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(II). Weakly bound states for the lowest angular momentum 
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We investigate weakly bound dyon-fermion states of the lowest angular momentum. Both 
Coulomb attraction and Coulomb repulsion are studied. Binding energies are given by a transcen- 
dental equation which is solved explicitly in a number of limiting cases. Normalized wave functions 
are given in terms of Bessel functions and confluent hypergeometric functions. 

I. Introduction 

The dyon-fermion system is interesting because of its intermediate position 
between the monopole-fermion system and the Coulomb system (e.g. the hydrogen 
atom). It is described by the hamiltonian [I] 

H = a"  (p - ZeA) +t iM -~ - -  Kq~cr. r/(2Mr3),  (1.1) 
r 

where 
q = Z e g =  +l, +1, +~, . . . ,  

= --ZZde 2 = -ZZdct.  (1.2) 

Here the dyon has a magnetic charge g and an electric charge Zde, and the fermion 
has an electric charge Ze, mass M, and an anomalous magnetic moment K. 

The present paper is the second in a series which deals with dyon-fermion bound 
states. We have described in the first paper [2] the general properties of these states 
with detailed, accurate numerical results for the binding energies and wave functions. 
In this paper we concentrate on the weakly bound dyon-fermion bound states of 
the lowest angular momentum. The corresponding wave functions can be expressed 
in the form [3, 4] 

~,(r) =!  F(r),Tjj,(r) 
r \  -iG(r)*lz~(~) ] '  (1.3) 
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involving two scalar functions F(r) and G(r),  where ~/~z is an eigensector of angular 
momentum. 

With this expression (1.3), the eigenvalue equation 

H6 = E6 (1.4) 

leads to the two coupled radial equations 

d__G: [~(M_E_¢)_IKq, IF 
dr 2Mr2J " 

[]--~ ( {) - 'Kql 1 d__F= M + E  + G (1.5) 
dr 2Mr2J " 

With the notation 

A=%lql, B =½KIqIEIM, 
2M 

p = ~ r ,  (1.6) 

~ K 
~" = ]--~ ~', (1.7) 

eqs. (1.5) then take the form 

(A- 
dp p p / 

dp p p / 

It is the purpose of this paper to give analytic solutions to these eigenvalue equations 
in the limit of weak binding 

e = ( M -  E ) /  M < I , (1.9) 

and with 

I~l<l, 
[A +A-1I =O(1) (1.10) 

(which merely means that [AJ is neither small nor large). The special case of ~" = 0, 
corresponding to the monopole-fermion system, has been discussed previously [5]. 
The limit of large A, but without the constraint of weak binding, is studied in papers 
III [6] and IV [7]. 

Under these conditions (1.9) and (1.10), the bound-state wave functions are given 
by (2.6), (2.7), (3.4) and (3.6). The binding energy is obtained in sect. 4, especially 
(4.3). The normalization of the wave function is given by (6.13) and (6.14). 
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2. Radial wave function in the interior region 

Consider first the region where 

p ,~ rain Jill-', I a -  Bl-l/2], 

which will be referred to as the interior region. In this region 

I A - B I , ~ p  -2 , 

and therefore (1.8) can be approximated by 

dG 1 
dp = - p  -TF' 

do A + B -  G.  

Elimination of F gives 

where 
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(2.1) 

(2.2) 

(2.3) 

~, = ½[1 - 4(A + B)] 1/2 . (2.8) 

This is the required answer for the interior region (2.1). 
In the monopole-fermion case, this quantity 1, has to be imaginary, i.e., for the 

existence of excited bound states [4] 

A > ~  ( ~ = 0 ) .  (2.9) 

We shall see that the critical value of A now will depend on ~, and that v no longer 
has to be imaginary. 

Since 

= ] 
K , ( x )  = 2 sin~crv) k F(1 + ~).l 

with 

x = l / p .  (2.5) 

Since there is no dependence on the electric charge parameter ~, the previous 
treatment [5] of the monopole-fermion case can be used to yield 

G = N l 4 ~ x K , , ( x ) ,  (2.6) 

F = Nx ~d [~xK~(x)] ,  (2.7) 
a x  

d2G ( - A + B ~ G =  
d x  2 1 x2 ] 0,  (2.4) 
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for small x, it follows from (2.1), (2.6) and (2.7) that 

provided that 

F = 2 s i n ( ~ ' v ) "  [. F ( I - T )  F ( l + v )  J '  

Nl  Tr _~/2r 2~p ~ 2-~p-~ 1 
G - 2  sin (Try) p [Fii-~-v) - F--(I+~-)J ' (2.12) 

1 < p < min [1 1-1, IA - BI - ' / : ] .  (2.13) 

The conditions (1.9) and (1.10) guarantee that this range (2.13) for p is not empty. 
These expansions (2.11) and (2.12) require that v < 1 or v imaginary, i.e., A + B > 

--34. Beyond that, there is no justification in keeping the p-~ term; for example, at 
v = 1 the right-hand sides are not finite. 

3. Radial wave function in the exterior region 

The radial wave function in the exterior region 

p >> 1 (3.1) 

is only slightly more complicated. In this region, (1.8) can be approximated by 

With 

d F  
- - =  (A  + B ) G .  (3.2) 
dp 

z = 2(A 2 -  B2)l/2p,  

elimination of G gives 

dz---5+L 4 2 \ A - B /  z - - ~ - J  = 0 .  (3.3) 

This is the Whittaker equation [8], whose exponentially decreasing solution is 

F = N2 Wx,,(z) 

= N2 zl/2+~' e-Z/2a/-t(l- A +v, 1 +2v;  z) ,  (3.4) 

where N2 is a normalization constant to be determined later, W is the Whittaker 
function, ~ is the confluent hypergeometric function, v is given by eq. (2.8) and 

A =~\~2--~/  ~. (3.5) 
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From eqs. (3.2) and (3.4), we find 

/ A - B \  1/2 d 

[ A - B \ t / 2 d  1"2+~ 
= 2 N 2 t - - ~ - ~ )  -~z[Z/  e - Z / 2 ~ ( ½ - A  + v , l + 2 v ; z ) ] .  (3.6) 

The solutions (3.4) and (3.6) reduce to those of the monopole-fermion case when 
~ 0. If  we observe the identity [8] 

Wo~(Z) = K~(½z) , (3.7) 

the exterior solutions of ref. [51 follow. 
It is instructive to compare the exterior region with the case of the hydrogen atom. 

Formally, eq. (3.3) is the same as the radial equation in the non-relativistic limit of 
the hydrogen Dirac equation. Apart from a change of scale in the radial variable, 
the orbital angular  momentum term in the equation for the hydrogen atom, l(! + 

1)/r 2, has been replaced by the anomalous magnetic moment interaction, - ( A  + 
B ) / r  2. The dyon-monopole system is thus (in the state of lowest angular momentum) 
at large separations similar to a "hydrogen atom" with an "angular-momentum" 
term which may be negative or positive depending on the sign of K. Of course, 
unlike the case of the hydrogen atom, (3.3) here holds only in the exterior region (3.1). 

Finally, using [8] 

r r ( _ 2 ~ ) z  - F ( 2 v ) z  -~ ] ___ gl/2l . . . .  
L r ( ½ -  A - v) + F ~ -  A + ~,i.] ' (3.8) 

valid for small z, we get from (3.4) and (3.6) 

F -~ 21/2(A2 - B2)I/4N2pl/2 

r F ( - 2  v)2~(A_ 2 -  B 2) ~/2p~. F(2 v)2-~(A 2 - B 2 )-"/2p-~] 
x k  F(½- A - v-) ~- ~ + ~ - )  J '  (3.9) 

G = 2'/2(A 2 - B2)~/4(A + B)  -l  N2p -V2 

(½ + v ) F ( - 2 v ) 2 " ( A  2 - B2),/2 p ~ . (½- v ) F ( 2 v ) 2 - ~ ( A  2 - B2)-~/2p -~] 
x * J, 

provided that 

1 < p ~ ( A  2 - B 2 )  - 1 / 2  . 

(3.10) 

(3.11) 

4. Binding energy 

The binding energy e, defined by (1.9), is determined by matching the solutions 
in the interior and exterior regions as given in sects. 2 and 3 respectively. Under 
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the assumptions (1.9) and (1.10), this matching is to be carried out in the range 
(2.13), which is contained in (3.11). By equating (2.11) and (2.12) to (3.9) and (3.10) 
respectively, we get 

1 
N~Tr ~ -  v _ N212(A2_B2),/2+,,]1/2 F ( - 2 v )  

2 sin (Try) F(1 - v) F ( I - A  - v ) '  

-NI~"  ½+ v B2)1/2_,,]1/2 F(2v) 
2 sin (zrv) F(1 + v) - N212(A2- F(½-A + v)" (4.1) 

Therefore, the transcendental equation for the determination of e is 

(½- ~) r (1  + ~ ) r ( 2 ~ ) r ( ½ -  x - ~) 
(A2-  B2)" = (½+ v)F(1 - + ~) '  (4.2) 

or alternatively by the Legendre duplication formula 

A - B2~ ~ = ½ - v F F ( 1  + v)q2F(½ + v)F(½- A - v) 
~ /  ½+vLr(l----~-)J ~-~-v)F(½-A+u)" (4.3) 

As discussed at the end of sect. 2, (4.3) is valid only for A + B > _3. 
Eq. (4.3) simplifies when A is negative. In this case, v > ½, and hence the left-hand 

side is small. When this left-hand side is replaced by zero, the solution is simply 

- ½ -  A + v = - n ,  ( 4 . 4 )  

where n = 1, 2 , . . .  is a positive integer. By (3.5), the binding energy is in this case 

C2 
e - 2 ( n _ ½ + v ) 2 ,  (4.5) 

provided that ~" > 0, i.e., the Coulomb force being attractive. Physically, this merely 
confirms that attractive Coulomb interaction is needed to overcome the magnetic 
repulsion due to negative K. 

So far, (4.4) and equivalently (4.5) have been obtained under the assumption 
A > _3. Otherwise (4.3) cannot be used. This additional assumption is however not 
needed. The argument is as follows. For A < 0, v is real and larger than ½. Thus, by 
(2.6) and (2.7), the wave function G in the interior region is an increasing function 
of p. In order to connect to the wave functions in the exterior region as given by 
(3.4) and (3.6), the W~,,,(z) must be approximately a multiple of M~,,(z). This gives 
(4.4) immediately. Thus (4.4) and (4.5) hold approximately for all negative values 
of A, including those where v is a positive integer. 

For this case of values of A that are negative and not too small, the wave functions 
in the exterior region simplify: when eq. (4.4) is satisfied, we have [8] 

Wx~(z) = ( -1 )" - l (n  - l)!z 1/2+~ e-=/2L2,~_l(z), (4.6) 

where L2,~_l(Z) is a Laguerre polynomial. 
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5. Limiting cases of  small and large ~2/e 

Eq. (4.2), or equivalently eq. (4.3) is transcendental and hence can only be solved 
numerically. There are however a number of limiting cases where an explicit solution 
is possible. In this section we consider the two cases where IAI ~ 1 and IAI ~ 1. 

5.1. CASE OF SMALL ~'2/e 

With ~ = 0 and A > ~-, eq. (4.3) gives the spectrum obtained in ref. [5], 

E ,=o =~-~exp8 { 2 } M - -  
e°= M ~[Trn +~b-2~o] , (5.1) 

where the different levels are labelled by n = 1, 2, 3 , . . . ,  and with 

/3 =½(8A- 1) '/2 , 

~p = arg r (1  + i/3), 

0 = arg (½ + i/3) or cos 0 = I/~/8--A. (5.2) 

In the limit 

IU4-el ~ l ,  (5.3) 

or equivalently ]A],~ 1, corrections to the spectrum (5.1) can be determined perturba- 
tively. For this purpose, we expand 

F ( ½ -  X + i/3) ~- F(½+ //3)[1 - ~b(½+ i/3)A], (5.4) 

where 

d 
O(z) = ~z log r ( z ) .  

Using further the identity 

O( 1 + i/3) -~b(½- ifl ) = ilr tanh (7r/3), 

we obtain to lowest order in ~/~eo, 

e = e o  l + ~ - - t a n h ( ~ r ~ )  . 
42~o/3 

(5.5) 

(5.6) 

(5.7) 

5.2. CASE OF LARGE ~2/e WITH ATTRACTIVE COULOMB FORCE 

Physically, the two cases of Coulomb attraction and Coulomb repulsion are 
qualitatively different: with Coulomb attraction, there is an infinite number of bound 
states just like for the hydrogen atom, whereas with Coulomb repulsion there is at 
most a finite number of bound states. Since large ~2/e holds for the very weakly 
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bound states, these two cases, corresponding to )t ~, 1 and -A ~, 1, respectively, must 

be treated separately. 
For ;t ~- 1, we use the reflection formula and Stirling's formula to expand 

r(½-x-~) cosE=(x-~)] r(½+a-~) 
r(~-a +~) cos [~(x +~)] r(½+x +~) 

With the abbreviation 

where 

cos [~-(,~ - ~) ] .  
(5.8) 

! +  F ( I -~ ' o )  F(-2~'o) G = (~'A) 2~o2 Vo 
~ -  Vo r ( J  + Vo) F(2z, o) ' (5.9) 

Vo = ( J -  2A) u2 , (5.10) 

the eigenvalue equation (4.2) takes the form 

G cos [7r(A + Vo)] + cos [~'(A - ~'o)] = 0.  (5.11 ) 

This equation can be solved explicitly for A: 

, ] I =-~arc tan  cot 0rvo) + N ,  (5.12) 
L G - 1  

where N is some large positive integer. It should be noted that Vo may be imaginary 
(A > 1) in which case G is just a phase factor, or real (A < ~). In this case of Coulomb 
attraction and for highly excited states, the binding energy is then given explicitly 
as [cf. eq. (3.5)] 

{ '  ]} e = ½~2 N +- -  arctan [-~_-~ cot (~Vo) . (5.13) 
"rr 

These levels are thus shifted with respect to those of the hydrogen atom by an 
amount which depends on A and ~. 

5.3. CASE OF LARGE ~2/E WITH REPULSIVE COULOMB FORCE 

When the Coulomb force is repulsive (A < 0), bound states can exist only if the 
magnetic interaction is sufficiently attractive, i.e., if A > 1 and hence Z,o is purely 
imaginary. The most loosely bound ones among these states can be studied by an 
expansion similar to that of  subsect. 5.2. 

For -A ~, l, we thus use the Stirling formula to obtain 

r ( ½ - a - ~ o )  r (½+fa l -~o)__ la l_2~  ° [ 2Avo'~ 
r(½-x + ~o)- r(½+lal+ ~o) exp k - - ~ ] "  (5.14) 
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States with large -A are present only if 

- ~b + 2~ + arg F(½ + ifl) " f l  log (¼I~[A) = 7rN + 8, (5.15) 

where 8 is small and positive, and the definitions of (5.2) have been used. In terms 
of this 8, A is given by 

A = -(A/3~ - (5.16) 
\ 3 8 /  ' 

and hence the binding energy is 

3~'28 
e = 2Aft" (5.17) 

Eq. (5.15) also shows that the number of bound states with the lowest angular 
momentum j = Iql--~ is 

7r In ~-~ +O(1)  (5.18) 

for small negative ~. 

6. Normalization of  eigensections 

The normalization condition is 

o°r  dr{lf(r)l 2 +lg(r)l 2} = 1, (5.1) 

which in terms of  F ( p )  and G(p )  becomes 

A I o °  do {F2(p) + G2( p)} = 1. (6.2) 

Changing to "natural" variables for the two regions, and using the results of sects. 
2 and 3, we get 

dx 2 d 2 

- B  d M 
+2(AE_B2)~/~ dx W~. (x )+4  ~ ~ W ~ . ( x )  =-~,  (6.3) 

X 2 

where 

and Po satisfies (2.13). 

1 
X l = - -  , 

Po 

x2 = 2(A 2 - B 2 ) l / 2 p o  , (6.4) 
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Of the four integrals on the left-hand side of (6.3), only one is of importance, 
and hence 

N ~ -  2 M ( A 2 -  B2)1/2 
(6.5) 

.AI,,, ' 
where 

Ix,, = dx W~,,(x).  (6.6) 
2 

The argument for this approximation is as follows. First, by (4.1), N 2 and N 2 
are related by 

N~ = 2 ( a - B~ U2[F(½_ A + v)F(½ - )t - v)] -~ N~. (6.7) 
cos ( wv) \ A  + e ]  

Because of the assumption (1.9) of weak binding, it follows from (6.7) that N12 is 
much smaller than Ng. Next, consider the case where v is purely imaginary. In this 
case, the integration to the small arguments xl or x2 can give at most a logarithmic 
factor. Therefore (6.5) follows. Finally, when v is real, the interior wave functions 
in terms of Bessel functions are non-oscillatory, while the exterior ones in terms of 
Whittaker functions are oscillatory. Therefore, in this case, the major contributions 
must come from the exterior region, and the approximation (6.5) is again obtained. 
Note that the integral involving [d Wx~(x)/dx] 2 is smaller because 

A - B  -z 
A + B X 2  < l .  (6.8) 

We proceed to evaluate the Ix~ of (6.6). First, we replace the lower limit of 
integration by 0: 

io o Ix,, = dx  W~v(x) .  (6.9) 

This is clearly justified for A + B > _3; it is also justified for negative A because of 
(4.4). In order to evaluate this integral (6.9), we note that 

i w L ( x )  - A_ w L ( x )  
x 

d F ! _ v 2  2 2 d 2 
- G L k x W L ( x ) - 4  x 

+ WA~(X)~x Wx~(x)], (6.10) 

since Wx~(x) satisfies the differential equation (3.3). We then use [9] 

fo ° dx 2 zr ~(½- )t + v) - ~(½- )t - v) 
-~  Wx,,(x) = sin (2try) F(½- )t + v)F(  l -  A - v) ' (6.11) 
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take the limit of the fight-hand side of eq. (6.10) as x-~ 0, and find 

27r 
,., ,I;r(½- ~ + ~ ) r ( ½ - ~ -  ~)1-'{2~ +~r~(½- ~ + ~) -  ~ ( ½ - , -  ~)1}. lx~ sin tzTrv) 

(6.12) 

A more direct, but somewhat subtle way of obtaining this result is given in the 
appendix. 

The normalization constants are thus given by 

N2 _ sin (2Try) [2M(M - E)]I /2F(½-  a + v ) r ( ½ -  h - v) 

x{2v + a[~l,(½- h + v ) -  ~,b(½- a - v)]} -l , (6.13) 

[ 2 M ( M - E ) ]  1/2 

~v~= (._½+ ~)~._ 1)!r(. +2~)' 

_~2 = (_1) . [2(A2_B2)I/2+,,]l/2 r ( n  +2~,) 
r ( v ) F ( 1  +2v)" 

(6.16) 

(6.17) 

7. Numerical results 

In this section we shall give a few numerical results. These serve to supplement 
those given in paper I[2], and also to determine how accurate the weak-binding 
approximation is. 

In table 1 we present binding energies for some of the lowest states, considering 
positive as well as negative values of A (or K), and for a few values of~, corresponding 
to Coulomb attraction as well as repulsion. The agreement between the values 
obtained in the present limit of weak binding and those obtained from the accurate 

together with 

and hence 

together with 

N1 4 v  [2(A2 - B2)1/2+~],/2 F ( - 2 v )  
-~2 = 1 - r ( ~ ) r ( ½ -  x - v)" (6.14) 

Note that the first equation of (4.1) is used to get (6.14). The second equation is 
not suitable for this purpose because it fails when v is a positive integer. 

Eqs. (6.13) and (6.14) are the general formulae for the normalization constants; 
they are valid for both real and purely imaginary values of v. For negative values 
of A, they simplify in much the same way as in sect. 4. By (4.4) 

r(½-,~ +,,) (-1)" 
(6.15) 

g,(½-a + v) ( n -  1)!' 
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approach of  paper I is in general excellent. Exceptions consist of the cases where 
our assumptions are not satisfied, e.g., where the binding gets fairly strong (large 
A, n = 1) or where ~ is comparable to A. 

Some wave functions are shown in figs. 1-4 for the case of  Coulomb attraction. 
For fixed ~ = a, two positive values of  A are considered in figs. 1 and 2. It is seen 
that for the larger value of  A the wave functions do not extend as far out, due to 
the stronger magnetic attraction. Also, the higher states ( n = 3 )  have a marked 
Coulomb distortion; their outer oscillations have much shorter "per iod"  (in log p) 
than the inner ones. (Compare the inversion symmetry valid for the monopole case 
[5].) 

Similarly, figs. 3 and 4 show the corresponding wave functions for A negative: 
A = -½ in fig. 3 and A = - 1 in fig. 4. In these cases the Coulomb interaction provides 
the only attraction, the magnetic interaction being repulsive. It should be noted 
that, in contrast to the cases of  positive A (or K) considered in figs. 1 and 2, the 
wave function F now has one node less than G. (Also, it is seen that no problem 
arises for A < - ~ ;  compare the discussion at the end of  sect. 4.) 

In figs. 1-4, exact wave functions are also given, as obtained numerically by the 
method described in paper I. The agreement is excellent. 

For the case of  Coulomb repulsion, we show in fig. 5 the relationship between 
values of  A and ~" that correspond to the onset of  various levels. These curves are 
given by eq. (5.15). From these curves one can also read off how many bound states 
exist for some specified values of  A and ~ as the number of  curves that lie "outside" 
the point (A, ~'). 

The curves given in fig. 5 were obtained under the assumption that I~1": 1. The 
corresponding exact curves, valid also for larger values of  -~, have been shown, 
too. They are obtained as follows. Consider some value of ~" and B = A (for zero 
binding energy). Then the exact differential equations (1.8) can be integrated out 
from some small value of p[2] and the asymptotic behaviour determined. By adjusting 
the value of  A, one can find the values A, that correspond to the bound states 
labelled n (where F and G have n nodes and are bounded as p--> oo). Such points 
(An, ~) define the exact curves given in fig. 5. 

8. Range of validity 

Even for the states of minimum angular momentum j = Iql 1 ,  the limit of  weak 
binding treated here is only one of the interesting limits. Another interesting limit, 
A >> 1, is dealt with in papers III and IV for the monopole and dyon cases respectively. 

For clarity of  presentation we have here assumed that [A[ is neither small nor 
large [see eq. (1.10)]. Actually, the method employed does not require this assump- 
tion. In this section, we discuss the conditions for the validity of  the present procedure, 
including that of  the basic formula (4.3), when A > - 3 .  Without loss of  generality, 
A and B are taken to have the same sign. 
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_1¢f 3 
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_16 2 

- I  
-10 

-1 
0 2 I. 6 B 10 

A 
Fig. 5. Critical values of  (7 < 0 which determine the onset of  various levels n, as a function of A. The 
dashed curves are determined from eq. (5.15), which is valid only for I~ ' [~/A.  The solid curves are 

exact, i.e., they are valid also for larger values of  I~1. 

First, the validity of the approximation (2.3) depends on the magnitudes of ¢ and 
A -  B, but not on that of A. Let 

/30 = 1 +IAI  '/2 , (8 .1 )  

then (2.10) holds when 
x 2 </30. (8.2) 

Therefore (2.13) should be generalized to 

/301/2 ~ p '~ min [l~l-', ]A - BI-'/2]. (8.3) 

This is non-empty if 

I~l ~/3A/2 , (8.4) 

I A -  B] ~/30. (8.5) 

With reference to sect. 3, (3.1) is to be replaced by 

p ~, max [IUAh IA1-1/2] (8.6) 

in order for the approximation (3.2) to hold in the exterior region. Since 

A 4A2+1 +2u 2 3 7 
Ma~(z)=z '/2+~ 1 l+2-------~zq 16~+-~-(i-~-~'v)z +O(z ) l  (8.7) 

J 
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for small z, (3.8) holds when 
z ,~ min [/3o/[A l,/3~/2]. (8.8) 

Therefore the generalization of (3.11) is 

max [I'/AI, IAI-1/2]'~ p ~ m i n  [ ]~[ ,  (\A(A-B)]/30 ]1/21j. (8.9) 

This is non-empty when (8.4) and (8.5) hold, and furthermore 

151 ~/3otAI -~/2 , (8.1o) 

ff21a- al  ~/3olal • (8.1 l) 

In order to apply the procedure of this paper, the ranges (8.3) and (8.9) must 
overlap. This requires 

max [IS~A[, IA[ -~/2] ~ min [1~1 -~, [a - BI-~/2], (8.12) 

/3o'/2 ~min [lfAl, (A( ~A--°°_ B)) '/2 ] . (8.13) 

The inequality (8.12) implies 

I~I~IAI '/~, (8.14) 

I A -  BI "~ IAI , (8.15) 

which is the original condition of small e. Similarly, (8.13) implies that 

I~'1 ~/3g/~l lAI ,  (8.16) 

I A-  BI "~/3~IIAI. (8.17) 

It only remains to simplify the conditions (8.4), (8.5), (8.10), (8.11) and (8.14)- 
(8.17). First, (8.5) and (8.14) imply (8.11). By (8.1) the conditions (8.4), (8.10), 
(8.14) and (8.16) give simply 

I~'1 '~ min [IAI ~/2, (1 +IAU~)3/Z/IAI], (8.18) 

while (8.5), (8.15) and (8.17) give 

Ia - BI ~ min [Ial, (1 + Ial~/2)2/Ial]. (8.19) 

These are the required conditions. 
It is somewhat more explicit to rewrite these conditions (8.18) and (8.19) as 

allowing the following two cases: 
(i) When IAI = O(1), then the conditions are 

A-B 
~ , ~  1, (8.20) A+B 
I~'1 ~ IAI I/2. (8.21) 
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(ii) When A ~- 1, then the conditions are 

The conditions (8.22) and (8.23) 
paper IV. 

469 

IA- BI ~ 1, (8.22) 

I~'1 ~ A-t~4. (8.23) 

are rather stringent. They will be relaxed in 

Appendix 

We shall here present an alternative evaluation of  the normalization integral 

Ia~ = I ;  dx W 2 ~(x). (A. 1) 

An integral of  this type is given in ref. [9] in terms of  generalized hypergeometric 
functions: 

J ~  = d x x  p- '  W2 (x )  

F(1 +p  + 2 v ) r ( 1  + p ) F ( - 2 v )  

r ( ½ - ; t  - ~)F(~ + p -  ~ +~)  

X 3 F z ( l + p + 2 v ,  l + p ,  ½ - A + v ; l + 2 v , 3 + p - A + v ; l ) + ( v ~ - p ) .  (A.2) 

For the left-hand side to be defined one must require [9] 21Re vl < Re p + 1. 
We need this integral for p = 1. The above condition is satisfied for A > _l,  to 

which we restrict the present discussion. However, the right-hand side is not defined 
for p I> 0. This may be seen by writing it out in terms of F-functions: 

- - 7 / "  

J~v - -  sin ( 2 ~ i  IF(½- ;t + ~ ) r (½-  ;t - ~)3-' 

[ F ( l + p + 2 v + n ) F ( l + p + n ) F ( ½ - A + v + n )  (v-~ - v)]  (A.3) × 
n = O  

Using the Stirling formula we find that the above sum is convergent only for p < 0, 
whereas we need it for p = 1. 

Here comes the subtle point. We need only the part of the sum that is odd under 
( u ~ - v ) .  That part is convergent, at large n and p = 1 it goes like 1/n  2. However,  
it converges to an incorrect result. The  reason is that if one sets p = 1 in eq. (A.3), 
one drops a term that for large n behaves like 

(p - 1)• n -2÷p , (A.4) 
tl 

and has a f inite limit as p ~ 1 -. 
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Let us now evaluate these two contributions to J~,. We define the two sums $1 
and $2 through 

J ~  - sin-Tr(2rr9) IF(½- A + 9)F(½- A - v)]-I(S1 +$2) , (A.5) 

where the first sum, S~, is obtained from (A.3) by putting p = 1: 

[r (2+29+n)F(2+n)F(½-A +u+n) (v~_v)']j 
s ,  = 5 0  + 29 a + 9 + . ) r ( 1  + .) 

(1 +n)(1 +29  +n )  ( 9 ~  - 9 ) ]  (A.6) 
+ . )  • 

n = 0  

Resolving the ratio in partial fractions, we find convergent sums that are recognized 
in terms of  ~b-functions: 

s ,  = - 2 9 -  2 x [ ~ , ( ½ -  a + 9) - ~ ( ½ -  a - 9 ) ] .  (A.7)  

The second sum will be of  the form (A.4). In order to identify it we use the 
Stirling formula to expand 

F(b+n) n "-b 1+ [ a ( a - l ) - b ( b - l ) ]  , (A.8) 

valid for n ~, lal, Ibl. The "1"  corresponds to the sum S~, whereas the subdominant 
terms have a power n -2÷p and coefficients that add up to 2 ~ , ( p - I ) .  Thus 

S 2 ~ -  lim ~ 29(p - l )n -2+p . (A.9) 
p - ~ l -  n 

This may be evaluated in the following way: 

$2 = 29 lira_ (p - 1) +finite = - 2 9 .  (A.10) 
p-~l I 

Adding (A.7) and (A.10) we see that the expression (A.5) is the same as that in eq. 
(6.12). 
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