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General properties of monopole-fermion and dyon-fermion bound states are investigated, for 
the case of Dirac monopoles and their dyon analogues. The attractive forces that lead to bound 
states are due to the interaction of a fermion anomalous magnetic moment with the monopole 
magnetic field and the additional Coulomb interaction in the dyon case. Detailed numerical results 
are presented. 

1. Introduction 

It was shown several years ago by Kazama and Yang [1, 2] that fermions can 
bind to magnetic monopoles. Because of  rotational symmetry as expressed by 
monopole  harmonics [3], the investigation of  such bound states reduces to the study 
of  the radial equations. These radial equations are especially simple for the states 
of  lowest angular momentum; they consist of  two coupled first-order differential 
equations instead of  four. These states of  lowest angular momentum have been 
investigated in some detail [1, 4], both analytically and numerically. 

It is the purpose of  the present papers to extend this work in two directions, both 
to higher angular momenta and to the case of  a dyon instead of  a monopole. The 
monopole-fermion system can be considered a special limit of  a dyon-fermion 
system, which for some range of  the parameters also possesses bound states. The 
hamiltonian we wish to study is thus [5] 

n = a .  (p -ZeA) +tiM -~--  Kqfltr. r/(2Mr3). (1.1) 
r 

The dyon is taken to be infinitely heavy, it has a magnetic charge g and an electric 
charge Zde. The fermion has a mass M, electric charge Ze, and an anomalous 
magnetic moment K. The various charges only enter in the combinations (we use 
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gaussian units, i.e., E = Z e / r  2, B = g / r  2, e 2= Or) 

q = Z e g ,  

-- ~ = Z Z d e  2 = Z Z a o t  . (1.2) 

We note that the Dirac condition [6] restricts q: 

q=0,±½, ±1, ±3,.... (1.3) 

With dyons, the corresponding condition is [7] 

e,gj  - ejg,  = O, + ½, + 1, + ~ . . . .  , (1.4) 

which does not restrict ~, since the fermion is assumed to carry no magnetic charge. 
In this paper we investigate the general case of  dyon-fermion bound states through 

series expansions on the basis of the hamiltonian (1.1). These series expansions are 
used to obtain highly accurate numerical results, which give an overview of the 
properties of  the bound states and are also used to ascertain the accuracy of the 
approximate results developed in papers II [8], III [9], IV [10], V [11] and VI [12]. 

In these five papers, two limiting cases are investigated where the eigenvalues 
and wave functions are determined approximately by analytic methods. Papers II, 
III and IV deal with the case of the lowest angular momentum j = Iq1-½. For this 
lowest angular momentum, the wave functions do not depend on K and [ql separately, 
but only on the product  Klql. For these states, the two limiting cases studied are 
those of  weak binding (paper II) and of  large values of Klql (papers III and IV). 
The treatment of weak binding is then extended in papers V and VI to higher 
angular-momentum states. 

Unless the Coulomb interaction is repulsive, there is an infinite number of states 
to which the results of each of the papers II-VI apply. The case of weak binding 
was previously treated in ref. [4] for the lowest angular momentum with ~" = 0, where 
the wave function can be expressed in terms of  Bessel functions. In paper II, the 
states of  lowest angular momentum are studied with ~" ~ 0, and it is found that 
confluent hypergeometric functions are needed. The further extension to higher 
angular momenta, with four coupled radial equations, is much more involved. Papers 
V and VI treat respectively the monopole case (~ = 0) and the dyon case (~ # 0). In 
addition to the Bessel and confluent hypergeometric functions, the solution of  a 
fourth-order ordinary ditterential equation is needed. That solution can fortunately 
be expressed explicitly in terms of integrals of  a product of a Bessel function and 
a hypergeometric function. For the dyon-fermion bound states (papers II and VI), 
the analytic methods yield a transcendental equation for the binding energy, whereas, 
for the monopole-fermion bound states (paper V), an explicit expression for the 
binding energy is obtained. 
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2. Eigenvalue equations 

For the bound state wave functions, we basically follow the notation of Kazama 
and Yang [1]; 
type B, j = Iql-½: 

type A, j ~  Iql +½: 

1 Ii K-~I F(r) ~7-0z( ~; 
~(') =7 L -iG(r),Tss,(~) (2.1) 

1 [ h~(r)sc~z)(~) +~ h2(r)¢(~z](~) 
(2.2) 

It should be noted that, in the notation of (2.2), 

L ] h2 
h4 
h3 

is the h of Kazama and Yang [1]. 
The energy eigenvalues E are given by 

H~/, = E~. (2.3) 

Since the Coulomb interaction part of the hamiltonian is radially symmetric, and 
proportional to the unit matrix, the derivation of the radial equations may be taken 
over from refs. [1, 13] by substituting 

In terms of the notation [1] 

E -~ E +-~. (2.4) 
r 

A=½KIql, 

B=lKlq[ E ,  

(2.5) 

the replacement (2.4) is 

2M p=l-~qlr, (2.6) 

B --> B + - ,  (2.7) 
P 



424 P. Osland, Tai Tsun Wu / Monopole- and dyon-fermion bound states (I) 

where 
K 

(=~-~ ~. (2.8) 

With this replacement (2.7), the radial equations for the bound states of types B 
and A are respectively (see eqs. (20) and (9') of [1]) 

J=lql -½:  

J/> Iql +½: 

d----G= ( A -  B - - ~ - I ]  F ,  
dp p p / 

dV l ]  

d / d P o t X / p  0 A + B + ~ / p  
d / d p + t z / p  1/p 2 

A - B 2 g / p  l / p  2 d / d p + t z / p  
l / p  A - B - ~ / p  0 

t 
d/ dp - i~/ pJ Lh~J 

(2.9) 

(2.10) 
where 

= [(j +½)2_ q2],/2. (2.11) 

In both (2.9) and (2.10), the sign of q does not appear. When the sign of K is 
reversed, so are those of A, B and ~ by (2.5) and (2.8). Accordingly, eq. (2.10) has 
the further symmetry that it is invariant under 

K ~--K, h 2 ~ - h 2 ,  h3 ~ - h  3. (2.12) 

Therefore, for states with j ~  Iql +½ but not for those with j =  Iq1-½, for any ~ the 
binding energy is independent of the sign of K, and in fact the sign of K does not 
enter in any essential way. 

For ¢=0 ,  E =0  is an eigenvalue of (2.9) when K>0  and also of (2.10) when 
K # 0 [1]. In the case of eq. (2.9) the eigenfunctions were given explicitly in ref. [1]: 

F = - G  = e - I K q l / 2 M r - M r  . (2.13) 

Similarly, for eq. (2.10), the eigenfunctions are 

hi = -h4  = x/~r e-IKqt/2Mr K~,_l/2( Mr) , 

h2 = - h3 = ~1 ~r  e-I Kql/2MrK," +1/2(Mr). (2.14) 

3. Series expansions for bound states of  type B 

For an arbitrary value of B, i.e., for E not necessarily equal to the bound-state 
energy, let v be the solution of (2.9) that is bounded at the origin, and similarly w 
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the one that is bounded at infinity. Their normalizations remain to be chosen. They 

are both two-component  radial wave functions. Thus 

D v  = O, D w  = 0,  (3.1) 

where 

[ d / d p  - A - B - ~ / p + l / p  2] 
D = _ A + B + ( / p  + 1 /p  2 d / d p  " (3.2) 

Let us first consider v. The behaviour at the origin is not affected in any essential 

way by the Coulomb interaction. Thus, up to possibly a power, 

v ~ e  - l / "  as 0-->0. (3.3) 

In order to work with a function that can be expanded as a series around the origin, 
let us define 

v = e - I / ° ~ ,  D = e l / P D e  -1/° . (3.4) 

The equation to be solved is then 

D~ = O, (3.5) 
where 

d / d p + l / P  2 - A - B - ~ / p + I / p  2] 
ID= _ A + B + ~ / p + l / p  2 d / d p + l / p  2 j .  (3.6) 

We make the series ansatz 

~ = p ~  Y~ c(")p ",  (3.7) 
?1=0 

and note that the most singular terms in 15 annihilate 

c(°) = - 1 " 

This is just a rephrasing of  the statement that [1] 

lim ( F / G )  = - 1. (3.9) 

The second most singular terms in eq. (3.6) determine the leading exponent 

a = 0 .  (3.10) 

In order  to find the recurrence formulas,  it is convenient to perform a rotation, 

c (m = Rb  (") , (3.11) 

with 
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The two-component vectors 

are given by 

b,.,  r °I° ' ]  

b~ ") = ½{ - (n - 1)b] "- ' )  +(b(2 "- ')  + Abe"-2) + Bb(2"-2)}, 

b~2, ) = _ 1  {(b~,) + abe"-') + Abe2"-')}, 
tl 

(3.13) 

(3.14) 

for n = 1, 2 , . . . ,  and with the initial values 

b(°)=R-'c(°)=[-O1] ' b(-l) = [ 010 " (3.15) 

The solution v that is bounded at the origin may then be evaluated from eqs. (3.4), 
(3.7), and (3.11)-(3.15). 

We now turn our attention to the solution w that is bounded as p ~ oo. In other 
words, we want to solve the radial equation Dw = 0 for large values of p, where D 
is given by (3.2). Let 

[w 1 w = . (3.16) 
W2. 

Then by the change of variables 

1 
x = x / ~ - - ~ _  B2p, (3.17) 

¢p= F Ia + Bl'/2wz 1 
L(,,/I,,I)IA- BI '/~w, ' ( 3 . 1 8 )  

we find that eq. (3.1) is equivalent to 

Doo~ = 0 ,  (3.19) 
where 

_ d 
- A - B - \ ~ I  x x 2! dx 

Doo= [ A -  B\  1/2 ~ 1 d (3.20) 

- A + B +t-A-'~) x+x  "-5 dx 

For the monopole-fermion case of lowest angular momentum there are no excited 
bound states unless A > ~  [1]. Here, for the case of dyons, A can be positive or 
negative. In formulating eqs. (3.18)-(3.20) we have made use of the fact that 

A+B A - B  K 
IA + BI Ia-  nl IKI 

We note that D~ involves ~, not ~ (compare eq. (2.8)). 

(3.21) 
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The operator (3.20) has the same form as (3.2), the only difference being that the 
two Coulomb terms have different coefficients. Therefore, with 

~' = e-n/x  ~ ,,  (3.22) 

¢,= x "~ ~, C (" ) x  " ,  (3.23) 
n=O 

we find the leading power to be 

B 
a = -~'x/A2 _ B2. (3.24) 

The power becomes very large when the binding gets weaker, B -  A - .  
With the same rotation as previously, 

C (') = R B  (') , (3.25) 

we find the components of B (") to be given by the recursion relations 

B~ ") --~{ - ( n  - 1 +2a)B~ "-1) +(B(2 "-1) +AB~ "-2) + BB~"-2)}, 

B(2, ) __ _ 1  ts,-',I Fu(") _~ B B ~ , - ' )  + AB(2--I)}, (3.26) 
71 

where 

A 
~= ~ ' ~ ,  (3.27) 

and with the initial values of eq. (3.15). 
The desired solution w that is bounded as p~,oo is then given by eqs. (3.16), 

(3.18) and (3.22)-(3.26), with x defined by eq. (3.17). 

Ib, I/[b, l a n d  For large n, the coefficients grow such that (") (,-1) [Bi~")I/[B i(.-n)[-½n. 

The series are thus asymptotic, not convergent. This is not surprising, since we 
expand around essential singularities. 

4. Series expansions for bound states of type A 

For j />  [q[ +½ there are four radial wave functions obeying the coupled differential 
equations (2.10). These equations have two linearly independent solutions that are 
bounded at small p; we denote them f and f. Likewise, there are two linearly 
independent solutions that are bounded as p-~ oo; we denote those g and ~. 

To avoid notation that is excessively cumbersome we shall use the same letter to 
designate corresponding quantities for the two cases of type A and type B. For 
example, D means the 2 x2 differential operator of (3.2) in the preceding section 
but the 4 x4 operator of (2.10) in this section. Some further such examples are/5,  
c ("), b ("), C ("), B ("), R, a, b~ "), b(2 "), B~ "), and B(2 "). 
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4.1. EXPANSIONS FOR SMALL p 

We first consider f and jT, which are four-component  radial wave functions. They 

satisfy 

D f = O ,  DsT= 0.  (4.1) 

The behaviour  at the origin is like in the previous case, f -  e -1/°, so we define 

f = e - l i p  f ,  f f  = e - /~o f ,  

E) = e il° D e - l ip  . (4.2) 

One thus has to solve 

/ S f = 0 ,  / ) f =  0 ,  (4.3) 

with 

[  /do + 0 a+B+ Io -I 
D= / A-It-~Io dldo+llo~+~lo liP2 A+We'° / 

l ip  2 dido + l ip 2 +~lP 

L lip2 A-B-~Ip 0 dldo+llp2-t,*lpJ 
With the ans~itze 

(4.4) 

f = p ,  ~ c( , , )p , ,  f = p a  ~_, 6( , , )p, ,  (4.5) 
n = O  n=O 

we find the most singular terms i n / 5  to annihilate 

c (°) = , E (°) = . (4.6) 

We let f be the series starting with c (°), and 9 7 be the one starting with E(o). In the 
two cases the coefficients of  the next power in p determine the exponents a and t~ 

to be 

a = / z ,  & = - / z ,  (4.7) 

for f and f ,  respectively. Even with a negative power, & < 0, the function s 7 is of  
course bounded  as p ~ 0, because of  the exponential  factor (cf. eq. (4.2)). 

When a - & = 2/z = integer, the ans~itze (4.5) are not adequate. F o r f  a logarithmic 

term is then required. We shall return to these special cases after having presented 
the solutions for the generic case where 2/z is not an integer. 

Let us then proceed to determine the solution ~ Like in the two-equation case, 

it is convenient to rotate, 

c (") = R b  (") , (4.8) 
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with 0j 
1 - 1  0 

R =  1 1 0 " 

0 0 1 

(4.9) 

The vectors b u') are then found  to be given by 

bi")l _½{[n-I 0 ] rb~"-l)] -rb~'-')'l 
b~"'_[-- 0 . - 1 + 2 / . ~  /b~"- l ) J  +:[b~4"-'d 

+A Lb~._:~ J +B Lb~._~jj, 

[,,+=,.,. 2] 
o Lb~"~J=~Lb~")J+BLb~"-'~J 

+A[~ 10] r b(3"-')] 
L b ~ . - l ~ j  , 

(4.10a) 

(4.lOb) 

for  n = 1, 2 . . . .  , and with the initial values 

b ~°) = R - l c  ~°) = , . (4.11) 

The o ther  solut ion that  is bounded  near  the origin, f,  is most  easily obta ined by 
noting that  eqs. (2.10) are invariant under  the interchanges 

(hi <--~ hE), (ha ~--~ h4), (/x ~--~ - / x ) .  (4.12) 

In part icular ,  this t ransforms 

(c(°)*--~ ~(°)), (a*-~ t~). (4.13) 

Thus,  f is obta ined f rom f by taking/x  ~ - /z ,  and interchanging the upper  two and 
the lower  two componen ts  among themselves.  

It remains  to consider  the except ional  case where a - d is a positive integer, i.e., 
where 

2/z = [(2j + 1)2-  ( 2 q ) 2 ] 1 / 2  = positive in teger .  (4.14) 

Since the integers 21ql and 2j + 1 are ei ther bo th  odd  or both  even, (4.14) actually 
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implies  t ha t / x  i tself  is a posit ive integer. There  are two types of  solutions:  they are 

21ql = 

2 j + l  = 

/ x =  

21ql--- 

2 j + l  = 

where  ni, n2 and  n 3 are three  posit ive 
It  is seen f rom (4.15) tha t  

(i) 21ql can take all posi t ive integer values  except  21q[ = 1, 2, 4; 
(ii) /~ canno t  be  equal  to 1 but  can take all o ther  posit ive integer values. 

In these except ional  cases, the ansatz  (4.5) for  ~ has to be replaced  by  

f = / 3 f l o g P + P  -~" E c(")P", 
n=0 

n l n2n3  

(n2+n2)n3 ; (4.15a) 

(n2 -n2 )n3 ,  

4nl n2n 3 , 

2(n2 +n2)n3, (4.15b) 

integers such that  n~ > n2 and  nl + n2 is odd.  

(4.16) 

with 8(o) = 8(o). The constant/3 is to be determined from the recursion relations. 
With the ro ta t ion  

~(") = R/~ (") , (4.17) 

we find tha t  the c o m p o n e n t s  of  the vectors/~(")  satisfy 

[~Vl [,, o,] sr-'G 
= 0 n -  6 1 " - l ) J  

+A LI;~,,_,>j + i l  Lt;~,,_,~j +/3 Lb~,,_,_~,,:>j j ,  (4.18a) 

[0 o r, >l ,,_=. L~,,>j: ~ [~;,,>] +" i ~: ,>j 
+A[7 'i L/~(4,_1) j -/3 Lb(4,_2~,)j, (4.18b) 

for  n = 1, 2 , . . . ,  2~  - 1, 2/~, 2~  + 1 , . . . ,  with the initial values 

~ ( o )  = R - l ~ ( o )  = , /~ ( -1 )  = . ( 4 . 1 9 )  

Eqs. (4.18) de te rmine  /~(") recursively except/~(4 2~'). It  is convenient  to choose  

/~]2~,) = 0. (4.20) 
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With or without this choice, the lower component  of  (4.18b) with n = 2/z gives 

f l  = __ ~/~(2/~) _ _ S o 2  ~t , ,  21~K(2~-I) - -  A/~(3 2 t~- I )  , (4.21) 

where we have used b(4 °)= -1  from (4.11). 
As an example,  the lowest values of  q and j that lead to an exceptional case are 

Iql = 3 and j = 2 wi th /z  = 2. In this case 

b(4 °) = -½ABe, 
which is non-zero when ~" # 0. 

4.2. E X P A N S I O N S  F O R  L A R G E  p 

Let us now turn to the solutions g and ff that are bounded as p--> oo. These obey 

Dg = 0,  Dff = 0.  (4.22) 

The procedure to be followed here is a generalization of that of  sect. 3 where 

J = [ q l -  ½: we first introduce the variable x of  eq. (3.17), then rescale and interchange 
the components  of  g by defining 

- IA + BI 1/2g3 

- IA + BI 1/294 
o~= IA--BI'/2~KIg2 

IA- -B l l /2~g l  

With 

f f  = e - l / x ~ ,  

the radial differential equations take the form 

D ~ g = 0 ,  
where 

Doo = 

d l p 1 ( A + B ~ ' / z ~  
- - +  . . . .  0 A + B  - 
d~ x 2 x - ~ - \ - X ~ /  x 

d 1 tt I _ ( A + B ] ' / 2 ~  

0 dx+x~+x x 2 \A -B~  x A+B 

( A - B ' ~ ' / 2  ~ d I Is. 
A-B I+ _ ~ 0 

X 2 \ A + B ]  x dx  x 2 x 
1 + { , A - B ~ I / 2 ~  d 1 +~  

-~  \ - A - ' ~  / x A - B 0 d"x+x ''~ x 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Similar to eq. (3.21), the coefficients of  the ~'-terms here are also different in the 

upper  two and lower two equations. Further, we note that, in contrast to t h e / 5  of  
eq. (4.4), the ~'-terms have become detached from the A ± B terms. This is due to 
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the inversion and rescaling, but does not occur for j = Iq1-½, since in that case the 
A +  B terms, the ~ / p  and 1/p:  terms all multiply the same function. 

With the ans~itze 
~ = x "  Y, C ( " ) x  " ,  ~ = x  ~ • C(")x", (4.27) 

n = 0  n = 0  

we find the most singular terms in Doo annihilate 

c(O)= c(O),  ~(o)= ~(o), (4.28) 

where c (°) and E(o) are defined by eq. (4.6). In analogy with t h e j  = Iq1-½ case we find 

- B  
a = ~ - ~ ~, (4.29) 

independent of/~. 
The recursive determination of  the coefficients is now straightforward. With the 

rotation (cf. eqs. (4.8), (4.9)) 

C ( ' )  = R B  (") , (4.30) 

we find the vector coefficients B (") to be given by 

2,, r.~.,-,,l[ 0 ,<,.-¢]r,,~"-"l <),_,,<,,-,>.,+ _,.._< o LB~")J 

[o ,o] + A  1 LB~._.,)j +B LB~4._,nj j ,  (4.31a) 

,{[o_ 
B~")J =7 - # 0 LB~.)j +B L B~"-'q 

+A[O lo] "1 [ B i , _ l ) j }  • (4.31b) 

In order to construct g we first determine ~ from eqs. (4.24), (4.27), (4.30) and 
(4.31), and then identify the components of  g in terms of  those of  ~ (eq. (4.23)). 
The other solution, ~, that is bounded as P ~ oo (or x ~ 0), is obtained from g using 

the symmetry (4.12). 
Similar to the j = Iq1-½ case, the coefficients grow like factorials, and the series 

are asymptotic. 

5. Matching and energy determination 

The bound-state wave functions F, G and hk a r e  bounded as p ~ 0 and as p ~ oo. 
Therefore, 
f o r j = l q l  1 :  

F ( a )  = a , v ~ ( p )  = ~ 2 w , ( p )  , 

O ( p  ) = ct,v2(p ) = a2w2(p), (5.1) 
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and for j~>lql +½: 

hk(p ) = flLfk(P ) + fl2fk(P ) = fl3gk(P ) + fl,~,k(P ) , (5.2) 

for k = 1, 2, 3, 4, where the a~ and/3; are real numbers. 
By imposing the condition (5.1) or (5.2) at some P=Po,  we get a set of 

homogeneous equations linear in the coefficients: 

a,Ok(Po) -- a2Wk(Po) = 0 ,  k = 1, 2 ,  (5.3) 

/3Lfk(Po) +/32fk(Po) --/33gk(Po) - - f l4gk(Po) = O, k = I, 2, 3, 4. (5.4) 

These equations determine the coefficients (up to an overall constant) and the 
eigenvalue parameter B. Clearly, the existence of  a non-trivial solution requires in 

the two cases the following determinants to vanish: 

f,(po) 
f:(po) 
A(po) 
f4(po) 

o,(po) w,(po)[ = 0 
v2(po) w2(po) ' 

?,(po) g,(po) ~,(po) I 
?2(Po) g2(Po) g2(Po) 1 
fa(Po) g3(Po) #3(Po)= 
f,(Po) g4(Po) g,(Po) 

(5.5) 

0. (5.6) 

From these equations, one may iteratively determine the eigenvalue B in the two 
cases. 

When ~" =/z  = 0, there is a natural choice of  the matching point po due to symmetry, 
namely at the geometric mean of  the characteristic variables of  the two regions, p 
and [(A 2 -  B2)l/2p] -1" 

Po = ( 3  2 -  B2) - ' /4 .  (5.7) 

Even when ~" and tz are non-zero, this choice is often adequate. 
Since the series expansions found in sects. 3 and 4 are only asymptotic, the small-p 

and large-p expansions will not have any overlapping region of  validity. The solutions 
at Po therefore have to be obtained from a numerical integration of eqs. (2.9) and 
(2.10), using the series to determine initial values at small and large values of p. 

6. The Iql = ½ monopole-fermion system 

In this and the following two sections we shall give some numerical results on 
the dyon-fermion bound states. These systems are characterized by three parameters, 
namely q, K and ~'. As seen from (2.5) and (2.9), q and K appear only in the 
combination A--½Klql for the states of  lowest angular momentum j = Iq1-½- For 
other states with j ~>lql +½, as seen from (2.10), all three parameters appear indepen- 
dently. However, as already noted in sect. 2, neither the sign of  q nor that of  K 
enters in any essential way for these states. 
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In  this  sec t ion  we c o n c e n t r a t e  o n  the  s imp le s t  case where  Iql =½ a n d  ~ = 0 .  I n  

sect. 7, t he  resul t s  a re  g en e ra l i z ed  to the  case  ~ # 0  b u t  still  w i th  ]q[ =½. The  cases 

wi th  Iql >~ 1 are  br ief ly  c o n s i d e r e d  in  sect. 8. 

W h e n  Iql =½, A is s i m p l y  

A=¼K.  (6.1) 

In  fig. 1 we s h o w  p lo ts  o f  the  b i n d i n g  energ ies  o f  the  lowes t  s tates for  j = 0, 1, 2, 

a n d  3. T h e  n o t a t i o n  here  is tha t  n = 0 refers  to the  ze ro -ene rgy  b o u n d  states g iven  

in  sect.  2, whi le  n = 1, 2 , . . .  d e n o t e s  the  h i g h e r  b o u n d  states.  The  c o n d i t i o n s  for  the  

ex i s t ence  o f  these  h ighe r  b o u n d  states or  exc i t ed  states are for  Iql = ½ [1, 2] 

K > l  for  j = 0 ,  (6.2) 

K > ½ ( 2 j + l ) 2 - 1  for  j ~ > l .  (6.3) 

: ,  

w 10.~ 
:E 
v 

Iql= ½ j = 0 (a) 

~ = 0  

• \ \ . \  
"'-.. '~~-....._ n=3 

n = l  

0.0 
l I I 

2.5 50 A 75 100 

10 ~° 

uJ I0 s 
i 

i I I I 

Iql: ½ j=l (b) 

\ ~=0 \ 
\\. 
\\. ~ \ ~ n = 3  

n =--1"- . . . . . . . . . . . .  " - -  

I 

o o 2's A 7s 
Fig. 1. Monopole-fermion binding energies ~, = ( M - E , ) / M  versus A =½[q[K; (a) j = 0, (b) j = 1, (c) 
j = 2, and (d) j = 3. In each case three curves are given, for the levels n = 1, 2 and 3. The conditions for 
the presence of these levels are: •>½ for j = 0 ;  I~l> 7 for j =  l; [KI>~ for j = 2 ,  and IK]>~ for j = 3 .  
There is also a lower state (n = 0) at e o = ( M  - E o ) / M  = 1. For j = 0 these energies apply t6 any non-zero 
value of ]q I, for j I> 1 they are only valid for I q] = ½. For j I> I there are corresponding levels at A-~ - A  [ 1, 2]. 
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Fig. l.--cont. 

It is quite straightforward to determine the eigenvalues numerically by the iterative 
procedure outlined in sect. 5, provided we start at some good initial guess. Such 
guesses are conveniently provided by the explicit, analytic approximations obtained 
in refs. [4] and [11] for j = 0 and for j /> 1, respectively. 

Some numerical values for the binding energies can be found in tables 1, 2 and 
3 in sect. 7. For j = 0 such values have been determined previously by the angle 
analysis [1, 4]. The values found here agree with those obtained in ref. [4]. 

In order to develop some intuition for these bound states, we also show the 
squared moduli of  some radial wave functions corresponding to A = 2 in fig. 2 
( j  =0)  and fig. 3 ( j  = 1). (For this value of A there are no states of  higher angular 
momentum.) The j = 0 wave functions are familiar from ref. [4]. The j = 1 wave 
functions have in a sense two "large" and two "small"  components. It should be 
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id s 

1 I 1 I 
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Fig. 2. Squares  of  the m o n o p o l e - f e r m i o n  rad ia l  wave  func t ions  F and  G for  A = 2 a n d  j = 0. Four  s ta tes  
are cons ide red :  (a) n = 0, (b) n = 1, (c) n = 2, and  (d) n = 3. (All  the m i n i m a  in this  figure, as wel l  as 

those  in  figs. 3 and  6, are ac tua l ly  zeros of  the wave  funct ions . )  
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Fig. 3. Squares  of  the m o n o p o l e - f e r m i o n  r ad ia l  wave func t ions  h 1 (sol id) ,  h 2 ( shor t -dashed) ,  h 3 ( long- 
dashed ) ,  and  h 4 (dash -do t t ed ) ,  for A = 2 and  j = 1. Four  levels  are cons idered :  (a) n = 0, (b) n = 1, (c) 

n = 2 ,  a n d ( d )  n = 3 .  



"n
 

.w
 I 

~)
'.L

 ,>.
 

~J
 

lJ
 

¢a
J 

o
 

-Q
 o
 

o
 

O
0

 

O
, 

T,
. 

JJ
 

0 

i II
 

c~
 

o
o

 

~
, 

%
 

") 
/ 

./
" 

.
.

~
 

o
-

-
 

I 
I 

:b
. 



440 P. Osland, Tai Tsun Wu / Monopole- and dyon-fermion bound states (I) 

noted, however, that there is a sort of transition at some intermediate value of  p: 
whereas h I and h2 dominate at large values of  p, it is h2 and h 3 which dominate at 
small p. Also, although for j /> 1 there is no inversion symmetry of  the kind found 
for j = 0 [4], hi and h4 are nevertheless qualitatively similar to each other's mirror 
image. 

7. The Iql =½ dyon-fermion system 

For each value of  angular momentum j, the monopole-fermion system studied in 
the preceding section possesses an infinite number of bound states when and only 

TABLE 1 

Binding energies ( M -  E ) / M  for the dyon-fermion system with j = Iq1-½ 

\ 
\ A  0.4482 1.0 

(p) 

- 2 3  3 

2 

1 3 .7532" 10 -3 

0 0.9814 0.9870 

-or 3 

2 

1 7 . 0 4 0 7 . 1 0  -6 4 . 6 0 4 2 . 1 0  -3 

0 0.9907 0.9935 

0 3 4.6173 • 10 -11 4 . 1 3 3 7 . 1 0  -7 

2 1 .1438 '  10 -7 4 . 7 7 5 7 . 1 0  -5 

1 2 . 8 3 ! 0 '  10 -4 5 .4882 '  10 -3 

0 1.0000 1.0000 

a 3 6.6592" 10 -6 1.7399" 10 -5 

2 2 .5608 .  10 -5 1.4641 • 10 -4 

1 6.6071 • 10 -4 6 .4034 '  10 -3 

0 1.0093 1.0065 

23  3 2.2461 • 10 -5 4.6676" 10 -5 

2 7 . 4 9 2 8 . 1 0  -5 2 . 6 8 2 6 . 1 0  -4 

1 1 . 1 1 1 5 . 1 0  -3 7.3482" 10 -3 

0 1.0186 1.0131 

0.1 3 7 . 0 4 9 5 . 1 0  -4 9 .4958-  10 -4 

2 1.7905. 10 -3 2 . 8 1 8 6 . 1 0  -3 

1 9.8771 • 10 -3 2 . 0 2 8 6 . 1 0  -2 

0 1.1272 1.0894 

0.5 3 1.3619" 10 -2 1 .4560 '  10 -2 

2 2.9858" 10 -2 3.2581 • 10 -2 

1 1 . 0 4 8 0 . 1 0  - l  1 . 1 5 0 5 . 1 0  - l  

0 1.6312 1.4458 

1.0 3 5.3116" 10 - t  5.1147" 10 -2 

2 1 . 1 1 9 2 . 1 0  -1 1 . 0 5 4 7 . 1 0  -1 

1 3.4010" 10 - l  3 .0179" 10 - I  

0 1.8825 

1.5 2.0 2.5 

1.6319" 10 -5 

1.1679 " 1 0  - 2  

0.9891 

1.5383" 10 -4 

1.2785" 10 -2 

• 0.9946 

7.1763 • l 0  - 6  

3.1711 • 1 0  - 4  

1.3911 • 10 -2 

1.0000 

4.1372" 10 -5 

5.0058" l0  -4 

1.5055" 10 -2 

1.0054 

8.7998" 10 -5 

7 .0154 '  10 -4 

1.6217" 10 -2 

1.0109 

1.2106 10 -3 

4.0277 10 -3 

3.1077 10 -2 

1.0744 

1.5586 10 -2 

3.5533" 10 -2 

1.2560" 10 - I  

1.3713 

5 .1379 '  10 -2 

1.0537- 10 - l  

2 .9380" 10 - l  

1.7387 

4.4965" 10 -4 1.2734. 10 -3 

2 .1122 '  10 -2 3.0978" 10 -2 

0.9905 0.9914 

3.5825- 10 -5 

6 . 8 0 9 4 "  10  - 4  1.5788" 10 -3 

2 .2359 '  10 -2 3 .2287 '  10 -2 

0.9952 0.9957 

3.6214" 10 -5 1.0627" 10 -4 

9 . 2 8 1 4 "  10  - 4  1.8960- 10  - 3  

2.3610" 10 -2 3 .3607 '  10 -2 

1.0000 1.0000 

9 .3119 '  10 -5 1 .8830 '  10 -4 

1.1898- 10 -3 2 .2246.  10 -3 

2.4874" 10 -2 3 .4936 '  10 -2 

1.0048 1.0043 

1 .6122 '  10 -4 2 .8007.  10 -4 

1.4650. 10 -3 2 .5640 '  10 -3 

2.6151 • 10 -2 3.6276" 10 -2 

1.0095 1.0086 

1.5191 • 10 -3 1.8812- 10 -3 

5 .5066 '  10 -3 7 .2326.  10 -3 

4 .2023 '  10 -2 5.2682" 10 -2 

1.0652 1.0588 

1.6672" 10 -2 1.7798- 10 -2 

3 .8615 '  10 -2 4 .1748 .  10 -2 

1.3571 • 10 - l  1 .4520 '  10 - I  

1.3255 1.2936 

5.2177" 10 -2 5.3236" 10 -2 

1.0678. 10 - l  1.0882. 10 -1 

2 .9220 '  10 -1 2.9317" 10 -1 

1.6487 1.5857 
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TABLE 2 

Binding energies ( M -  E) /M for the dyon- fermion  system with j = Iq1-½ 

sr n ~  1.5 

- 2 a  3 

2 

1 3.9681 • 10 -4  

0 0.9859 

- a  3 

2 
1 8 .9792.  10 -4 

0 0.9930 

0 3 7 .6228 .  10 -9 

2 3 .3440.  10 -6 

1 1.4629 • 10 -3 

0 1.0000 

a 3 9.5724" 10 -6 

2 5.0242" lO -5 

I 2.0811 - lO -3 

0 1,0070 

24  3 2 ,9762-  lO -5 

2 1.2263"  lO -4  

1 2,7463" lO -3 

0 1,0141 

O.1 3 7 ,8690-  lO -a  
2 2,1168 • lO -3 

l 1,3115 - lO -2 

0 1,0964 

0.5 3 1.3582- lO -2 

2 2,9638" lO -2 

l 1.0146 • lO - l  
0 1.4806 

1.0 3 4.9095" 10 -2 

2 l,OOlO • 10 -1 

I 2 .8390 '  lO - l  

0 1.9493 

2.0 2.5 4.0 6.0 

5 .3724 '  10 -3 

0.9883 

< 10-8? 

6 . 2 9 1 6 - 1 0  -3 

0.9942 

9 . 9 1 4 9 . 1 0  -7 

8 . 4 9 7 6 . 1 0  -5 

7 . 2 3 8 1 . 1 0  -3 

1.0000 

2 . 1 3 9 1 . 1 0  -5 

2 .0330"  10 -4  

8 . 2 1 0 5 - 1 0  -3 

1.0058 

5.4291" 10 -5 

3 . 4 3 2 2 . 1 0  -4 

9 . 2 0 7 9 . 1 0  -3 

1.0117 

1 .0039-10  -3 

3.0613" 10 -3 

2.2489 10 -2 

1.0799 

1.4597 10 -2 

3.2609 10 -2 

1.1378 10 - l  

1.3989 

4.9676" 10 -2 

1.0120" 10 - l  

2 .8254.  10 - l  

1.7924 

6 . 8 3 3 3 . 1 0  -5 

1 .3395 '  10 -2 

0.9899 

2 .2601 '  10 -4 

1.4523"  10 -2 

0.9949 

1 . 0 4 5 2 . 1 0  -5 

4 . 0 6 2 2 "  10 -4  

1.5669" 10 -2 

1.0000 

4.8675" lO -5 

6.0506" lO -4 

1.6831" lO -2 

1.0051 

9 . 9 1 2 1 . 1 0  -5 

8.2036" 10 -4 

1.8010" 10 -2 

l.Ol02 

1.2629" 10 -3 

4 . 2 7 3 6 - l O  -3 

3.2932" 10 -2 

1.0695 

1.5656. 10 -2 

3 . 5 6 7 1 . 1 0  -2 

1 . 2512 . 10  -1 

1.3472 

5 . 0 6 3 0 . 1 0  2 

1.0309" 10 -1 

2 . 8 3 6 7 . 1 0  -1 

1.6915 

6 .0192.  10 -5 

2 . 6 0 9 6 - 1 0  -3 

4 .1931.  10 -2 

0.9923 

1.5080. 10 -4 

2 .9815.  10 -3 

4 .3276.  10 -2 

0.9962 

2.5213 10 -4 

3.3627 10 -3 

4.4630 10 -2 

1.0000 

3.6267 10 -4 

3.7529 10 -3 

4.5991 10 -2 

1.0038 

4 .8150.  10 -4 

4 .1518.  10 -3 

4 . 7 3 6 0 - 1 0  -2 

1.0077 

2.3532.  10 -3 

9 . 4 0 4 9 . 1 0  -3 

6 .3951.  10 -2 

1.0527 

1.9033. 10 -2 

4 .5068.  10 -2 

1 .5 4 1 1 .1 0  -1 

1.2631 

5.4239.  10 -2 

1.1053. 10 - l  

2 .9250.  10 - l  

1.5253 

1.0760" 10 -3 

9 . 7 3 6 6 - 1 0  -3 

7.7223 "10 -2 

0.9939 

1.2646" 10 -3 

1.0259 "10 -2 

7 .8597"  10 _2 

0.9969 

1.4589 " 10 -3 

1.0788-  10 -2 

7.9975" lO -2 

l.O000 

1.6586" lO -3 

1 .1321 .10  -2 

8 . 1 3 5 8 . 1 0  -2 

1.0031 

1.8635'  10 -3 

1.1860'  lO -2 

8 .2746"  10 -2 

1.0061 

4.6073.  lO -3 

1.8530'  lO -2 

9 .9311.  lO -2 

1.0420 

2 .3861 '  lO -2 

5.7457" 10 -2 

1 .8439 .10  - l  

1.2097 

5.9745.  10 -2 

1.2130 • 10 - l  
3 .0676"  10 -1 

1.4191 
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when K satisfies the conditions (6.2) or (6.3). This is to be contrasted with the 
corresponding situation for the dyon. When the Coulomb interaction is attractive 
(~ > 0), there is an infinite number o f  bound states for each j as long as K ~ 0 [13]. 
When the Coulomb interaction is repulsive (¢ < 0), the number of  bound states is 
finite, or maybe even zero. A survey o f  binding energies is given in tables 1, 2 and 
3 for j = 0, 1 and 2, respectively, and for a selection of  A and ~ values. 

In figs. 4 and 5 we show how the binding energy can change dramatically when 
the Coulomb interaction is turned on. Fig. 4 gives the "zero-energy" level, n = 0. 
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TABLE 3 

Binding energies ( M  - E ) / M  for the dyon-fermion system with Iql =½ and j = 2 

n ~ -  4.0 6.0 8.0 10.0 12.0 

-2ct 3 6.6520' 10 -5 1.0813. 10 -3 3.1836' 10 -3 6.1262. 10 -3 
2 2.6322" 10 -3 9.6757. 10 -3 1.8737. 10 -2 2.8487. 10 -2 

1 5.7739. 10 -3 4.1429' 10 -2 7.6402. 10 -2 1.0603' 10 - l  1.3109. 10 -j  

0 0.9906 0.9929 0.9941 0.9949 0.9954 

-ct  3 1.5784" 10 -4 1.2687. 10 -3 3.4405. 10 -3 6.4337. 10 -3 
2 4.6832. 10 -6  2.9985' 10 -3 1.0191 • 10 -2 1.9331 • 10 -2 2.9125. 10 -2 

1 6.6644. 10 -3 4.2723" 10 -2 7.7741. 10 -2 1.0734" 10 - t  1.3237. 10 -1 

0 0.9953 0.9965 0.9971 0.9975 0.9977 

0 3 1.3351 • 10 -6 2.5949' 10 -4 1.4617- 10 -3 3.7013 • 10 -3 6.7442' 10 -3 

2 1.0028" 10 -4 3.3736' 10 -3 1.0711 - 10 -2 1.9929' 10 -2 2.9767" 10 -2 

1 7.5774. 10 -3 4.4023' 10 -2 7.9083' 10 -2 1.0866' 10 -1 1.3365" 10 -1 

0 1.0000 1.0000 1.0000 1.0000 1.0000 

ct 3 2.2929' 10 -s 3.7007" 10 -4 1.6599' 10 -3 3.9658' 10 -3 7.0575' 10 -3 

2 2.2290" 10 -4 3.7572- 10 -3 1.1236' 10 -2 2.0530" 10 -2 3.0411 • 10 -2 
1 8.5119. 10 -3 4.5330" 10 -2 8.0430- 10 -2 1.0998" 10 -1 1.3493' 10 -1 

0 1.0047 1.0035 1.0029 1.0026 1.0023 

2ct 3 5.6829' 10 -s 4.8868" 10 -4 1.8632. 10 -3 4.2339" 10 -3 7.3737' 10 -3 

2 3.6570. 10 -4 4.1491 • 10 -3 1.1765" 10 -2 2.1135" 10 -2 3.1057- 10 -2 
1 9.4668" 10 -3 4.6644' 10 -2 8.1781 - 10 -2 1.1131 • 10 -1 1.3621 • 10 -1 

0 1.0094 1.0071 1.0059 1.0051 1.0046 

0.1 3 1.0026. 10 -3 2.3425' 10 -3 4.5796" 10 -3 7.6276' 10 -3 1.1277. 10 -2 

2 3.0436" 10 -3 9.2845' 10 -3 1.8318" 10 -2 2.8465' 10 -2 3.8823" 10 -2 

1 2.1958" 10 -2 6.2520" 10 -2 9.7891 • 10 -2 1.2703" 10 -1 1.5141 • 10 - l  

0 1.0642 1.0484 1.0401 1.0349 1.0313 

0.5 3 1.3929- 10 -2 1.8578" 10 -2 2.3496" 10 -2 2.8605" 10 -2 3.3807- 10 -2 

2 3.0514' 10 -2 4.3577" 10 -2 5.6295' 10 -2 6.8333" 10 -2 7.9602' 10 -2 

1 1.0319. 10 - l  1.4765" 10 -I  1.8017. 10 -1 2.0555" 10 - l  2.2634" 10 - l  
0 1.3209 1.2419 1.2006 1.1747 1.1565 

1.0 3 4.5688. 10 -2 5.2170" 10 -2 5.8395" 10 -2 6.4416" 10 -2 7.0238' 10 -2 

2 9.0543" 10 -2 1.0517' 10 - t  1.1793- 10 -I  1.2935" 10 -L 1.3972- 10 - l  
1 2.4390" 10 -1 2.7568' 10 - t  2.9741 • 10 -1 3.1429' 10 -1 3.2825" 10 -1 

0 1.6399 1.4831 1.4009 1.3491 1.3130 

T w o  v a l u e s  o f  A ( A  = 1.0 a n d  2 .0 )  a n d  t w o  v a l u e s  o f  t h e  a n g u l a r  m o m e n t u m  ( j  --- 0 

a n d  1) a r e  c o n s i d e r e d .  

W e  n o t e  t h a t  f o r  t h e  s m a l l e r  v a l u e  o f  A ,  a n d  f o r  t h e  l a r g e r  v a l u e  o f  a n g u l a r  

m o m e n t u m ,  t h e  s t a t e  i s  m o r e  s u s c e p t i b l e  t o  t h e  i n f l u e n c e  o f  t h e  C o u l o m b  f i e l d .  

T h u s ,  f o r  A = 1.0 a n d  j = 1, a r o u n d  ~ = 0 . 8 0  t h e  b i n d i n g  r e a c h e s  i t s  m a x i m u m  v a l u e  

o f  eo = ( M  - E o ) / M  --- 2 ,  b e y o n d  w h i c h  t h e  s t a t e  n o  l o n g e r  e x i s t s .  F o r  n e g a t i v e  v a l u e s  

o f  ~, t h e  b i n d i n g  g e t s  i n c r e a s i n g l y  w e a k e r  a s  I~1 i n c r e a s e s ,  u n t i l  a t  s o m e  p o i n t  t h e  

s t a t e  i s  " p u s h e d  u p "  i n t o  t h e  c o n t i n u u m .  
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Fig. 4. D y o n - f e r m i o n  b i n d i n g  energies  for the  " z e r o - e n e r g y "  s ta te  versus  ~', the  C o u l o m b - i n t e r a c t i o n  

s t rength  pa rame te r .  A " z e r o - e n e r g y "  s ta te  is def ined  as a s ta te  wi th  the p rope r ty  of  E ~ 0 as ~ ~ 0. Two 

va lues  of  the p a r a m e t e r  A are cons idered ,  A = 1.0 and  2.0, and  two angu l a r  m o m e n t a ,  j = 0 and  1. The  

A = 1, j = 1 s ta te  ( shor t -dashed)  is seen to reach m a x i m u m  b i n d i n g  e o = (M - Eo) / M = 2 a r o u n d  ~ = 0.80. 

In  fig. 5 we show the C-dependence  o f  the  levels l abe l led  by  n = l ,  aga in  for  

A = 1.0 a n d  2.0, and  for  j = 0 and  1. The  energy levels o f  these  more  weak ly  b o u n d  

states are  seen to be  much  more  suscep t ib le  to the  C o u l o m b  force  than  was the  case 

for  the  n = 0 states.  

The  wave  func t ions  for  the  j = 0, ¢ = a,  K < 0 states are ra ther  different  f rom those  

desc r ib ing  K > 0. The  m o d u l i  o f  these  wave  func t ions  are shown in fig. 6 for  A = - 2 .  

The  c o r r e s p o n d i n g  wave  funct ions  for  A = +2 and  ¢ -- a are very s imi lar  to those  

for  A -- +2 and  ¢ = 0 ( they  are  jus t  " p u l l e d  in"  a l i t t le because  o f  the  ext ra  a t t rac t ion)  

which  were  shown in fig. 2. 

C o m p a r i n g  now the  n = l wave func t ions  (figs. 2b and  6a) we note  tha t  whereas  

for  A > 0 F and  G each  has one  node ,  for  A < 0 only  G has  a node .  This  qual i ta t ive  

d i f ference  is c losely  re la ted  to the  non-ex i s t ence  o f  the " z e ro - e ne rgy"  state (n = 0) 

f o r j  = 0 a n d  K < 0, a n d  can be u n d e r s t o o d  by  cons ide r ing  the b o u n d a r y  condi t ions .  

It is seen f rom (3.9) that ,  in the  l imit  p --> 0, F and  G have oppos i t e  signs. Similar ly ,  

it fo l lows  f rom (3.18) tha t  

K ( A + B ~  '/2 
l im F / G = --~l \ -~- -B  ] ' (7.1) 

and  hence ,  in t h i s  l imi t  p-> oo, the re la t ive  sign o f  F and  G is oppos i t e  to tha t  o f  
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Fig .  5. S a m e  a s  fig. 4 f o r  t h e  e n e r g y  l e v e l  l a b e l l e d  by  n = 1. 

K. A comparison of these two statements shows that for K > 0 F and G will have 

the same number  of  nodes (modulo 2). For K < 0, on the other hand, the number  
of  nodes will differ by one (modulo 2). Since for n = 1 and K < 0 F has no nodes 
(cf. fig. 6a), this must be the lowest state (among the angular momentum 0 states). 

Negative values of  K lead to a peculiar spectrum, in the sense that the lowest 
state among those of  the lowest possible angular momentum,  j = 0, is not the lowest 
of  all possible states. There are several states of  non-zero angular momentum which 
are lower than the lowest j = 0 state. 

We conclude this section with a comparison of  the lowest levels for K > 0, for 
j = 0, 1 and 2 (fig. 7). The levels are seen to cross, in the sense that for certain values 
of  A (or K) there exist two states of  different angular momentum having the same 
binding energy. 

8. Higher charges, [q[ ~> 1 

We now consider briefly the case where [ql > ½. In this general case the binding 
energy is a function of  five parameters:  Iql, ~, ~, J and n. We here limit ourselves 
to presenting two sets of  curves. 
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Fig. 6. Squares o f  the dyon- fermion radial  wave funct ions F and G fo r  A = - 2  and j = 0. The b inding 
energies  o f  the  three  s ta tes  wi th  (a) n = l ,  (b) n = 2 and  (c) n = 3 are  g iven  respec t ive ly  by  106(M - E ) I M  = 

4.058, 2.099 and  1.280. 
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Fig. 7. Dyon-fermion binding energies for fixed # =  a =~3~ versus A. Three states (n = 1,2 and 3) are 
shown for each of  the three angular momenta, j = 0, 1 and 2. Levels of different angular momentum are 

seen to cross at certain values of A. 
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Fig. 8. Monopo le - fe rmion  binding energies versus K, for  (a) Iql =l,  (b) Iq[ = 1, and (c) Iql =3. In each 
case, three states (n = 1, 2 and  3) are shown for each of  the two angular  m o m e n t a j  = ]q] _ l  a n d j  = [q] + l .  
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Fig. 9. Dyon-fermion binding energies versus ~, for Iql =~ and K =4 (or A = 3). Three states (n = 0, 1 
and 2) are shown for each of the two angular momenta j = 1 and 2. Note that j = 2 is a logarithmic case, 

while j = 1 is not. 

For  the three lowest values o f  Iql, Iql =½, 1 and -~, and for ~ = 0 ,  we show in fig. 

8 the b inding  energies for  some of  the lowest states, for  a range o f  K-values. As one 

would  expect,  for  increasing values o f  Iql (and K) the b inding gets stronger. 

In sect. 4, logari thms are found  to appear  in a number  o f  special cases specified 
by eq. (4.15). A m o n g  these cases, the lowest one is Iql =3 and j = 2 with ~ # 0. In  

fig. 9 we show the b inding  energies for  this case o f  Iql =3  with the choice o f  K = 4  

(and thus A = 3), as funct ions o f  ~. For  compar ison,  the case j = 1 is included in 
addi t ion to j = 2. 

9. Concluding remarks 

In  this paper  we have studied the b o u n d  states for  a monopole - fe rmion  system 
or more  generally a dyon- fe rmion  system. The formalism has been used to give 

numerical  results, bo th  for  the b inding energy and the bound-s ta te  wave function.  
However ,  because o f  the complexi ty o f  the systems, it is not  possible to obtain 
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closed, exact formulas for either, with the exception of  the zero-energy state of  
(2.13) and (2.14). In order to gain further physical insight it is desirable to study 
various special and limiting cases by analytic methods. 

Some examples of  the limiting cases of  interest are 

(A) K --> 0,  

(B) K~oo,  

(c) ~-~oo, 

M - E  
<<1 (D) the case of  weak binding M " 

For the states of  the lowest angular momentum, case A has been studied before [5]. 
The generalization to higher angular momenta is straightforward because, in the 
limit K ~ 0 with finite p, eq. (2.10) decouples and thus the solution can be expressed 
in terms of  a confluent hypergeometric function in the same way as eq. (2.9). Both 
case B and C can be treated to a large extent by the WKB method. Case B is studied 
for the monopole and dyon cases with the lowest angular momentum in papers III 
and IV, respectively. Case D is especially interesting for several reasons. First, as 
seen from the numerical results here, many if .not most of the bound states are 
indeed weakly bound. Secondly, the analytic results are expected to be useful for 
various applications, such as the study of  radiative capture [14]. For these reasons 
papers II, V, and VI in this series will deal with various aspects of  this case of weak 
binding. 
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