2) 

TABLE 4 
Agreement of the different definitions of the topological charge QB 

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

1.40 97.7% 76.1% 38% 16% 5% 
1.50 100% 99.1% 86.6% 58% 29% 13% 
1.60 100% 100% 99.4% 93.0% 75% 51% 29% 
1.65 100% 100% 99.6% 94.9% 83% 63% 42% 
1.70 100% 100% 100% 99.7% 96.4% 87% 71% 53% 
1.75 100% 100% 100% 99.8% 97.6% 91% 80% 65% 
1.80 100% 100% 100% 99.8% 98.3% 93.4% 85% 75% 
1.85 100% 100% 100% 99.9% 98.9% 95.7% 90% 81% 
1.90 100% 100% 100% 100% 99.9% 98.9% 96.5% 92.6% 86% 
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( i  = 1,2)  values .  T o  be def ini te ,  we now use 

(4.3) 

As  in  ref. [3] we def ine  the topological  defect  by  

6t 8 = 1 0 -  sfl-2 e +4,,~ ( (  QV)2> (4.4) 

O u r  M C  d a t a  for  the defect  are col lected in table  5. In  the region  13 >I 1.6 the values  

o b t a i n e d  wi th  low cut-offs  are cons i s t en t  with scaling. Fig. 5 summar i ze s  the re levan t  

resul ts .  T h e  i m p r o v e m e n t  f rom 6 = 2.0 (no  cut-off)  d o w n  to the nea r ly  flat resul ts  for 

6 = 0.9, 0.8, 0.7 is ra ther  impress ive.  

F ina l ly ,  in  this  subsec t ion ,  t ab le  6 gives the pe rcen tage  of QB = 0 c o n f i g u r a t i o n s  

for d i f f e ren t  coup l ings  a n d  low (6 ~ 1.0) cut-offs.  F o r  fl large t u n n e l i n g  becomes  

i m p o r t a n t  a n d  slows d o w n  the conve rgence  cons iderab ly .  See also the subsect .  4.2. 

TABLE 5 
100 × 100 square lattice: topological defect 8 t 

13 ~ R 0 .7  ~ = 0 .8  8 - 0 .9  8 = 1.0 8 - 1.1 

1.40 0.269 (6) 
1.50 0.429 (16) 0.475 (25) 
1.60 0.708 (17) 0.767 (25) 0.862 (35) 
1.65 0.727 (53) 0.811 (51) 0.897 (45) 
1.70 0.810 (40) 0.894 (37) 0.974 (39) 1.091 (42) 
1.75 0.697 (42) 0.798 (49) 0.907 (60) 1.025 (70) 
1.80 0.639 (53) 0.743 (52) 0.864 (61) 0.991 (50) 
1.85 1.103 (177) 1.232 (169) 1.339 (177) 1.505 (188) 
1.90 0.902 (107) 0.962 (137) 1.129 (131) 1.241 (122) 1.386 (140) 

fl 8 = 1.2 8 = 1.3 8 = 1.4 8 = 1.5 8 = 2.0 

1.40 0.317 (6) 0.376 (10) 0.445 (9) 0.445 (18) 0.920 (34) 
1.50 0.528 (25) 0.609 (33) 0.707 (23) 0.813 (32) 1.561 (56) 
1.60 0.966 (36) 1.085 (45) 1.222 (49) 1.368 (49) 2.670 (63) 
1.65 1.013 (48) 1.126 (52) 1.304 (53) 1.470 (57) 2.961 (83) 
1.70 1.226 (49) 1.376 (52) 1.594 (55) 1.859 (57) 3.813 (69) 
1.75 1.175 (71) 1.382 (80) 1.596 (89) 1.922 (94) 4.233 (137) 
1.80 1.168 (52) 1.380 (62) 1.708 (63) 2.067 (66) 5.147 (136) 
1.85 1.683 (196) 1.943 (207) 2.296 (198) 2.667 (207) 6.65 (20) 
1.90 1.656 (155) 2.030 (153) 2.425 (171) 2.%1 (188) 7.48 (22) 

The number in brackets gives the expected error in the last digits. 
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TABLE 7 

100 × 100 triangular lattice: 

Nequi I = no. of sweeps for equilibrium, Nrnultiplicity = no. of sweeps before each measurement, 

Nmeasuremcnts = no.  of  measurements 

369 

gcquil gmuhiphcity gmeasuremen t.~ 

0.8 7040 10 1488 

0.9 6846 15 936 

1.0 7382 15 3213 
1.1 7522 15 4480 

1.2 7514 25 4568 
1.3 7506 25 4024 

4.2. TRIANGULAR LATTICE 

We work on an (approximately square) 100 x 116 lattice (see sect. 2 for the 
notation). Our final statistics are summarized in table 7. 

Table 8 collects our results for the mean action per link (Se), for the magnetic 
susceptibility X m (4.1), and the magnetic defect, now defined by 

8m:= 2. lOS(a2B)'e-4"(3/2)BXm. (4.5) 

For the topological charge Q~ we again consider cut-offs in the range 0.7 ~ 8 ~< 1.5. 
The topological defect is now defined by 

St:= 10-5(~fl)-  2e +'-(3/2)t~ <(QB) 2 ) V ' (4.6) 

and our MC data for the defect are given in table 9. Fig. 6 exhibits relevant results 
for different cut-offs & We see that the ~5 = 1.0 results are nearly flat (albeit still 
lowered by taking even smaller values 8), and even the 8 = 1.5 data look quite 
reasonable. In comparison, results with 8 = 2.0 (no cut-off) do not indicate scaling at 

TABLE 8 

100 x 116 triangular lattice: 
average action per link (Se), magnetic susceptibility Xm and magnetic defect 8,, 

0.8 0.529 42 + 3 4.96 + 0.25 
0.9 0.453 154 + 17 4.38 + 0.48 

1.0 0.390 749 + 85 4.94 + 0.56 
1.1 0.344 1935 + 92 2.84 +_ 0.14 
1.2 0.309 2867 ~- 87 0.90 +_ 0.03 
1.3 0.281 3623 _* 56 0.24 + 0.01 
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TABLE 9 
100 × 116 triangular lattice: topological defect 8t ~ 

B 8 = 0.7 8 - 0.8 8 = 0.9 8 = 1.0 8 = 1.1 

0.8 0.053 (2) 
0.9 0.129 (6) 0.148 (8) 
1.0 0.159 (8) 0.179 (8) 0.199 (9) 0.216 (10) 
1.1 0.116 (13) 0.129 (12) 0.153 (13) 0.175 (16) 0.201 (16) 
1.2 0.182 (100) 0.200 (98) 0.222 (94) 0.250 (94) 0.280 (93) 
1.3 0.068 (19) 0.074 (13) 0.115 (22) 0.152 (18) 0.198 (18) 

fl 8 = 1.2 8 = 1.3 8 = 1.4 8 = 1.5 ~ = 2.0 

0.8 0.061 (3) 0.070 (2) 0.082 (2) 0.094 (3) 0.186 (6) 
0.9 0.166 (8) 0.176 (10) 0.200 (9) 0.214 (10) 0.458 (28) 
1.0 0.240 (11) 0.270 (12) 0.303 (9) 0.347 (7) 0.826 (24) 
1.1 0.232 (16) 0.268 (16) 0.312 (16) 0.370 (16) 1.24 (4) 
1.2 0.320 (98) 0.350 (96) 0.413 (90) 0.502 (89) 2.00 (8) 
1.3 0.227 (21) 0.287 (27) 0.356 (28) 0.450 (33) 3.17 (13) 

The number in brackets gives the expected error in the last digits. 

all.  C r u d e  e s t i m a t e s  for  the defec ts  a re  

0.95 

6~ _,< 0 .40 

T h i s  g ives  the  M C  es t ima te  

( squa re  l a t t i ce ) ,  (4 .7a)  

( t r i angu l a r  l a t t i ce ) .  (4 .7b)  

A'~ = 1 .5A~ (4 .8a)  

for  t he  A-sca les .  In  c o m p a r i s o n ,  the p e r t u r b a t i v e  resul t  [12] is 

A'[  = 1 . 0 4 A ~ .  (4 .8b)  

In  v i e w  of  pos s ib l e  large sys t ema t i ca l  and  s ta t i s t ica l  unce r t a in t i e s  in eqs. (4.7), the  

o r d e r  o f  d i s a g r e e m e n t  is no t  unexpec t ed .  F u r t h e r m o r e ,  we no te  tha t  a d i f f e r en t  M C  

e s t i m a t e ,  A ~  ~ 0 .5A~,  is o b t a i n e d  by c o m p a r i n g  the  m a g n e t i c  de fec t s  in the i r  f lat  

r eg ion .  

W e  o b t a i n  a be t t e r  cons i s t ency  if we take  the p r o d u c t  XtXm in a reg ion  o f  

c o u p l i n g s  w h e r e  bo th  Xt and  Xm scale a p p r o x i m a t e l y .  U s i n g  a c u t - o f f  6 = 1.0, we 

f ind  

lO-3XtXm(fl = 1.65) = 1766 + 120 ( s q u a r e ) ,  

lO-3XtXm(fl = 1.0) = 1997 + 180 (triangular). 
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Fig. 6. 100 × 116 triangular lattice: topological defect. 

We remark that XtX m (in contrast  t o  ~ 2 X t  ) still has perturbative 1 / f l  corrections to 
scaling. Somewhat  disturbing in fig. 6 are the large error bars at fl = 1.2, as 

compared  with fl = 1.1 and fl = 1.3. It is due to a rare tunneling event which kept 
the simulat ion for quite a while in a rather stable [QBI ~: 0 sector. This signals that 

other  error bars, in particular at fl = 1.2, may be unreliable. From table 10 we read 
off  that  at fl = 1.9 nearly all generated configurations were in the charge QB = 0 

sector. To increase the tunneling speed between different sectors an interesting 
suggestion [16] is to offer, from time to time, instanton and anti-instanton rotations 

a round  a fixed spin. Properly implemented, such a procedure does not destroy 
detailed balance. 
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TABLE 10 
100 X 116 triangular lattice: percentage of Qg = 0 configurations 

/J 8 = 0 . 7  8 = 0 . 8  8 = 0 . 9  8 =  1.0 8 = 1 . 1  8 = 1 . 2  8 = 1 . 3  6 = 1 . 4  ~ =  1.5 

0.8 9 9 8 7 7 
0.9 13 12 11 12 10 10 
1.0 28 26 24 24 22 20 19 19 
1.1 75 72 69 66 62 58 54 50 45 
1.2 92 91 90 89 87 86 84 82 79 
1.3 99 99 99 99 98 9g 97 97 96 

5. Conclusions 

Following a previous suggestion [11 ], we succeeded in defining the lattice topologi- 
cal charge for all actions of the whole universality class. Numerical results are 
encouraging. It would be interesting to repeat similar calculations for the CP 2 
model. Using the standard action and our background charge QB, we expect for the 

universal quantity 

(5.1) 

(~ is correlation length, Xn topological susceptibility) consistency with results 
previously obtained by Percher and Liascher [12]. Also, modified CP 2 actions allow 

one to test the conjecture (3.16) numerically. 
Finally, we remark that the problem treated is also of importance for 4d 

non-abelian gauge theories. Even if the dislocation problem does not exist for the 
standard action, other actions in the same universality class will have it. Again, our 
construction is needed to ensure a manifest formulation of universality for the 

topological susceptibility. 

We would like to thank the DESY computer center for providing the necessary 
CPU time. One of the authors (C.P.) would like to acknowledge the kind hospitality 

of F. Gutbrod and the DESY theory group. 
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