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General properties of monopole-fermion and dyon-fermion bound states are investigated, for
the case of Dirac monopoles and their dyon analogues. The attractive forces that lead to bound
states are due to the interaction of a fermion anomalous magnetic moment with the monopole
magnetic field and the additional Coulomb interaction in the dyon case. Detailed numerical results
are presented.

1. Introduction

It was shown several years ago by Kazama and Yang [1, 2] that fermions can
bind to magnetic monopoles. Because of rotational symmetry as expressed by
monopole harmonics [3], the investigation of such bound states reduces to the study
of the radial equations. These radial equations are especially simple for the states
of lowest angular momentum; they consist of two coupled first-order differential
equations instead of four. These states of lowest angular momentum have been
investigated in some detail [1, 4], both analytically and numerically.

It is the purpose of the present papers to extend this work in two directions, both
to higher angular momenta and to the case of a dyon instead of a monopole. The
monopole-fermion system can be considered a special limit of a dyon-fermion
system, which for some range of the parameters also possesses bound states. The
hamiltonian we wish to study is thus [5]

H=a'(p—ZeA)+BM—€—KqB0'-r/(2Mr3). (1.1)

The dyon is taken to be infinitely heavy, it has a magnetic charge g and an electric
charge Z,e. The fermion has a mass M, electric charge Ze, and an anomalous
magnetic moment . The various charges only enter in the combinations (we use
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gaussian units, i.e., E=Ze/r’, B=g/r’, e’ =a)

q=Zeg,
—{=2Z4*=7ZZ,a. (1.2)

We note that the Dirac condition [6] restricts q:
g=0,%3 1, +3,.... (1.3)
With dyons, the corresponding condition is [7]

eg —eg =0, +3 +1, £3,..., (1.4)
which does not restrict £, since the fermion is assumed to carry no magnetic charge.

In this paper we investigate the general case of dyon-fermion bound states through
series expansions on the basis of the hamiltonian (1.1). These series expansions are
used to obtain highly accurate numerical results, which give an overview of the
properties of the bound states and are also used to ascertain the accuracy of the
approximate results developed in papers II [8], III [9], IV [10], V [11] and VI [12].

In these five papers, two limiting cases are investigated where the eigenvalues
and wave functions are determined approximately by analytic methods. Papers 11,
III and IV deal with the case of the lowest angular momentum j =|g| —3. For this
lowest angular momentum, the wave functions do not depend on « and |q| separately,
but only on the product «|g|. For these states, the two limiting cases studied are
those of weak binding (paper I1) and of large values of x|g| (papers 111 and IV).
The treatment of weak binding is then extended in papers V and VI to higher
angular-momentum states.

Unless the Coulomb interaction is repulsive, there is an infinite number of states
to which the results of each of the papers II-VI apply. The case of weak binding
was previously treated in ref. [4] for the lowest angular momentum with { =0, where
the wave function can be expressed in terms of Bessel functions. In paper II, the
states of lowest angular momentum are studied with {# 0, and it is found that
confluent hypergeometric functions are needed. The further extension to higher
angular momenta, with four coupled radial equations, is much more involved. Papers
V and VI treat respectively the monopole case ({ =0) and the dyon case ({ #0). In
addition to the Bessel and confluent hypergeometric functions, the solution of a
fourth-order ordinary differential equation is needed. That solution can fortunately
be expressed explicitly in terms of integrals of a product of a Bessel function and
a hypergeometric function. For the dyon-fermion bound states (papers II and VI),
the analytic methods yield a transcendental equation for the binding energy, whereas,
for the monopole-fermion bound states (paper V), an explicit expression for the
binding energy is obtained.
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2. Eigenvalue equations

For the bound state wave functions, we basically follow the notation of Kazama
and Yang [1];
type B, j =lq|—3:
*q

F(r)ny,(F)
_1|«q| o
$lr) =~ G, |’ (2.1)
type A, j=|q| +3:
1 hl(r)fﬁ-,»?(f)ﬂﬁ () ED(F)
_1 22
o _,-L[,, (NEP P+ h (r)f<~‘>(f)] Y
] R
It should be noted that, in the notation of (2.2),
h,
h,
hy
h;

is the h of Kazama and Yang [1].
The energy eigenvalues E are given by

Hy = Ey. (2.3)

Since the Coulomb interaction part of the hamiltonian is radially symmetric, and
proportional to the unit matrix, the derivation of the radial equations may be taken
over from refs. [1, 13] by substituting

E->E +§. (2.4)
In terms of the notation [1]
A=3xlql,
(2.5)
E
B=3xlql3r,
2M
p=—sr, (2.6)
|xq

the replacement (2.4) is

B->B+—, 2.7)
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where P
f=1.
Iy
With this replacement (2.7), the radial equations for the bound states of types B
and A are respectively (see eqs. (20) and (9") of [1])

(2.8)

j=lgl-z
dG {1
—=(A-B-2-—=
dp ( Pl R
dF {1
—=(A+B+3-=
dp ( p P’ G, 29)
j=lgl+3:
d/dp—pu/p 0 A+B+{/p  1/p* [
0 d/dp+u/p 1/p? A+B+{/p|| b |_,
A-B-{/p 1/p* d/dp+pu/p 0 LN
1/p* A-B-{/p 0 d/dp—u/p|| hs
(2.10)
where
w=[(j+2°~4"1"%. (2.11)

In both (2.9) and (2.10), the sign of g does not appear. When the sign of « is
reversed, so are those of A, B and ¢ by (2.5) and (2.8). Accordingly, eq. (2.10) has
the further symmetry that it is invariant under

K= —K, h2">_h2, h3—)—h3. (212)

Therefore, for states with j=|q| +3 but not for those with j=|g|—3, for any { the
binding energy is independent of the sign of k, and in fact the sign of « does not
enter in any essential way.

For {=0, E =0 is an eigenvalue of (2.9) when « >0 and also of (2.10) when
k # 0 [1]. In the case of eq. (2.9) the eigenfunctions were given explicitly in ref. [1]:

F=—G =g lka/2Mr—Mr, (2.13)
Similarly, for eq. (2.10), the eigenfunctions are

hl = —h4=\/; e—Iqu/2Ml‘K‘L_1/2(Mr) >
—w ,
h2=—h3=|—K—|~/;e al/2Mr g (M) (2.14)

3. Series expansions for bound states of type B

For an arbitrary value of B, i.e., for E not necessarily equal to the bound-state
energy, let v be the solution of (2.9) that is bounded at the origin, and similarly w
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the one that is bounded at infinity. Their normalizations remain to be chosen. They
are both two-component radial wave functions. Thus

Dv=0, Dw=0, (3.1)
where
_ [ d/dp ~A-B-{/p+ 1/,,2] (32)
B —A-*-B+§~/p+l/p2 d/dp ' '

Let us first consider v. The behaviour at the origin is not affected in any essential
way by the Coulomb interaction. Thus, up to possibly a power,

—1/p

v~e as p-0. (3.3)

In order to work with a function that can be expanded as a series around the origin,

let us define _
v=eY*5, D=e?De V", (3.4)

The equation to be solved is then

Do =0, (3.5)
where
ﬁ_[ d/dp+1/p —A—B—Z/p+1/p2] (3.6)
—A+B+{/p+1/p* d/dp +1/p? )
We make the series ansatz
o=p" ¥ "p", 3.7)
n=0

and note that the most singular terms in D annihilate

= [_:] : (3.8)

This is just a rephrasing of the statement that [1]

lim (F/G)=—1. (3.9)

The second most singular terms in eq. (3.6) determine the leading exponent
a=0. (3.10)
In order to find the recurrence formulas, it is convenient to perform a rotation,

c=Rb™", (3.11)

1 -1
e[ 1] o

with
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The two-component vectors

(n)
b‘")=[b‘ ] _ (3.13)

are given by
b =3~ (n=1)b{""" +{b5" 7" + AbY" + Bb" P},

|
b = ——{{b{" + Bb{" "V + AT}, (3.14)

for n=1,2,..., and with the initial values

b= R = [_‘1’] ., b= [g] . (3.15)

The solution v that is bounded at the origin may then be evaluated from eqgs. (3.4),
(3.7), and (3.11)-(3.15).

We now turn our attention to the solution w that is bounded as p > . In other
words, we want to solve the radial equation Dw =0 for large values of p, where D
is given by (3.2). Let

w= [W‘] . ‘ (3.16)
w, |
Then by the change of variables
1
x=—.___—_—’ (3,17)
\/AZ—B2p
. |A+ B|"*w,
e [(K/|K|)|A—B|‘/2w, ’ (.18)
we find that eq. (3.1) is equivalent to
D.w=0, (3.19)
where
A+B\'? 1
o 2L,
dx : A-B X x
D.= A-B\ [ 1 d (3.20)
—-A+B+ == —
A+B (A+B) x x? dx

For the monopole-fermion case of lowest angular momentum there are no excited
bound states unless A>3 [1]. Here, for the case of dyons, A can be positive or
negative. In formulating egs. (3.18)~(3.20) we have made use of the fact that

== (3.21)

We note that D,, involves ¢, not { (compare eq. (2.8)).
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The operator (3.20) has the same form as (3.2), the only difference being that the
two Coulomb terms have different coefficients. Therefore, with

w=e VW, (3.22)
w=x* Y C"Wx", (3.23)
n=0
we find the leading power to be
B
a=—{———. (324)
JA*-B?

The power becomes very large when the binding gets weaker, B> A—.
With the same rotation as previously,

c"™=RB™, (3.25)
we find the components of B to be given by the recursion relations

B =3{—(n—1+2a)B{" " +{B{" "+ AB{"? + BB{" 7},
1o o

By =~—{{B{” +BB{" "+ AB{" "}, (3.26)
n

where

- A
Ny (27
and with the initial values of eq. (3.15).
The desired solution w that is bounded as p - is then given by egs. (3.16),
(3.18) and (3.22)-(3.26), with x defined by eq. (3.17).
For large n, the coefficients grow such that |b{™|/|b{"""| and |B{™|/|B{"~"| ~}n.
The series are thus asymptotic, not convergent. This is not surprising, since we
expand around essential singularities.

4. Series expansions for bound states of type A

For j =|q| +3 there are four radial wave functions obeying the coupled differential
equations (2.10). These equations have two linearly independent solutions that are
bounded at small p; we denote them f and f Likewise, there are two linearly
independent solutions that are bounded as p - c; we denote those g and &.

To avoid notation that is excessively cumbersome we shall use the same letter to
designate corresponding quantities for the two cases of type A and type B. For
example, D means the 2 x2 differential operator of (3.2) in the preceding section
but the 4 x4 operator of (2.10) in this section. Some further such examples are D,
™, b, ™, B™ R, a, b\, b, B, and BYV.
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4.1. EXPANSIONS FOR SMALL p

We first consider f and f, which are four-component radial wave functions. They
satisfy

Df=0, Df=0. (4.1)
The behaviour at the origin is like in the previous case, f~e~/?, so we define

D=e?De7Vr, (4.2)
One thus has to solve
Df=0, Df=o0, (4.3)
with
d/dp+1/p*~u/p 0 A+B+{/p 1/0*
_ 0 d 2 2 7
b= 3 d/ p+1/p2 +ulp 1/p2 A+B+{/p . (4.4)
A-B-¢/p 1/p N d/dp+1/p°+u/p 0
1/p* A-B-{/p 0 d/dp+1/p*—u/p
With the ansatze
f=p" L "p", F=p% T &7", (4.5)

we find the most singular terms in D to annihilate

i 0
0=\ go=| 1 (4.6)
-1 0

We let f be the series starting with ¢/”, and f be the one starting with . In the
two cases the coefficients of the next power in p determine the exponents a and &
to be

a=p, a=-pu, (4.7)

for f and f, respectively. Even with a negative power, a <0, the function f is of
course bounded as p - 0, because of the exponential factor (cf. eq. (4.2)).

When a — & =2 = integer, the ansitze (4.5) are not adequate. For f alogarithmic
term is then required. We shall return to these special cases after having presented
the solutions for the generic case where 2u is not an integer.

Let us then proceed to determine the solution f. Like in the two-equation case,
it is convenient to rotate,

¢‘”=Rb'", (4.8)
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with
1 0 0 -1
01 -1 0
R= 4.9
01 1 0 (4.9)
1 0 0 1

The vectors b*™ are then found to be given by
e Rl o | e 54
by™ IL o n-1+2p LBy bV
| e e |
+A wey | FB | L s (4.10a)
L o) Loy"™? b2
n+2u 0 wq -PW] [M“q
= +B
[ 0 n] [b&"’ Lo ] TP Logo
0 1 b§"">]
+ 4.10b
A[l 0] [bf."'” ’ (410

for n=1,2,..., and with the initial values

p® = R 1@ = , b= (4.11)

0
0
0
-1

The other solution that is bounded near the origin, f, is most easily obtained by
noting that eqs. (2.10) are invariant under the interchanges

(hyohy), (hsohy), (Lo —u). (4.12)
In particular, this transforms
(99, (aed). (4.13)

Thus, f is obtained from f by taking u -» —u, and interchanging the upper two and
the lower two components among themselves.

It remains to consider the exceptional case where a ~ & is a positive integer, i.e.,
where

2u =[(2j +1)*—(29)*]"/* = positive integer . (4.14)

Since the integers 2|g| and 2j +1 are either both odd or both even, (4.14) actually
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implies that u itself is a positive integer. There are two types of solutions: they are
M=y,
2|q|= (ni—nd)ns,

2j+1=(ni+nd)n,;

(4.152)
p=(ni—ndns,

2|‘1| =4n,mn;,

2j+1=2(n}+nd)n;,

(4.15b)
where n,, n, and n; are three positive integers such that n,> n, and n, +n, is odd
It is seen from (4.15) that

(i) 2|g| can take all positive integer values except 2|q|=1, 2, 4;

(ii) p cannot be equal to 1 but can take all other positive integer values

In these exceptional cases, the ansatz (4.5) for f has to be replaced by
f=Bflogp+p™ ¥ &"p"

(4.16)
with &9 =¢

¢®. The constant B is to be determined from the recursion relations.
With the rotation

&M =Rb6™,

(4.17)
we find that the components of the vectors b satisfy
" [[n-1-2u 0 155 o7 by Y
S0 0 n—1] L6y Y

by
o 1)fer7 e b‘{'“‘z"’
+A 1 o E(n-z) I;S -2) »

bg,,_l_z”,) (4183)
I R e A ]
0 n-—2ujLby” by by
0 1][&5" b§" )
+A[1 0] [I;S‘n*l) _B b‘(‘n—2p.) s (4'18b)
forn=1,2,...,2u—1,2u, 2u +1,..., with the initial values
0 0
g 0 v 0
@ =RV = V= . 4.19
b R7'¢ ol 0 ( )

-1 0

Eqs. (4.18) determine B recursively except 3. It is convenient to choose

bW =0 . (4.20)
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With or without this choice, the lower component of (4.18b) with n =2u gives

B=—{b3) ~ Bp@#V — ApPH N (4.21)
where we have used b\¥ = —1 from (4.11).
As an example, the lowest values of g and j that lead to an exceptional case are
|gl=3% and j =2 with x =2. In this case

b = -3AB{,
which is non-zero when ¢ # 0.

4.2. EXPANSIONS FOR LARGE p
Let us now turn to the solutions g and g that are bounded as p » . These obey
Dg=0, Dg=0. (4.22)

The procedure to be followed here is a generalization of that of sect. 3 where
j =|q| —3: we first introduce the variable x of eq. (3.17), then rescale and interchange
the components of g by defining

i ‘|A+B|1/283 i
—|A+B|'?g,
g=| 1A= BI'”H (4.23)
lA—B|l/2—gl
L l<]™
With
g=e"""g, (4.24)
the radial differential equations take the form
D,g=0, ‘ (4.25)
where
- 1/2
S I N
4,18 A+B\ g
] 0 Lot L ()7L A+B
D= /2 d 1
_ 1. (A=B\"¢ 4,1+
A-B x2+(A+B) x d +x2 x 0
L (A=B)" s 4,1k
x2+(A+B) x A-B 0 dx+x2+; |
(4.26)

Similar to eq. (3.21), the coefficients of the {-terms here are also different in the
upper two and lower two equations. Further, we note that, in contrast to the D of
eq. (4.4), the {-terms have become detached from the A + B terms. This is due to
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the inversion and rescaling, but does not occur for j =|q|—3, since in that case the
A= B terms, the {/p and 1/p?* terms all multiply the same function.
With the ansitze

g=x*Y Cx",  g=x%Yy CWx", (4.27)
n=0 n=0
we find the most singular terms in Dy, annihilate
CO=c?, (O=&9 (4.28)
where ¢” and ¢ are defined by eq. (4.6). In analogy with the j = |q| — 4 case we find

. ~B
a=d=—"=—=,
JA*-B?
independent of wu.

The recursive determination of the coefficients is now straightforward. With the
rotation (cf. egs. (4.8), (4.9))

(4.29)

C'"™'=RB™ (4.30)

we find the vector coefficients B™ to be given by

FR I N R [P
B(2n) 2 A_ B2 B(2n—1) - —f 0 B£n~l)
0 1][B"? B B2
+A 1 0 B(Zn—2) + B‘(‘H_Z) ’ (4'313)
B 1 0 wu-C|[B" B{"™"
o1 i | w | TB | -
B4 n 22 { 0 Bz BZ

0o 1][B{""Y
+A[1 0][B§"—‘>]}' (4.31b)

In order to construct g we first determine £ from egs. (4.24), (4.27), (4.30) and
(4.31), and then identify the components of g in terms of those of § (eq. (4.23)).
The other solution, g, that is bounded as p » o (or x - 0), is obtained from g using
the symmetry (4.12).

Similar to the j =|q|—3 case, the coefficients grow like factorials, and the series
are asymptotic.

5. Matching and energy determination

The bound-state wave functions F, G and h; are bounded as p >0 and as p - o0.
Therefore,
for j=|q|~=
F(p)=a,v(p)=ayw(p),

G(P)=0102(P)=0‘2W2(P) s (5.1)
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and for j=|q| +3:
h(p) = Bfi(p) +Bafi(p) = Bsgi(p) +Bafic(p) , (5.2)

for k=1,2,3, 4, where the «; and B; are real numbers.
By imposing the condition (5.1) or (5.2) at some p=p, we get a set of
homogeneous equations linear in the coeflicients:

alvk(Po) - azwk(ﬂo) =0, k=1,2, (5-3)
B1fi(po) + Bafi(po) — Bsgi(po) — Bafn(po) =0,  k=1,2,3,4. (5.4)

These equations determine the coefficients (up to an overall constant) and the
eigenvalue parameter B. Clearly, the existence of a non-trivial solution requires in
the two cases the following determinants to vanish:

vi(po)  wi(po)
v2(po)  W2(po)

Si(po) an(Po) gi(po) £1(po)
fpo) falpo) 8apo)  €2(po) _
flp) Filpo) gloo) Exoo)| 5o
Si(po)  falpo) 8alpo) E4(po)

From these equations, one may iteratively determine the eigenvalue B in the two
cases.

When ¢ = u =0, there is a natural choice of the matching point p, due to symmetry,
namely at the geometric mean of the characteristic variables of the two regions, p
and [(A*— B%)"?p]":

=0, (5.5)

po=(A*~B*)7/%. (5.7

Even when { and u are non-zero, this choice is often adequate.

Since the series expansions found in sects. 3 and 4 are only asymptotic, the small-p
and large-p expansions will not have any overlapping region of validity. The solutions
at p, therefore have to be obtained from a numerical integration of egs. (2.9) and
(2.10), using the series to determine initial values at small and large values of p.

6. The |q] =3 monopole-fermion system

In this and the following two sections we shall give some numerical results on
the dyon-fermion bound states. These systems are characterized by three parameters,
namely g, x and {. As seen from (2.5) and (2.9), ¢ and k appear only in the
combination A =3k|q| for the states of lowest angular momentum j=|g|—3. For
other states with j =|g| +3, as seen from (2.10), all three parameters appear indepen-
dently. However, as already noted in sect. 2, neither the sign of g nor that of «
enters in any essential way for these states.
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In this section we concentrate on the simplest case where |g|=3 and {=0. In
sect. 7, the results are generalized to the case ¢ # 0 but still with |g|=3. The cases
with |g|=1 are briefly considered in sect. 8.

When |q| =3, A is simply

A=}k : (6.1)
In fig. 1 we show plots of the binding energies of the lowest states for j=0,1, 2,
and 3. The notation here is that n =0 refers to the zero-energy bound states given

in sect. 2, while n =1, 2, ... denotes the higher bound states. The conditions for the
existence of these higher bound states or excited states are for |g| =73 [1, 2]

<>1 for j=0, (6.2)
k>32j+1)’-1 for j=1. (©3)
10 ' ‘ |
i @k 0@
14
I o
s FN
= LR -
“iooH N |
= N
St AN \‘\
\\\\\ \\E3 1
e 0 T ]
| o R —— :
1 ' 50 z
ks 5% 50 N 75 100
10”
E R
w0k
s |
1 L

1 1
00 25 50 A 75 100
Fig. 1. Monopole-fermion binding energies ¢, =(M —E, )/ M versus A=13glx; (a) j=0, (b) j=1, (c)
j=2, and (d) j=3. In each case three curves are given, for the levels n =1, 2 and 3. The conditions for
the presence of these levels are: « >1 for j=0; |k|>] for j=1; |x|>% for j=2; and |x|>%¥ for j=3.
There is also a lower state (n = 0) at £,= (M —~ E,)/ M = 1. For j =0 these energies apply td any non-zero
value of |g|, for j = 1 they are only valid for |g| =3. For j = 1 there are corresponding levels at A» —A[l, 2].
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10"
s |
W
é ‘lOL
1
00
10'] :
lgi=5  j=3
= i
L’yzm's—
Z |
1 1 A1 1
00 25 50 A 75 100
Fig. 1.—cont.

It is quite straightforward to determine the eigenvalues numerically by the iterative
procedure outlined in sect. 5, provided we start at some good initial guess. Such
guesses are conveniently provided by the explicit, analytic approximations obtained
in refs. [4] and [11] for j =0 and for j =1, respectively.

Some numerical values for the binding energies can be found in tables 1, 2 and
3 in sect. 7. For j =0 such values have been determined previously by the angle
analysis [1, 4]. The values found here agree with those obtained in ref. [4].

In order to develop some intuition for these bound states, we also show the
squared moduli of some radial wave functions corresponding to A=2 in fig. 2
(j=0) and fig. 3 (j =1). (For this value of A there are no states of higher angular
momentum.) The j=0 wave functions are familiar from ref. [4]. The j=1 wave
functions have in a sense two “large” and two “small” components. It should be



436 P. Osland, Tai Tsun Wu / Monopole- and dyon-fermion bound states (I)

1 I T T

Iqk &

10

{b)

Fig. 2. Squares of the monopole-fermion radial wave functions F and G for A=2 and j =0. Four states
are considered: (a) n=0, (b) n=1, (c) n=2, and (d) n=3. (All the minima in this figure, as well as
those in figs. 3 and 6, are actually zeros of the wave functions.)
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Fig. 3. Squares of the monopole-fermion radial wave functions h, (solid), h, (short-dashed), h; (long-
dashed), and h, (dash-dotted), for A=2 and j= 1. Four levels are considered: (a) n=0, (b) n=1, (¢}
n=2, and (d) n=3.
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noted, however, that there is a sort of transition at some intermediate value of p:
whereas h, and h, dominate at large values of p, it is h, and h; which dominate at
small p. Also, although for j=1 there is no inversion symmetry of the kind found
for j =0 [4], h, and h, are nevertheless qualitatively similar to each other’s mirror
image.

7. The |q| =3 dyon-fermion system

For each value of angular momentum j, the monopole-fermion system studied in
the preceding section possesses an infinite number of bound states when and only

TABLE 1
Binding energies (M — E)/ M for the dyon-fermion system with j=|q|—3

Fy A 0.4482 1.0 1.5 2.0 2.5
n (p)

—2a3
2 1.6319- 1073 4.4965 - 1074 1.2734- 1073
1 3.7532- 1073 1.1679 - 1072 2.1122-1072 3.0978 - 1072
0 09814 0.9870 0.9891 0.9905 0.9914

-a 3 3.5825-107°
2 1.5383-107* 6.8094 - 107* 1.5788 - 1073
1 7.0407-107° 4.6042 - 107 1.2785 - 1072 2.2359- 1072 3.2287- 1077
0 0.9907 0.9935 - 0.9946 0.9952 0.9957

0 3 46173-107! 4.1337-1077 7.1763 - 107 3.6214 - 1073 1.0627 - 107*
2 1.1438-1077 4.7757 - 1073 3.1711- 1074 9.2814-107* 1.8960 - 1073
1 28310-107* 5.4882 1072 1.3911 - 1072 2.3610-1072 3.3607 - 1072
0 1.0000 1.0000 1.0000 1.0000 1.0000

@ 3 6.6592-107¢ 1.7399 - 107° 4.1372-107° 9.3119- 1073 1.8830-107*
2 2.5608-107° 1.4641 - 107 5.0058 - 107* 1.1898 - 1073 2.2246 - 1073
1 66071107 6.4034 - 1073 1.5055- 1072 2.4874 - 1072 3.4936 - 1072
0  1.0093 1.0065 1.0054 1.0048 1.0043

20 3 2.2461-107° 4.6676 - 103 8.7998 - 10~° 1.6122-107* 2.8007 - 1074
2 7.4928-107° 2.6826 - 107 7.0154 - 1074 1.4650 - 1073 2.5640 - 1073
1 11115-1073 7.3482- 1073 1.6217 - 1072 2.6151-1072 3.6276 - 1072
0 1.0186 1.0131 1.0109 1.0095 1.0086

0.1 3  7.0495-107* 9.4958 - 1074 1.2106 - 1073 1.5191 - 1073 1.8812- 1073
2 1.7905-1073 2.8186- 1072 4.0277 1073 5.5066 - 1072 7.2326 - 1073
1 9.8771-1073 2.0286 - 1072 3.1077 - 1072 42023 - 1072 5.2682- 1072
0 11272 1.0894 1.0744 1.0652 1.0588

05 3  1.3619-1072 1.4560 - 1072 1.5586 - 1072 1.6672 - 1072 1.7798 - 1072
2 29858-1072 3.2581 - 1072 3.5533-1072 3.8615-1072 4.1748 - 1072
1 1.0480 - 107! 1.1505- 107! 1.2560 - 107" 1.3571 - 107! 1.4520- 107"
0 1.6312 1.4458 1.3713 1.3255 1.2936

1.0 3 53116-107" 5.1147 - 1072 5.1379 - 1072 5.2177-1072 5.3236- 1072
2 111921071 1.0547 - 107! 1.0537 - 107! 1.0678 - 107" 1.0882 - 107!
1 3.4010-107" 3.0179 - 107! 2.9380- 107! 29220107} 2.9317-107!
0 1.8825 1.7387 1.6487 1.5857
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TABLE 2
Binding energies (M — E)/ M for the dyon-fermion system with j =|g|—%
¢ N 1.5 2.0 2.5 40 6.0

—2a 3 6.0192-107% 1.0760 - 103
2 6.8333-107° 2.6096 - 1073 9.7366 - 1073
1 39681107 5.3724-1073 1.3395-1072 4.1931-1072 7.7223 - 1072
0  0.9859 0.9883 0.9899 0.9923 0.9939

—-a 3 1.5080 - 1074 1.2646 - 1073
2 <1078 2.2601-107* 2.9815-1073 1.0259 - 1072
1 89792-107% 6.2916 - 1073 1.4523-1072 4.3276 - 1072 7.8597 - 1072
0 09930 0.9942 0.9949 0.9962 0.9969

0 3 7.6228-107° 9.9149 - 1077 1.0452 - 1075 2.5213- 1074 1.4589 - 1073
2 3.3440-107¢ 8.4976 - 1075 4.0622-107* 3.3627- 1073 1.0788 - 1072
1 1.4629-1073 7.2381-1073 1.5669 - 1072 446301072 7.9975- 1072
0 1.0000 1.0000 1.0000 1.0000 1.0000

a 3 9.5724-107¢ 2.1391-107° 4.8675-107° 3.6267-107* 1.6586 - 1073
2 5.0242-107° 2.0330-107* 6.0506 - 107* 3.7529 - 1073 1.1321 - 1072
1 2.0811-1073 8.2105- 1073 1.6831 - 1072 4.5991 - 1072 8.1358 - 1072
0 10070 1.0058 1.0051 1.0038 1.0031

2¢ 3 29762-107° 5.4291-107° 9.9121 - 1073 4.8150-107* 1.8635- 1073
2 1.2263-107% 3.4322-107* 8.2036- 107 4.1518-1073 1.1860 - 1072
1 2.7463-1073 9.2079 - 1073 1.8010- 1072 4.7360 - 1072 8.2746 - 1072
0 1.0141 1.0117 1.0102 1.0077 1.0061

01 3  7.8690-107* 1.0039 - 1073 1.2629 - 1073 2.3532-1073 46073 -1073
2 2.1168-1073 3.0613- 1073 4.2736- 1073 9.4049 - 1073 1.8530 - 1072
1 1.3115-1072 2.2489 - 1072 3.2932-1072 6.3951 - 1072 9.9311-1072
0 1.0964 1.0799 1.0695 1.0527 1.0420

05 3 1.3582-1072 1.4597 - 1072 1.5656 - 1072 1.9033- 1072 2.3861 1072
2 2.9638-107? 3.2609 - 1072 3.5671 - 1072 4.5068 - 1072 5.7457 - 1072
1 1.0146 - 107! 1.1378 - 107" 1.2512- 107! 1.5411 - 107! 1.8439 - 107!
0 1.4806 1.3989 1.3472 1.2631 1.2097

1.0 3 4.9095-107 4.9676 - 1072 5.0630- 1072 5.4239- 1072 5.9745- 1072
2 1.0010-107! 1.0120- 107" 1.0309 - 107! 1.1053 - 107! 1.2130 - 107!
1 28390107 2.8254- 107! 2.8367 - 107! 2.9250 - 107! 3.0676 - 107!
0 1.9493 1.7924 1.6915 1.5253 1.4191

when « satisfies the conditions (6.2) or (6.3). This is to be contrasted with the
corresponding situation for the dyon. When the Coulomb interaction is attractive
({>0), there is an infinite number of bound states for each j as long as « # 0 [13].
When the Coulomb interaction is repulsive ({ <0), the number of bound states is
finite, or maybe even zero. A survey of binding energies is given in tables 1, 2 and
3 for j=0, 1 and 2, respectively, and for a selection of A and ¢ values.

In figs. 4 and 5 we show how the binding energy can change dramatically when
the Coulomb interaction is turned on. Fig. 4 gives the ‘‘zero-energy” level, n =0.
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TABLE 3

Binding energies (M — E)/ M for the dyon-fermion system with |g|=1 and j=2

A
4 x 40

6.0 8.0 10.0 12.0

—2a3 6.6520-107° 1.0813 1073 3.1836 - 1073 6.1262 - 1073
2 2.6322-1073 9.6757 - 1072 1.8737- 1072 2.8487-1072
1 577391073 4.1429 - 1072 7.6402 - 1072 1.0603 - 107! 1.3109 - 10~
0 09906 0.9929 0.9941 0.9949 0.9954

—a 3 1.5784 - 107 1.2687 - 1073 3.4405 - 1073 6.4337-107°
2 4.6832-107° 2.9985 - 1073 1.0191 - 1072 1.9331- 1072 2.9125-1072
1 666441073 427231072 7.7741 - 1072 1.0734- 107! 1.3237-107}
0 09953 0.9965 0.9971 0.9975 0.9977

0 3 1.3351-107° 2.5949 - 1074 1.4617 - 1073 3.7013 - 1073 6.7442- 1073
2 1.0028-107* 3.3736- 1073 1.0711 - 1072 1.9929 - 1072 2.9767 - 1072
1 7.5774-1073 4.4023 - 1072 7.9083 - 1072 1.0866 - 107! 1.3365- 107!
0 1.0000 1.0000 1.0000 1.0000 1.0000

a 3 22929-107° 3.7007 - 107 1.6599 - 1072 3.9658 - 107 7.0575 - 107
2 22290-107* 3.7572- 1073 1.1236 - 1072 2.0530- 1072 3.0411 - 1072
1 85119-1073 4.5330- 1072 8.0430- 1072 1.0998 - 107! 1.3493 - 107!
0 1.0047 1.0035 1.0029 1.0026 1.0023

20 3 5.6829-107° 4.8868 - 107 1.8632- 1073 423391073 7.3737- 1073
2 3.6570-107* 4.1491 - 1073 1.1765 - 1072 2.1135-1072 3.1057 - 1072
1 9.4668-1073 4.6644 - 1072 8.1781-1072 1.1131- 107! 1.3621 - 107!
0 1.0094 1.0071 1.0059 1.0051 1.0046

0.1 3 1.0026-107 234251073 4.5796 - 1073 7.6276 - 1073 1.1277 - 1072
2 3.0436-1073 9.2845- 1073 1.8318 - 1072 2.8465- 1072 3.8823 - 1072
1 2.1958-1072 6.2520- 1072 9.7891 - 1072 1.2703 - 107! 1.5141 - 107!
0 1.0642 1.0484 1.0401 1.0349 1.0313

05 3 1.3929-1072 1.8578 - 1072 2.3496 - 1072 2.8605 - 1072 3.3807 - 1072
2 3.0514-1072 43577 - 1072 5.6295-1072 6.8333 - 1072 7.9602 - 1072
1 1.0319-107! 1.4765- 107! 1.8017 - 107! 2.0555- 107! 2.2634- 107!
0 13209 1.2419 1.2006 1.1747 1.1565

10 3 456881072 5.2170 - 1072 5.8395- 1072 6.4416 - 1072 7.0238 - 1072
2 9.0543-1072 1.0517 - 107! 1.1793 - 107! 1.2935 - 107! 1.3972- 107!
1 2.4390-107! 2.7568 - 107! 2.9741- 107! 3.1429 - 107! 3.2825- 107!
0 16399 1.4831 1.4009 1.3491 1.3130

Two values of A (A= 1.0 and 2.0) and two values of the angular momentum (j =0
and 1) are considered.

'~ We note that for the smaller value of A, and for the larger value of angular
momentum, the state is more susceptible to the influence of the Coulomb field.
Thus, for A=1.0 and j =1, around ¢ == 0.80 the binding reaches its maximum value
of o= (M — Ey)/ M =2, beyond which the state no longer exists. For negative values
of £, the binding gets increasingly weaker as |{| increases, until at some point the

state is ‘“‘pushed up” into the continuum.
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Fig. 4. Dyon-fermion binding energies for the “zero-energy” state versus ¢, the Coulomb-interaction
strength parameter. A “‘zero-energy” state is defined as a state with the property of E >0 as { > 0. Two
values of the parameter A are considered, A= 1.0 and 2.0, and two angular momenta, j=0 and 1. The
A =1, j=1 state (short-dashed) is seen to reach maximum binding £, = (M — E;)/ M =2 around { = 0.80.

In fig. 5 we show the {-dependence of the levels labelled by n=1, again for
A=1.0 and 2.0, and for j =0 and 1. The energy levels of these more weakly bound
states are seen to be much more susceptible to the Coulomb force than was the case
for the n =0 states.

The wave functions for the j =0, { = @, k <0 states are rather different from those
describing k > 0. The moduli of these wave functions are shown in fig. 6 for A =-2.
The corresponding wave functions for A= +2 and { = « are very similar to those

for A= +2 and { =0 (they are just “pulled in” a little because of the extra attraction)
which were shown in fig. 2.

Comparing now the n =1 wave functions (figs. 2b and 6a) we note that whereas
for A>0 F and G each has one node, for A <0 only G has a node. This qualitative
difference is closely related to the non-existence of the “zero-energy” state (n=0)
for j=0 and k <0, and can be understood by considering the boundary conditions.

It is seen from (3.9) that, in the limit p > 0, F and G have opposite signs. Similarly,
it follows from (3.18) that

+ 1/2
lim F/G=-i(A B) ,

N
o <\A—B 7.0

and hence, in this limit p - co, the relative sign of F and G is opposite to that of
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Fig. 5. Same as fig. 4 for the energy level labelled by n=1.

k. A comparison of these two statements shows that for «k >0 F and G will have
the same number of nodes (modulo 2). For k <0, on the other hand, the number
of nodes will differ by one (modulo 2). Since for n=1 and x <0 F has no nodes
(cf. fig. 6a), this must be the lowest state (among the angular momentum 0 states).
Negative values of k lead to a peculiar spectrum, in the sense that the lowest
state among those of the lowest possible angular momentum, j =0, is not the lowest
of all possible states. There are several states of non-zero angular momentum which
are lower than the lowest j =0 state.
We conclude this section with a comparison of the lowest levels for « >0, for
j=0,1and 2 (fig. 7). The levels are seen to cross, in the sense that for certain values

of A (or k) there exist two states of different angular momentum having the same
binding energy.

8. Higher charges, |g|21

We now consider briefly the case where |g|> 3. In this general case the binding

energy is a function of five parameters: |q|, «, £, j and n. We here limit ourselves
to presenting two sets of curves.
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Fig. 6. Squares of the dyon-fermion radial wave functions F and G for A= -2 and j=0. The binding
4.058, 2.099 and 1.280.

energies of the three states with (a) n =1, (b) n =2 and (c) n = 3 are given respectively by 10(M — E)/ M =
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(M-En)/M

Fig. 7. Dyon-fermion binding energies for fixed { = a =35 versus A. Three states (n=1,2 and 3) are
shown for each of the three angular momenta, j =0, 1 and 2. Levels of different angular momentum are
seen to cross at certain values of A.
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Fig. 8. Monopole-fermion binding energies versus «, for (a) [q| =3, (b) |g/ =1, and (c) |¢|=2. In each
case, three states (n =1, 2 and 3) are shown for each of the two angular momenta j =|q| —4 and j =|g| +1.
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Fig. 9. Dyon-fermion binding energies versus ¢, for |g| =3 and x =4 (or A=3). Three states (n=0, 1
and 2) are shown for each of the two angular momenta j =1 and 2. Note that j =2 is a logarithmic case,
while j=1 is not.

For the three lowest values of |q|, |q|=3, 1 and 3, and for { =0, we show in fig.
8 the binding energies for some of the lowest states, for a range of x-values. As one
would expect, for increasing values of |g] (and «) the binding gets stronger.

In sect. 4, logarithms are found to appear in a number of special cases specified
by eq. (4.15). Among these cases, the lowest one is |g| =3 and j=2 with ¢{#0. In
fig. 9 we show the binding energies for this case of |q| =3 with the choice of x =4
(and thus A=13), as functions of {. For comparison, the case j=1 is included in
addition to j=2.

9. Concluding remarks

In this paper we have studied the bound states for a monopole-fermion system
or more generally a dyon-fermion system. The formalism has been used to give
numerical results, both for the binding energy and the bound-state wave function.
However, because of the complexity of the systems, it is not possible to obtain
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closed, exact formulas for either, with the exception of the zero-energy state of
(2.13) and (2.14). In order to gain further physical insight it is desirable to study
various special and limiting cases by analytic methods.

Some examples of the limiting cases of interest are

(A) k>0,
(B) k>0,

(C) {»>0o0,

(D) the case of weak binding «<1.

For the states of the lowest angular momentum, case A has been studied before [5].
The generalization to higher angular momenta is straightforward because, in the
limit « - 0 with finite p, eq. (2.10) decouples and thus the solution can be expressed
in terms of a confluent hypergeometric function in the same way as eq. (2.9). Both
case B and C can be treated to a large extent by the WKB method. Case B is studied
for the monopole and dyon cases with the lowest angular momentum in papers I1I
and IV, respectively. Case D is especially interesting for several reasons. First, as
seen from the numerical results here, many if not most of the bound states are
indeed weakly bound. Secondly, the analytic results are expected to be useful for
various applications, such as the study of radiative capture [14]. For these reasons
papers 11, V, and VI in this series will deal with various aspects of this case of weak
binding.
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