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Abstract. Assuming locality of the observables and positivity of the energy it is 
shown that the joint spectrum of the energy-momentum operators has a 
Lorentz-invariant lower boundary in all superselection sectors. This result is of 
interest if the Lorentz-symmetry is (spontaneously) broken, such as in the 
charged sectors of quantum electrodynamics. 

1. Introduction 

The familiar theoretical explanation of the fact that the energy Po and the 
momentum p of an elementary particle are related by the fundamental equation Po 
= (pZ+ m2)1/2, m being the mass of the particle, is based on the assumption that 
particle states can be described by vectors in some irreducible representation of the 
Poincar6 group [1]. Alternatively, this form of the energy-momentum spectrum 
can be deduced from the hypothesis that the vectors describing particles can be 
generated from a vacuum vector with the help of local field operators [2]. The 
existence of Lorentz-transformations is not needed in the latter argument. 

Both of these explanations are based on the (implicit) idea that, disregarding 
small "tails," particle states can be localized in bounded regions of space. Yet this 
picture is not correct in the case of particles carrying an electric charge. Since the 
electric charge is the source of the long-range Coulomb field, such states have poor 
localization properties which are incompatible with the existence of a continuous, 
unitary representation of the Lorentz group in the corresponding superselection 
sectors [-3]. (Note that the geometrical action of a Lorentz transformation grows 
with the distance from the origin. So its effect on dislocalized states is large.) By the 
same token, there cannot exist local field operators generating these states from the 
vacuum [4]. Hence the conventional arguments establishing the Lorentz- 
invariance of the energy-momentum spectrum are not applicable in this case. 

In the present article we reconsider the problem of the shape of the energy- 
momentum spectrum in the general framework of local quantum theory [5]. This 
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setting is appropriate for the discussion of theories with long range forces, such as 
quantum electrodynamics. We recall that the basic object in local quantum theory 
is the algebra of all local observables which, in the present analysis, may be 
regarded as a concrete *-algebra 92 of (bounded) operators acting on the physical 
Hilbert space Jr .  As usual, the space-time translations x e R 4 are assumed to act 
as automorphisms c~x on 92, but the existence of Lorentz-transformations is not 
required here. 

Since the vectors in ~ are to describe elementary physical systems we assume 
that energy-momentum operators can be defined on ~ and that the energy is 
positive in all Lorentz-frames. This means that on ~ there exists a continuous, 
unitary representation x~U(x)  of the translations implementing the auto- 
morphisms ex, 

U(x)AU(x)-I=~(A) for A~92,  (1.1) 

and the joint spectrum of the generators of U is contained in the closed forward 
lightcone V, 

sp UC V. (1.2) 

It has been shown in [6] that under these conditions the operators U(x) can be 
chosen from the weak closure of the observable algebra 92, 

U(x) ~ 92-. (1.3) 

This fact is essential for the interpretation of the generators of U as energy- 
momentum operators. Yet since we do not rely on the existence of Lorentz- 
transformations or fields generating the physical states from a vacuum vector, 
there exists a variety of representations U of this kind: given any p e P one can 
proceed from U to the representation, 1 x ~  U'(x)= U(x). e ip'~, which also fulfills 
the conditions (1.1) to (1.3), but the spectra sp U and sp U' are displaced by p. If 
consists of several superselection sectors (i.e. if 9.1- has a non-trivial center) one 
can modify U in this manner on each coherent subspace of Yf, and this will in 
general change the spectrum substantially. So there arises the question as to 
which choice of the representation U should be regarded as the most natural one. 

We employ here the condition that a reasonable representation U of the 
translations has to give rise to a minimal energy-operator. More precisely: if (with 
respect to a fixed Lorentz-frame) H is the generator of the time-translations of U, 
and if H'  is the corresponding generator of any other representation U' satisfying 
the conditions (1.1)-(1.3), then 

H < H' .  (1.4) 

We will show in the subsequent section that such a minimal representation of 
the translations always exists. At the very end of our analysis it will also become 
clear that in local quantum theory this representation is unique. 

Given these general constraints we will study in Sect. 3 which shape of the 
energy-momentum spectrum spU is compatible with the principle of locality 

1 If a, b ~ R 4 we denote by a. b the Lorentz-scalar product, which in proper coordinates is 
given by a. b = a 0 • bo- a .  b 
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(spacelike commutativity) of observables. It is essential for this part of our analysis 
that, according to this principle, 

[A*, ax(A)] = 0 (1.5) 

for all local operators A e 9.1 and space-like translations 2 x ~ ( V - a ) ~ ( - V + a ) ,  
where a is a sufficiently large time-like vector allowing for the finite localization of 
A. This property of the observables ties the translations U to the causal structure of 
Minkowski space and thereby restricts the admissible shape of sp U. Our main 
result can be stated as follows: 

The lower boundary of sp U consists of the hyperboloid {p e N 4 : p 2  = m 2, Po > 0} for 
some m>O and, possibly, of the point {0}. 

So also in the absence of Lorentz-transformations it turns out that the states at the 
bottom of the energy-momentum spectrum (amongst which one expects the 
elementary particles) satisfy the familiar relation between energy and momentum. 
This fact is of particular interest in quantum electrodynamics, where it adds to the 
understanding of the infra-particle problem as discussed in [7] (cf. also [8]). 
Another aspect of our results will be pointed out in Sect. 4. 

Let us finally remark that, using locality, one can establish continuity 
properties of the spectral resolution of the spatial translations [9], just as in the 
presence of Lorentz-transformations [10, 11]. So it seems plausible that the 
general invariance and continuity properties of the energy-momentum spectrum 
following from Lorentz-covariance are actually a consequence of the more 
fundamental principle of locality. Unfortunately, we have not yet been able to 
completely settle this point. But we believe that our methods can be improved so as 
to fill the remaining gaps. We hope to return to this problem in a future 
publication. 

2. Minimal Translations 

Let us now turn to the problem of exhibiting a representation U of the translations 
which is minimal in the sense outlined in the introduction. To this end we fix a 
Lorentz-frame X with time-direction given by a positive timelike vector e. This 
vector enters into the following 

Definition. Let U be a representation of the translations with the properties 
(1.1)-(1.3). We say U is S-minimal if the generator H of the time-translations P, ~ t 

U(t .  e) is minimal, i.e. if the generator H'  corresponding to any other choice U' 
of the translations satisfies H' > H. [Note that the generators of U and U' commute 
because of condition (1.3). So there exists a joint core for H and H'.] 

In the analysis of the subsequent section we will make use of another 
characterization of X-minimal translations which can be taken from the following 

Lemma 2.1. Let U be a representation of the translations satisfying the conditions 
(1.1)-(1.3). Then the following two statements are equivalent. 

2 If S, S' are subsets ofP, 4 we define S+S'={s+_s':se S, s'eS'} 
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i) U is X-minimal 
ii) There is no non-trivial subspace ~ "  C ~ which is stable under the action of 

9,I such that a 

sp U l~¢f' C p + F 

for some p ~ ~ 4  with p .  e > O. 

We omit the simple proof of this equivalence. 
For  the proof that E-minimal translations always exist it is instructive to study 

first the case where the algebra ~ acts irreducibly on ~f. In this case it follows from 
condition (1.1) that any two representations U and U' of the translations are 
related by 

U'(x) = U(x) .  e-ip,x (2.1) 

for some p e ]R 4. So given U we must specify a p such that U" is X-minimal. From 
the spectrum condition spU'C P" it follows that p has to satisfy 

sp U -  p C V. (2.2) 

The requirement that the generator of the time-translations t-~ U'(t .  e) is minimal 
amounts to the condition that p- e has the maximal value which is compatible 
with relation (2.2). That such vectors p exist follows from the fact that the set of 
vectors p" satisfying (2.2) and p'.  e > 0 is compact and non-empty (since sp U C 17). It 
should, however, be noticed that p need not be unique since Vis not a simpticial 
cone. This fact causes some problem of choice in the analysis of the general 
case, where 9.i is reducible 4. 

Turning now to this case, let U be a fixed representation of the translations 
satisfying the conditions (1.1)-(1.3). We denote by ~f13 the set of all continuous, 
unitary representations x-~ W(x)  of R4 with values in the center of 9.I- for which 
the translations U" given by 

U'(x) = U(x) .  W(x)  -1 (2.3) 

fulfill again the spectrum condition. It is obvious that any U' satisfying the 
conditions (1.1)-(1.3) can be represented in this way. What  we want to show is that 
there is always a choice of W ~ ~3 such that the resulting translations U' are 
Z-minimal. To this end we divide ~ into classes ~ ( K )  of representations W 
having the same generator K for the subgroup R .  e C ~  4. Between these 
classes we establish the following partial ordering: 

~tB(K')~-?tB(K") if K ' > K " .  (2.4) 

We will show, using Zorn's lemma [12], that there exists a unique maximal element 
with respect to this ordering. 

3 Ifx-~ V(x) is a representation ofR 4 on ,~ and i f f  C 3¢f is a subspace which is invariant under 
V we denote by V Fc/f the restriction of V to 
4 The reader who is not interested in these technicalities may proceed directly to the subsequent 
section 
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To begin with we note that every pair of classes ~B(K'), ~B(K") has a joint upper 
bound. Namely, if W" e ~B(K') and W" e ~B(K"), we can construct a representation 
W setting 

W(x) = W'(x).  F+ W"(x) . (1 - -F) ,  (2.5) 

where F is the projection onto the non-negative part o fK ' - -K" .  It is obvious from 
relation (2.5) that W e ~B. Moreover, the generator K = K ' .  F + K " .  (1 - F )  of 
t ~  W(t .  e) is larger than K" and K", respectively. Hence 2B(K) is an upper bound 
for both, ~B(K') and ~ (K") .  For the purpose of finding a maximal element we may 
therefore restrict our attention to the classes ~(K)>-2B(0). 

Next, we analyse the spectrum of the representations W E ~ ( K )  on certain 
subspaces of x/t °. Let 

U(x) = I ei" XdE(p) (2.6) 

be the spectral representation of the given translations and let E(A), where A C ]R 4 
is any Borel set, be the corresponding spectral projections. We denote by F,,  n e N 
the central support projection s of E,=E(n .  e - V ) .  Since E . < E , ,  if < ' n _ n  and 
slim E, = 1 we have clearly F,  < F,, for n < n' and s-lira F.  = 1. It is essential for our 

argument that the restrictions of the representations W e ~B to the subspaces 
F, -  ~f~ have their spectrum in n.  e - V. This follows immediately from the inclusion 

sp U t F ~  C V+ sp W tF~4 ~ (2.7) 

(which holds for every non-zero central projection F) and the fact that (n. e -  V) 
nsp  U rF,o~ :t=~. On the other hand, every representation W e ~B(K)>-~[13(0) has 
its spectrum in the half space Z + = {k e R 4 : k  • e ~ 0}, hence 

sp W [ F , ~  C (n . e -  ~ ' )nS+ ,  (2.8) 

and this set is compact. 
We are now in a position to show that every linearly ordered set of classes 

~13(K,)~-~B(0), t e 1I (1I being some index set) has an upper bound. We pick from 
each class ~IB(K~) a representation W~ and consider the corresponding (four) 
generators Q,. Since, according to relation (2.8), each representation W~ IF J r  ~ has 
its spectrum in the compact set (n. e -  P ) n S + ,  it follows that the operators Q,. F.  
are uniformly bounded if n is kept fixed. Hence, because of the weak compactness 
of the unit ball in a v o n  Neumann algebra, the sequence Q,- F,,  t e II contains a 
weakly convergent subnet. Its limit, which we denote by Q~"), is selfadjoint and 
bounded. 

Now, according to the spectrum condition entering into the definition of ~ we 
have for each f e ~" the inequalities P .  f >  Q,. f and P .  f > 0 ,  where P is the 
generator of the translations U. Consequently P.  f > Q~F,. f which gives in the 
above limit P .  f > Q~"). f This means that the representation 

x ~ W,(x) = e ie~"'x (2.9) 

5 The central support projection F of a projection E e N- is the smallest projection F in the 
center of ~JI- such that E < F 
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is an element of~B. Setting K ~") = Q~"). e and taking into account that the set ~ (K, ) ,  
1 ~ ]~ is linearly ordered, we have furthermore 

K (") => K,- F . .  (2.10) 

To complete our argument we must proceed to the limit n going to infinity. We do 
this as follows: let G. = F . - F . _  1, n ~ N with the convention that F0 = 0. Since F.  
> F . - 1  and s - l i m F . = l ,  it is obvious that the operators G. are mutually 

orthogonal projections which sum up to 1. So we can define a continuous, unitary 
representation IV of R 4, setting 

ffV(x) = ~, W,(x). G,. (2.11) 
71=1 

Since W, ~ ~ for each n ~ N it is clear that if" e ~ .  
It remains to show that ~ ( / ( ) ,  where K is the generator of t--* W(t .e), is an 

upper bound of ~I3(K), z ~ 1[. According to the definition (2.11) we have W [G?1~,uf 
= W, FGJg,  so from relation (2.11) and the fact that G?1 < F?1 we obtain KG, > K,G,. 

This holds for any n ~ N, and since ~ G, = 1 we arrive at the desired r e su l t / (>  K~. 
n = l  

From the fact that every linearly ordered set of classes ~B(K) has an upper 
bound it follows by Zorn's lemma that there is some maximal element ~3(Ko). 
Moreover, since each pair of classes has a joint upper bound, it is also clear that 
~2B(Ko)>-~3(K ) for all ~ ( K ) ,  hence ~ ( K o )  is unique. 

Now we pick any W0 ~ ~3(Ko) and define the translations 

x ~  Uo(x) = U(x). Wo(x)- 1. (2.12) 

It is then an immediate consequence of the definition of ~ ( K o )  that these 
translations are S-minimal. So we arrive at 

Theorem 2.2. There exists a representation x ~  Uo(x) of the translations which is 
£-minimal. 

As we already mentioned, the representation x--,Uo(x ) need not be unique 
since V is not a simplicial cone. This situation is, however, better in the cases where 

consists of local operators [in the sense of relation (1.5)]. Then one can proceed 
from condition (1.2) to the weaker assumption that sp U C ~,  where ~ is some 
simplicial cone whose faces are made up of characteristic planes (i.e. planes 
containing some lightlike vector). Since ~ is simplicial it follows from the spectral 
theory for automorphism groups (cf. for example [-13]) that there exist unique 
minimal translations U0 with sp U0 C ~. Using locality and the special geometrical 
features of F~ one can argue then as in the subsequent section and show that 
actually spUoC V.. So V is an admissible cone (cf. [13]) if ~I consists of local 
operators. 

The analysis of the present section, however, shows that no specific informa- 
tion on 9.I is needed if one only wants to select representation U of the translations 
with a minimal energy-operator. 
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3. Locality and the Shape of the Spectrum 

Assuming from now on that the algebra 93 consists of local operators [in the sense 
of relation (1.5)] we will analyze in this section which shape of the energy- 
momentum spectrum is compatible with the principle of locality. To this end we fix 
a S-minimal representation U of the translations and study the family of functions 
given in the following 

Definition. Let A 6 93 be any local operator and let • 6 ~ .  We consider the 
functions of x 6 JR 4 

2 +(x) = (+, A* U(x)Aa ), 
(3.t). 

Aj, o(x) = (~, c~x(A ) • A* U(x)qb), 

and the commutator function 

AA..(x) = (#, [A*, ~x(A)] U(x)*) ,  (3.2) 

which is the difference between A + and A A .. A , ~  

The functions A~.~ and AA, * are continuous and uniformly bounded, so their 
Fourier-transforms A~.. and AA.O, respectively, are defined as temperate distri- 
butions. Because of the spectrum condition (1.2) we have the following information 
on the supports of these distributions6: 

supp zT~,. C sp U C V, 
(3.3) 

supp zij , ,  C (2. supp # - sp U) C (2- supp q~ - V), 

where suppq~ denotes the support of the Fourier-transform of x~U(x)4~. 
Consequently 

suppAA,~,C sp U~(2.  suppq~- sp U) C g~(2-suppq~-  V). (3.4) 

The latter region has a non-trivial, open complement if supp # is compact, which 
we will assume henceforth. 

Using locality, it follows from the "edge of the wedge theorem" that AA,, is the 
discontinuity on the reals of some analytic function. This fact imposes restrictions 
on the possible shape of suppAA,, which we will exploit later in our analysis of 
sp U. For the convenience of the reader we recall here the essential steps leading to 
this result: the commutator function AA, ~ has, according to relation (1.5), support 
in the region ( F ' - a ) u ( - V + a ) ,  where a ~ l R  4 depends on the localization 
properties of A e 93. Therefore one can decompose Aa, . into the difference of two 
continuous functions G+ and G_ which have support in ( V - a )  and ( - V + a ) ,  
respectively. It follows from these support properties that the Fourier-transforms 
of G _+ are the boundary values (in the sense of distributions) of functions H_+ which 
are analytic in the tubes T~ = {z E I12 4 : Imz e + V}, respectively. These boundary 
values coincide [because of relation (3.4)] in some open set C C ~4. Thus H + and 
H_ are, by the edge of the wedge theorem [14, Sect. 27], the restrictions to T÷ and 
T_, respectively, of a function H which is analytic in T+ to 7"_ to C~, where C~ is 

6 If S is a subset of F, 4 we set 2. S = S + S; cf. footnote 2 
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some complex neighbourhood of C. Hence one obtains the basic relation 

zTA, ~,(k) = lira (H(k + iO - H ( k -  ie)) (3.5) 

which holds on lR 4 (in the sense of distributions) for suitable sequences ~ ~ V 
tending to 0. 

If one knows that AA,~ vanishes in some region C C R 4 it follows from relation 
(3.5) that AA, o also vanishes in the (in general larger) region C consisting of all real 
points of the envelope of holomorphy of the domain T+ w T_ wC" We will make 
use of this mechanism for various types of coincidence regions C, for which 
the completions d are explicitly known. 

The first result, which is of a local character, is the "double cone theorem" [14, 
Sect. 28]. This theorem tells us that if the coincidence region C contains an open 
neighbourhood of the timelike line [0, 1] ~ 2 ~ ( 1 - 2 )  "Pl - I -2 '  PZ, where P2 ff Pl 
+ V,, then the completion d contains the double cone (p~ + V)n(pz - V). Actually, 
one can relax in this theorem the assumption that the points p~ and P2 are 
connected by a straight line. It suffices that C contains a neighbourhood of some 
continuous curve [0, 1] ~ 2~p(2) with p(0) =p~, p(1) = P 2 ,  and p(2) ~ Pl + ~'for all 
2. This generalized form of the double cone theorem follows by repeated 
application of the restricted version. 

The second result, which is of a global nature, applies to coincidence regions C 
which are the complement of regions of the form F = ( F  1 + V ) w ( F  2 - V), where/'1 
and Fz are closed subsets of V. For such regions the envelope of holomorphy of T+ 
u T_ u C  ~ has been computed in [15]. It coincides with the one given by the Jost, 
Lehmann, Dyson representation [14, Sect. 32] cf. also [16]. Again it is possible to 
find the completion C of C by elementary geometrical considerations: denoting 
by H(a, #) the hyperboloids with apex a ~ IR 4 and mass # > 0, 

H(a, #) = {k ~ R* : ( k -  a) 2 =/.t2}, (3.6) 

one must determine all sets H(a, #) which do not intersect with C and take their 
union 

f = U {H(a, It) : H(a, p)~C = 0}. (3.7) 

The complement of the closed set f C 11l 4 is then the desired completion C. We will 
refer to this method of finding C as the "JLD-technique". 

With this information on the support properties of zJA, ~ we can now turn to 
the analysis of sp U. It follows from relation (3.3) that the support of zt +, e is a subset 
of spU and that the distributions zTJ,~(k) and AA,~(k) coincide in the (open) 
complement of the region (2. s u p p ~ -  V). So the commutator functions AA,¢, 
A ~ 951 can be used to study that part of the spectrum sp U which does not lie in the 
region (2. supp q~- ~'). Thus there arises the question for which points q ~ ]R 4 one 
can find vectors ~ # 0 such that q ~ (2. supp ~ -  V), i.e. 2. supp ¢c~(q + ~') = 0. 

Definition. Let q e R ~. A vector • ~ 3(f, q~#0 is said to be q-admissible if supp~ is 
compact and 2- supp 4~n(q + V) = 0. (Note that a q-admissible vector ~b is also q'- 
admissible for any q" ~ q + V.) 
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Using locality and the fact that U is Z-minimal, we will now show that there is a 
large supply of q-admissible vectors if q 4 0  and q e Z+ = {k e IR4: k-e>0}.  In 
view of the above remark it suffices to establish this result for q e Z 0 = {k ~ IR4 : k. e 
=0}. 

Lemma 3.1. For every q E X + , q 4= 0 there exist q-admissible vectors qk Moreover, if 
for a spectral projection E(A) (@ relation (2.6)) corresponding to some Borel set 
A C IR e, (q~,A*E(A)A¢) = 0 for all q-admissible vectors q~ and local operators A, then 
E(~)=0. 

Proof. The proof of the existence of q-admissible vectors amounts to showing that 
there exists a p E sp U such that p ¢ (½q + V). Since (½q + V') is closed there exists 
then also a neighbourhood ./V~, ofp such that 2- Xp is disjoint from (q + V), hence 
any vector • with supp q~ C Wp is q-admissible. 

Now if such a p does not exist, then sp U C ~'n(½q + ~'), and it suffices to exclude 
this possibility for q ~ Zo, q 4= 0. To this end we fix a compact, non-negligibleset Fo 
C sp U and pick a vector ku with supp 7 j C Fo. Then we consider the commutator 
function zTa,e which, for any local operator A, vanishes according to relation (3.4) 
in the complement of (Pc~(½q + P))~(2F 0 - P). To this coincidence region we can 
apply the JLD-technique, the conclusion being that zlA. ~, also vanishes in the 
complement of F 1 + V w ( -  V), where/'1 = Vn(½q + ~ n ( 2 F  o - ~'). Consequently, 
the positive part zl],~, of the commutator function vanishes in the complement of 
(F~ + V)wF2, where F2 = (2Fo- ~')c~ P is a compact set which swallows the overlap 
region of the supports of zlJ,~ and ZtA,~,. If one rewrites this result in terms of 
matrix elements of the spectral projections E(A) one gets 

( 1 -  E(r)) .  AT' =0 ,  (3.8) 

if FD((F 1 + V)uFz)nspU. Now F1 and / - ;nspU are compact subsets of Vn(½q 
+ ~ ,  and since for any spacelike vector q 4= 0 the region Vn(½q + V) is contained 
in the open cone (¼q + V), there exists an open neighbourhood ~/g of 0 such that/'1 
u (F2 nsp U) + X C (¼q + 1/). Hence relation (3.8) holds in particular ifF is such that 
r + w ~ ¼ q + P .  

If~I is irreducible, then the set of vectors A~, A e ~I is dense in W. So it follows 
from (3.8) that E(F)= 1 if F + W D ¼ q +  V,, which implies that spU+JVC¼q+ V. 
Since q ~ 2 0 and ~4 p contains negative timelike vectors this is a contradiction to the 
assumption that U is Z-minimal. So in this case there exists a q-admissible vector 
• , and using the irreducibility of 9/once more it is also clear that E(A)=0 if (~, 
A*E(A)Aq~)=O for all A ~ N. 

In the general case we conclude from relation (3.8) (because it holds for all 
with supp ~g C Fo) that (1 - E(F))N- E(Fo) = 0. So the central support projection Z 
of E(Fo) is orthogonal to (1 -E(F)) .  But the relation E(F). Z = Z for F + JV C¼q 
+ V implies that sp U FZJ¢ ~ + Y C¼q + V,, so again we are led to a contradiction. 
This establishes the existence of q-admissible vectors • in the general case. Finally, 
if for all q-admissible vectors q~ and local operators A (q~, A*E(A)A~)=O, then 
E(A)9.1-(1-E(½q+VS))=O, hence E(½q+VZ).Z'=Z ', where Z' is the central 
support projection of E(A). Now ifZ'+-0 this would mean that sp U [Z'~f C ~'n (½q 
+ V), and applying the previous arguments it would follow that sp U IZ'2/f + ~ 
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C¼q + V. This is not possible if U is Z-minimal. So Z ' =  0 and consequently E(A) 
=0.  [] 

The above result shows that for any q ~ So, q 4= 0 there exist points in sp U 
which lie in 7 VnC(q + ~'). If the Euclidean length of q is small, this region is a thin 
layer about a part of the surface 0V of V,, so there exist (almost) lightlike points in 
sp U. Next, we explore the structure of sp U in the neighbourhood of points which 
can be connected with the complement of ~" by a curve which does not intersect 
with sp U. 

Lemma 3.2. Let q e V be a point which can be connected with the complement of P" by 
a continuous curve which does not intersect with sp U. Then, either ( q -  V)c~sp U =0  
or ( q - V ) n s p  U = {0}. In the latter case 0 is an isolated (atomic) point of sp U. 

Proof. Let cg be the curve connecting q with the complement of V. Since 
Cgnsp U = 0 and sp U is closed, there is a whole neighbourhood of~q which does not 
intersect with sp U. So by slightly modifying cg (if necessary) we can always assume 
that cg is smooth. Moreover, we can assume that the (first) point l where cg 
penetrates OF is different from 0. Let l~ be the projection of 1 onto the spacelike 
plane Z o. Then we continue the curve from I to the point e- lr, e > 0 along a straight 
line. This section lies outside of P~ so it is deafly disjoint from sp U. It is also 
obvious that the whole curve connecting q and e. l~ is contained in the cone e- lx 
+ ~" if e is sufficiently small. 

Next we fix such an e and pick a vector • which is e. l~-admissible; such vectors 
exist according to the previous lemma since e. l~e Z o and e. ls+0. The above 
geometrical preparations guarantee that the commutator functions ~A, ~ vanish in 
a neighbourhood of the curve connecting q and e. ls. Moreover, this curve is 
contained in the cone e, lz + V. So we can apply the (generalized) double cone 
theorem, which says that ~A,~ vanishes in the double cone ( q -  ~')c~(e - l~+ ~'). 
Since the vector • is e. l~,-admissible, Z+~ vanishes too in this region, i.e. 

(cb, A*E((q - V)~(e .  Is + V))A~) = 0. (3.9) 

This result is independent of the choice of the local operator A and the e. Is- 
admissible vector ~. So applying once more the previous 1emma it follows that 
E ( ( q - V ) n ( e . l s + V ) ) = O ,  which means that there is no energy-momentum 
spectrum in the open set ( q - V ) n ( e - l ~ +  V). This shows, since e can be made 
arbitrarily small, that sp U is disjoint from ( q -  V)n V as well as from the part of 
( q -  V)n0F" lying in the half-space {k e N4: k- Ix<0}. 

For the analysis of the remaining part we note that one can replace in this 
statement I by any l' e ( q -  V )n  0 Vc~ {k e R4  : k . lz < 0} because, as a consequence 
of the above result, any of these points can be connected with q by a continuous 
curve in the complement of sp U. Repeating this procedure, one obtains sufficiently 
many points l' so that the corresponding half-spaces {k e 11t 4 : k. l) < 0} generate a 
covering of R4\{0} s. It is then clear that sp U and (q -V)c~P  can only have the 
point 0 in common, if any. I f ( q -  V)nsp U = {0}, then 0 is an isolated point ofsp U 

7 If S C R4 we denote by GS the complement of S in N4 
8 Note that this statement would not hold in two space-time dimensions 
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since (q - V) contains an open neighbourhood of 0. So in this case 0 belongs to the 
atomic part of sp U. [] 

We are now in a position to determine the shape of the lower boundary of the 
energy-momentum spectrum. We begin with a formal 

Definition. Let S C P be a closed set. A point p e S is said to be a lower boundary 
point of S if in any neighbourhood ofp there exists a q which can be connected with 
the complement of V by a continuous curve which does not intersect with S. The 
set of all lower boundary points of S is called the lower boundary of S. 

The preceding lemma implies that the lower boundary of sp U is a continuous 
surface (disregarding the point 0 in the cases where 0 is an isolated point of sp U). 
To make this obvious let us parametrize the lower boundary of sp U by the points 
in a spacelike plane, given in proper coordinates by {(qo, q):qo = 0}. For any such 
point (0, p) it follows from Lemma 3.2 that the timelike line (2, p), 2 ~ ]R has a non- 
trivial intersection with sp U (excluding the trivial case sp U = {0}). On the other 
hand, (2, p) ¢ sp U for negative 2, so we can define a mapping o- : (0, P)~(Po, P) of the 
spacelike plane into the lower boundary of sp U setting 

P0 = inf{2 > 0 : (2, p) ~ sp U}. (3.10) 

This mapping is also onto (apart from the cases where 0 is an isolated point of sp U 
which then is not contained on the range of o-) since by Lemma 3.2 any two lower 
boundary points p'Je 0 and p"4:0 are spacelike or lightlike separated. From the 
latter fact it follows also that a is continuous and that its range is connected. 

It is a simple but important consequence of this discussion that sp' U (where the 
prime indicates that 0 has to be removed from the set sp U if it is an isolated point) 
and sp'U + V have the same lower boundary. We will exploit this fact in the proof 
of our main result. 

Theorem 3.3. The lower boundary of sp U is a iorentz invariant set. I f  9.I is reducible, 
this statement holds also for sp U ~ Jt ~" whenever the subspace ~f~" C ~ is stable under 
the action of ~ .  Moreover, x-o U(x) is the only representation of the translations 
with this property (amongst the representations satisfying the conditions 
(1.1)-(1.3)). 

Proof We distinguish 3 cases corresponding to the possible shape of sp U at 0. 
i) 0 ¢ sp U. Then there is a whole neighbourhood of 0 which does not belong to 

sp U. Consequently, there exists some timelike vector f ~ V such that sp U C f + S + 
and sp U n ( f  + So)4: O, i.e. the spacelike plane f + So is tangent to sp U. Now let 
H(0, m), m + 0 be the unique hyperboloid with apex 0 for which f + So is a tangent 
plane, and let p be the point where the hyperboloid and the plane intersect. We 
want to show that this hyperboloid is the lower boundary of sp U. To this end we 
choose any q ~ S o, q 4:0 and e > 0. Then we pick a vector • which is ~. q-admissible 
and consider the commutator functions AA,~. These functions vanish in the region 

C((sp U + V)w(2. s u p p ~ -  F')), (3.11) 

so that we can apply the JLD-technique. Now the hyperboloids H(a, #) which do 
not enter this region are centered at points 

a ~ VnC(e • q+  V), (3.12) 
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and satisfy 

H+(a, #)n(e • q+  F') C sp U + V, (3.t3) 

where H+(a, #) denotes the upper shell of H(a, #). In both of these statements we 
have used the fact that ~ is e. q-admissible. Note, however, that in the conditions 
(3.12) and (3.13) the dependence of the hyperboloids on the specific choice of the 
support of ~b has been removed. So, irrespective of the choice of the local operator 
A and the e-q-admissible vector ~, all commutator functions AA.~ vanish in a 
neighbourhood of any point k ~ (e. q+  V) which does not lie on one of the 
hyperboloids satisfying (3.12) and (3.13). Since for k ~ (e. q+  V) we have ZTA.~,(k) 
= zT],~(k), it follows then from Lemma 3.1 that sp Uc~(e - q + V) is contained in the 
union of these hyperbotoids. 

In order to simplify the subsequent geometrical discussion we proceed at this 
point to the limit e~0. In this limit, the information obtained so far can be 
summarized in the inclusion 

spUc~VC 0 {H+(1,#):H+(I,#)CspU + V,, 

tE ~V,t. q>0,#>___0}. (3.14) 

The apices I and masses # of the hyperboloids in (3.14) satisfy (p- / )z  < #z, where p 
is the point of contact of H(0, m) and f + Z 0: namely, either 1 and p are spacelike or 
lightlike separated, i.e. (p-/)2 < 0, or I lies below the plane ( f  + So). In the latter 
case, the upper and lower shells of the hyperboloids in (3.14) are separated by 
( f  + So), and since p is a point in this plane we get (p- /)2 < p2. Let us consider now 
the points k on the hyperboloids in (3.14) which can be represented in the form 

k = p + f . q +  f"  (3.15) 

for some f '  E P and 6 > 0. Since (k - / )2  = #z > (p_/)z, I e ~V, 1. q > 0 and pZ = m 2 
we get 

k 2 -  m z > 21. ( k -  p) = 2(6/- q + t- f 3  > 0. (3.16) 

This shows that every point k E sp U which can be represented in the form (3.15) 
satisfies k2> m 2. But the choice of q e Z0 in our argument was completely 
arbitrary, and since any point in sp U can be represented in the form (3.I 5) with a 
suitable q ~ So, it follows from (3.14) that sp U n  VC H+ (0, m) + V.. Consequently, 
there can be no spectrum on ~V (otherwise the lower boundary of spU would 
consist of disconnected parts, which is impossible), so we arrive at sp U C H + (0, m) 
+ V. Moreover, p must be an element of sp U because p is the only point in 
H+(O,m)+r z which is also an element of the spacelike plane f + S 0 ,  and by 
assumption sp U n ( f  + So) 4: O. 

In the final step of our argument we feed this information into relation (3.14): 
since p s sp U there must be a hyperboloid H(l, p) which contains p and whose 
upper shell lies in spU+F'CH+(O,m)+F. It is easy to verify that the only 
hyperboloid with these properties is H(0, m), so we have H ÷ (0, m) C sp U + V,, and 
consequently H+(0, m) is the lower boundary of sp U + V. But the lower boundary 
of sp U + P and sp U coincide, so the first part of the theorem follows if 0 ~ sp U. 
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ii) 0 ~ sp U is an isolated point. Then one can argue as in the previous case, the 
only difference being that one must replace everywhere the set sp U by sp'U. 
Actually, one has much stronger results in this case: it has been shown in [2] that if 
Jt ~ contains a vector Q (vacuum) which is cyclic for 9.1 and invariant under U(x), 
then the whole spectrum sp U is a Lorentz-invariant set. 

iii) 0 ~ sp U is not isolated. Then, according to Lemma 3.2, there does not exist 
any lower boundary point in the interior of V, and consequently the lower 
boundary of sp U consists of ~ V. 

So sp U has in all these cases a Lorentz-invariant lower boundary. This is also 
true for sp U I ~ '  whenever the subspace ~ '  C ~ is stable under 92, since one can 
apply the previous argument to any subrepresentation of 9.1. 

Finally, let x-~Ul(x)e 92- be another unitary representation inducing the 
translations on 92 whose spectrum has a Lorentz-invariant lower boundary in 
every subrepresentation of 92. From the fact that both, U and UI implement the 
translations on 92, it follows that W(x) = U~(x)U(x)- 1 is an element of the center of 
92-. So x--*W(x) is a continuous, unitary representation of IR 4. We denote the 
spectral projections corresponding to W by F(A) and consider the subrepresen- 
tation of 92 on ~'=F(A)SCg. Since Ut(x)= U(x)W(x) we get, provided J/t~'4=0, 

sp U~ t ~ ' C  A + sp U I ~ ' .  (3.17) 

If A is a neighbourhood of any point q ¢ ( - V )  this leads immediately to a 
contradiction to the assumption that sp U [~"  and spU1 ~ g '  have a Lorentz- 
invariant lower boundary. So for such sets we get F(A)= 0. Now we interchange 
the r61e of U and U1, using U(x) = Ul(x)W(x)- 1. This leads to 

spU i'~;~' C --A +spU~ I,,~f '. (3.18) 

So F(A) also vanishes if A is a neighbourhood of any point p ~ V,, and combining 
both results we arrive at F(A)= 0 if0 ~ A. This shows that W(x)= 1 and completes 
the proof of the theorem. [] 

In the derivation of the above results we profited from the explicit information 
on the envelope of holomorphy of domains of the type T+ u T._ u C ~, where C is an 
order convex region which lies between the two shells of some hyperboloid H(a, #) 
(the JLD-technique). As is clear from this discussion, an extension of our methods 
to the analysis of the full energy-momentum spectrum, i.e. the problem of the 
possible shape of "holes" in sp U, would require a (partial) knowledge of the 
domain of holomorphy for coincidence regions C consisting of an order convex 
part C~ of the form C((p- P ) ~ ( - p  + V)) and a double cone C2 which is disjoint 
(but not spacelike separated) from Ct. Similar geometrical situations have been 
discussed in [17] (cf. also the remark in [18, p. 170]), and it seems plausible that 
these results can be applied to the present problem so as to establish the Lorentz 
invariance of the full spectrum. However, the details have yet to be worked out. 

Without any additional effort we can, however, say something about the 
structure of the spectrum above the lower boundary in the special cases, where a 
part of the lower boundary is isolated from the rest of the spectrum. 

Definition. Let S C ~-~ be a closed set and let p ~ S be a lower boundary point. The 
lower boundary of S is said to be isolated at p if there exists a neighbourhood Xp of 
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p such that Yvc~S contains only lower boundary points. The lower boundary of S 
is said to be completely isolated if it is isolated at all of its points. 

Theorem 3.4. I f  the lower boundary of sp' U is isolated at some point p, then it is 
completely isolated. Moreover, if one removes from sp' U the lower boundary, then 
the remaining set has again a Lorentz-invariant lower boundary. 

Proof According to the previous theorem the lower boundary of sp' U consists of 
the hyperboloid H(0, m), m 2 =p2, since p is a lower boundary point of sp'U. We 
remove from sp'U its lower boundary and denote the closure of the resulting set 
by sp"U. Since the boundary of sp'U is isolated at p, there exists then an open 
neighborhood ~ of p such that sp" Un.Ar,=0. 

Next we remove from the positive part A~,~ of the commutator functions AA,~, 
the contributions coming from "intermediate states" with support on the lower 
boundary of sp' U. To this end we multiply Z], ~(k) by k z - m  2. Since d4kA~, ~(k) is 
a measure, it is clear that the resulting distributions (k 2 -m2)3],¢(k) have support 
in sp" U. On the other hand, the supports of all these distributions are dense in 
sp" U. It is crucial now that multiplying the commutator functions 3a.¢(k) by the 
polynomial (k z -  m z) does not destroy their analytic properties [in the sense of 
relation (3.5)]. So one can apply the same arguments as in Lemma 3.2 and 
Theorem 3.3 in order to show that the lower boundary of sp#U is a Lorentz- 
invariant set. Since s p " U c ~ = 0 ,  it follows then that H(O,m) is disjoint from 
sp" U, so the lower boundary of sp' U is completely isolated. D 

It needs no explanation that in the situation described in this theorem one is 
dealing with a representation space ~ of 9,;[ containing single particle states. A 
detailed analysis of these representations can be found in [9]. 

Let us remark in conclusion that our results hold in any number of space-time 
dimensions. In two dimensions, however, one finds in the analysis of Lemma 3.2 
the additional possibility that sp U can have an isolated part, consisting of the right 
or left branch of ~ "  (cf. footnote 8). This kind of a spectrum describes massless 
particles moving only in one direction. Using the above methods one can also 
handle these cases, so the statements of both theorems hold true without 
modifications in any number of space-time dimensions. 

4. Concluding Remarks 

We have seen in the present investigations that there exists a canonical choice of 
the representation x-~ U(x) of the translations which is distinguished by the fact 
that its spectrum has a Lorentz-invariant lower boundary in each superselection 
sector. This result is a consequence of the principle of locality and holds even if the 
Lorentz-transformations are broken. In view of the uniqueness of the represen- 
tation x~U(x )  it is natural to regard the corresponding generators P as the 
(global) observables of energy and momentum. 

It should be noticed, however, that the energy momentum operators P can in 
general only be used to compare the energy-content of states in the same 
superselection sector (in spite of the fact that P is uniquely defined on the whole 



Energy-Momentum Spectrum with Broken Lorentz Symmetry 183 

physical Hilbert space ~4¢~). The energy-difference of states in different superselec- 
tion sectors of ~ is a priori not defined in terms of the spectrum of P (cf. the 
example given below). So there arises the question of how to compare energies in 
different sectors. 

If all physical states are local excitations of a unique vacuum state, then the 
answer is well known: given any charged state one can add to it a compensating 
charge "behind the moon" such that the resulting state has total charge 0. Because 
of the large separation of the charges it then follows that the total energy of this 
state (in terms of P) is just the sum of the energies of the two constituents. This 
"additivity of the energy" (cf. for example [2]) makes it possible to relate the 
energies in different sectors so that the spectrum of P gains an absolute meaning. 
This result can also be established without any a priori assumptions on the 
localization properties of the physical states if the particle spectrum of the theory is 
completely massive [9]. 

The situation is, however, less clear in theories with long-range forces and 
massless particles. The states in these models have in general poor localization 
properties, and, as a matter of fact, one can often distinguish the various 
superselection sectors by the different behaviour of the corresponding states at 
spacelike infinity (cf. for example [8]). So the heuristic ideas which led to a proof of 
the additivity of the energy in massive theories cannot readily be applied to the 
massless case, and P need not always have an absolute meaning. 

Yet since we are only interested in comparing energies in different sectors we 
could be content with less information. It would be sufficient to know how much 
energy is needed to proceed from one superselection sector to another. In our 
setting this quantity can be defined as follows: let ~1 and Jr2 be arbitrary coherent 
subspaces of ~ (superselection sectors). It is then a very general fact (Fetl's 
theorem 9, cf. [5]) that any state gJ ~ ~2 can be approximated by states in Yfl in the 
weak topology, i.e. there exists a sequence (or, more generally, a net) 4~, ~ ~ t  such 
that 

lim(~,,A~)=(7~,AkV) for A ~ .  (4.1) 
l 

Now let ~ ~ ~2 be a vector with energy-momentum about the lowest lying point 
(m2, 0) in sp U [~2. Then we can ask whether it is possible to choose a sequence ~t 
in relation (4.1) with finite maximal energy ml, i.e. 

• ~EE(A)~ 1 where A=((ml,0)-V)nF'.  (4.2) 

If such an rn~ exists we say the sector o~fz is energy-connected with Jr1; the energy 
which is necessary in order to proceed from ~1 to J(f2 is then given by inf(m~ - mz). 
It is a simple consequence of our results on the shape of the energy-momentum 
spectrum that this quantity is always non-negative. 

In this context there arises the following interesting question: does the 
property of energy-connectedness define an equivalence relation between 
superselection sectors? And if so, are the energies which are needed in order to 
proceed from ~ to Jr2 and from .Xe 2 to ~ ,  respectively, equal? Both questions 

9 We refrain from giving the weakest conditions under which Fell's theorem holds. For our 
purposes it is sufficient (and physically reasonable) to assume that 9I is a simple C*-algebra 



184 H.-J. Borchers and D. Buchholz 

have clearly an affirmative answer in theories of massive particles. There the energy 
which is needed in order to proceed from one sector to another  is the same for both  
directions, because to each (compensating) charge there exists, by the PCT-  
theorem, a conjugate charge with the same mass. 

Let us finally discuss the significance of states lying in energy-disconnected 
sectors. An experimenter, who would try to prepare such a state in larger and 
larger space-time regions (9 would realize that  this requires unlimited energy, 
although the energy inside the region (9 stays finite. So the energy which is needed 
for the preparat ion of this state is essentially a surface energy. 

The simplest model in which these circumstances occur is the field-theory of a 
free, massless, scalar particle. In this model there exists a one-parameter  family ~?a, 
2 ~ 1R of decent vacuum states [19] and it is straightforward to verify that  the 
various vacuum sectors are energy-disconnected 1°. Note, however, that all 
vacuum states f ~  are eigenstates of the energy-momentum operator  P correspond- 
ing to the eigenvalue 0; so P does not have a global meaning in this model. 

It  is not known whether the existence of energy-disconnected sectors in a 
model is always related to the existence of several vacuum states. 
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