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Ground state meson and baryon masses are numerically calculated in lattice QCD with unquenched Wilson fermions on 
an 8 4 lattice. 

The numerical calculation of the hadronic mass 
spectrum is one of the great challenges in lattice quan- 
tum chromodynamics. During the last years there was 
continuous progress in improving the calculational 
methods and in understanding and controlling the er- 
rors. Up to now the Monte Carlo calculations were 
done in the "quenched" (or "valence") approximation 
in which virtual quark loops are omitted (for an incom- 
plete list of references see refs. [1-3]  ). The error in- 
troduced by the quenched approximation can be of 
the same order as the other errors investigated recent- 
ly, like finite lattice size effects, effects of the lattice 
fermion doubling etc. Therefore it is important to 
study the effect of virtual loops, too. 

In this letter we present the results of a calculation 
of the simplest hadron masses (n, p, p and A) on an 84 
lattice, including light virtual quark loops. The Monte 
Carlo updating with light dynamical quarks was per- 
formed by the hopping expansion method described 
and tested in ref. [4]. The hadron masses were also 
extracted by hopping expansion using the numerical 
iterative procedure [2]. In order to have a direct com- 
parison with the quenched approximation, we per- 
formed a high statistics quenched calculation on the 
same sized lattice at/3 = 6/g 2 = 5.70. First we shall de- 
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scribe this calculation and compare it to some previous 
quenched calculations. Then we shall discuss some 
aspects of the extrapolation to zero dynamical quark 
mass in the unquenched case. Finally, the results with 
light dynamical quarks will be presented. 

High statistics quenched calculation on an 84 lattice. 
For the bare coupling we have chosen the value/3 

= 5.7, where several previous results in the quenched 
approximation are available. The physical size of the 
84 lattice at this/3-value is not unreasonably small, 
about 1.7 fm, because recent/3 = 5.7 string tension 
measurements [5,6] gave for the lattice spacing a 

0.444/V~ ~- 0.21 fm. The quark propagators were 
determined in 32nd order of the hopping expansion 
according to the "copied gauge field" method [2]. 
This method allows for a free (i.e. without boundary) 
propagation of the quarks over the periodic gauge field 
background and therefore eliminates a part of the fi- 
nite size effects. The gauge configurations were pro- 
duced by the Cabibbo-Marinari heat bath updating 
[7]. After 1000 equilibrating sweeps 4 initial points 
were chosen randomly for the determination of the 
quark propagators on every 50th gauge configuration. 
The 32nd order It- and p-meson propagators were built 
up from altogether 80 such points using the local 
meson operators t~e75 qJ and 573 qJ, respectively. From 
40 initial points also the proton- and A-propagators 
were constructed in the highest possible, actually 33rd, 
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Fig. 1. The dependence of  hadron masses on the quark mass 
parameter # in the quenched approximation at # = 5.7 on an 
84 lattice. 

order. The local operators for the proton and A were 
q~(ffTc75 ~b) and ff(qjTc73 ~), respectively. This 
quenched mass calculation took 120 CPU h on the 
Siemens 7.882 computer  at the University of  
Hamburg. 

The obtained dependence of  the hadron masses on 
the bare quark mass parameter/a = (2K)  -1  is shown 
in fig. I .  (As usual, K = (8 + 2amq) -1  = (2/a) -1  is the 
hopping parameter.) The points with horizontal error 
bars or, in the case of  small errors, without error bars 
are the results of  the Pad6-analysis of  the propagator 
pole position as described in ref. [2].  The points with 
vertical error bars give the masses obtained from the 
ratio of  the time-slices 8/7 in the case of  mesons and 
6/5 in the case of  baryons. The ratio of  two time- 
slices can be determined with good accuracy from the 
hopping expansion, if the hopping parameter series 
corresponding to the two time-slices are first divided 
by  each other and then a Pad4-analysis is applied to 
the hopping expansion coefficients of  this ratio. As 
can be seen, the two ways of  determining the masses 
give consistent results. For small masses, however, the 
first method usually leads to smaller errors. 

The results for the masses at the critical hopping 
parameter value 

Kcr = 0.1696 -+ 0 .0016 ,  

/acr = 2.948 -+ 0 .027 ,  

where the pion mass vanishes, are 

amp = 0.57 +- 0.01 , 

(1) 

amp = 0.97 + 0.14 = amp(1.70 + 0 .27) ,  

a(m/, - mp) = 0.25 + 0 .08 .  (2) 

These numbers are, within errors, consistent with the 
ones obtained by the 32nd order hopping expansion 
on a 164 lattice at the same/3-value [2,3]. They also 
agree with the findings of  the Edinburgh group 
(Bowler et al. [ 1 ] ), where the/3 = 5.7, 84 configura- 
tions were copied twice and the hadron propagators 
were determined by a Gauss-Seidel iteration method 
on the resulting 83 × 16 lattice. Our statistical errors 
are smaller, because these earlier calculations were 
based on a smaller number (between 11 and 16) of  
hadron propagators. The errors shown in fig. 1 have 
been determined from the Pad6.analysis (the devia- 
tions seen in the different Pad6-approximants of  order 
30-33) .  In addition, there is a relatively large configu- 
ration-to-configuration fluctuation in the horizontal 
position of the whole picture, which is strongly corre- 
lated to the fluctuation of  the plaquette expectation 
value. This is expressed by the relatively large error in 
/acr (or Kcr ). The shift is, however, almost entirely 
horizontal, i.e. the mass values at/acr are changing very 
little. Due to the smaller errors near/acr, the slope of  
the curve (am~) 2 at / lcr  is now better determined than 
in ref. [2]. We obtained, for (arn~r)2 ~< 0.25, 

(am~r)2 = (44 + 5)(Kcr - K )  

= (2.5 -+ 0 . 3 ) ~  - / a c t  ) . (3) 

The slope here is ~25% smaller than the one quoted 
in ref. [2], therefore the scale ratio between/3 = 5.4 
and 5.7 obtained from the quark masses could be quite 
different from the one given in ref. [2], and therefore, 
might even be consistent with scaling. 

The larger errors for the baryons in fig. 1 show 
that the Pad~-table is less stable for baryons than f o r  
mesons. In fact, for the baryons there is a systematic 

262 



Volume 145B, number 3,4 PHYSICS LETTERS 20 September 1984 

splitting between different groups of Pad6 approxi- 
mants: those with denominators less than, say, 12th 
order have a tendency of giving higher masses, whereas 
those with denominators higher than, say 20th order 
usually center around the lower end of the error bars 
given in fig. 1. This could be due to the effectively 
lower order of the hopping expansion (1 l th order per 
quark, instead of 16th order per quark for the 
mesons). In general, as can be seen from eq. (2), the 
results for the masses in the quenched approximation 
are unsatisfactory mainly because the proton-to-rho 
ratio is too large. In fact, the lattice spacing obtained 
from the proton mass is in agreement with the recent 
string tension values at/3 = 5.7 [5,6], but the p-meson 
mass comes out too low. 

Extrapolation to zero quark mass. The hadron 
spectrum without heavy quark states can be described 
to a good approximation by massless u-, d- and s- 
quarks. Phenomenologically this is supported by the 
success of the approximate global chiral SU(3) 
X SU(3) symmetry. On the lattice with Wilson-fer- 
talons this implies that near the critical value of the 
hopping parameter K = Kcr all hadron masses, except 
for the pseudo-Goldstone pseudoscalar bosom, should 
be slowly varying functions of the hopping parameter. 
This is known to be true in the quenched approxima- 
tion: in fig. 1 the p., p- and A-masses are, indeed, 
slowly varying near/~ =/acr. Moreover, we know from 
previous calculations, that the physical value of the 
hopping parameter for the strange quarks is rather 
near to K u,d - Kcr" For instance, for/3 = 5.7 we have 
[2] K s = 0.163+0.002. Therefore, as a reasonable first 
approximation ]-r~ ~ calculation with dynamical quarks 
one can take in the fermion determinant Nf = 3 mass- 
less flavours corresponding to the critical hopping pa- 
rameter K u = K d = K s =- Kq = Kcr. 

The odd number of light dynamical quarks in the 
fermion determinant may seem dangerous for the 
Monte Carlo calculation, because the Nf = 1 fermion 
determinant det(1 - KqM) could become negative for 
some hopping parameter values. (This danger is non- 
existent for an even number of degenerate flavours, 
because the squared Nf = 1 determinant is, of course, 
always positive.) Near Kq = 0 there is, however, no 
problem because det(1 - KqM) is positive. Since the 
hopping expansion is done for the effective action 
- ln  det(1 - KqM), the positivity of~the fermion deter- 
minant is guaranteed as long as this expansion con- 
verges. 

Compared to the quenched approximation, a com- 
plication with dynamical quarks is that the gauge con- 
figurations depend on two parameters/3 = 6/g 2 and/.tq 
= (2Kq) -1,  instead of only on/3. In the special case of 
massless dynamical quarks the lattice spacing is a func- 
tion of one parameter, a = a(g), only, since/lq and/3 
are related by/aq =/acr(g ). For/3 ~ o o  (g ~ 0) this de- 
pendence is given by the two-loop renormalization group 
formula 

a(g)Alatt = (/30g2) -t31/(213°2) exp [-1/2/30g 2] ; 

/30 = (4rr)-2(~!Nc - ~Nf) ,  

/31 = (47r)-4 I a 4 ~  2 L~-,c - ~ N e N f -  (N2 - 1)Nf/Ne] , (4) 

here for SU(Nc) colour with Nf massless flavours. This 
relation holds along the curve Per in the (/3, pq)-plane 
(see fig. 2). The physically relevant c u r v e / d p h  , with 
small but non-zero quark mass mq is close to Per (here 
we neglect, for simplicity, the mass differences of u-, 
d-, s-quarks). The curve/dph can be defined, for in- 
stance, by the requirement that the pion-to-proton 
mass ratio m d m  p is equal to the experimentally ob- 
served value "0.148. 

The other curves of constant mass ratios are param- 
etrized by different renormalization group invariant 
quark mass values. In particular, for very heavy quarks 
(/aq ~, 4) the effect of the virtual quark loops is negligi- 
ble. In this limit, for/3 ~ ~ the two-loop renormaliza- 
tion group formula (4) holds with Nf replaced by zero 
in/30 and/31. In general, the renormalization group 
equation in the (/3, pq)-plane has the form (for physi- 
cal quantities without wave function renormalization) 

p.q = - (2Kq) "I 

Fig. 2. The critical line with zero quark mass/~cr, the physical 
line with small quark mass/aph and a line corresponding to 
some general quark mass ~c in the (~, #q)-plane. 
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[--aa/Sa +/3g(g,l.tq)~/Og+/3z(g,l.tq)8/Slaq]F = 0. (5) 

The differential equation for the curves/~q =/ac(g ) of 
constant physics (i.e. constant mass ratios) is 

dPc/dg = (3z (g, lac(g) )/ /3g(g ,/tic(g)). (6) 

Along such a curve the single variable/3-function is giv- 
en by/3c(g ) = 13g(g,/ac(g)). 

The renormalization group invariant quark mass can 
be defined in lattice perturbation theory [8-11] ,  but 
in the intermediate coupling constant range, where 
Monte Carlo calculations can be performed, perturba- 
tion theory is not applicable. In particular, scaling in 
general can be valid to a rather good accuracy in some 
range of coupling parameters where asymptotic scaling 
(corresponding to perturbation theory) is still not val- 
id. A good example of this behaviour has recently 
been seen in the case of the quark-antiquark poten- 
tial in SU(2) gauge theory [12]. In this intermediate 
range the renormalization group invariant mass/~q has, 
in principle, a well defined meaning, but the perturba- 
tive formulae cannot be applied to it. For practical 
purposes it is, however, possible to introduce/~q by, 
say, the lowest vector-meson mass m 1- like 

m 1- = 2r~q + E(Nq) .  (7) 

For heavy quarks (like c, b or t) E(rSq) can be taken, 
to a good approximation, from the Schr6dinger equa. 
tion assuming some quark-antiquark potential. For 
light quarks (u, d and s) we can take, as an empirical 
value, E(rSq) - 0.75 GeV which agrees well with the 
p- and ~-meson mass. Combining this together with 

arSq = ln(1 +/aq -/~cr) 

= ln(1 + 1/2Kq - 1/2Kcr ) (8) 

(dictated by the analogous formula for free Wilson 
fermions), we obtain for the lattice spacing near/~q 

=/dcr: 

a ~-- [am I- -- 2 in(1 +/aq -/acr)]/0.75 GeV -1 (9) 

In Monte Carlo calculations we have tO extrapolate 
from the actually measured points (/3i,/aqi) (i = 1,2, ...) 
to the curve with zero quark mass/~cr" This extrapola- 
tion is easiest if a line in the (/3,/aq)-plane is chosen, 
where some combination of the masses behaves linearly. 
Since from broken chiral symmetry we know that 
(am~r)2 is linear near Per, it is good to keep the point, 

where the pseudoscalar mass vanishes, fixed. Accord- 
ing to an approximation formula [13] for the critical 
hopping parameter we have Kcr --- (8 x/rW) -1 . Here W 
= ~ Tr [] is the one-plaquette expectation value. This 
suggests that a good way to choose the points (/3i,/aqi) 
is to keep the plaquette expectation value (at least ap- 
proximately) constant. One can also define in the 
(/3,/aq)-plane an effective/3-value ~eff by 

W(/3,/gq) = I¥0(fleff), (10) 

where W 0 is the plaquette expectation value in the pure 
gauge theory. According to the above reasoning one 
should keep/3el f constant along the line of extrapola- 
tion. 

An estimate for fleff can be obtained from the ap- 
proximation of the fermion determinant found in ref. 
[13]. With Nf flavours on an 84 lattice we have 

~eff ~ ~ + Nf( 48K4 + 2112 I~K 6 

+ 81984.0.9937 W2K 8 + 3.072 "106"0.9650 W3K 1° 

+ 1.1262" 108-0.8784 W4K 12 + ...). (1 I) 

Here the numerical coefficients are the expansion co- 
efficients of the free fermion effective action. The first 
numerical factors correspond to the infinite lattice 
[14] and the second factors are correcting for the 84 
lattice. 

Monte Carlo results with dynamical quarks. We de- 
termined the ~r-, p-, p- and/X-masses in two points of 
the (/3,/aq)-plane. After some test runs, the points were 
chosen at 

/3= 5.4, Kq = 0.163 ~ q  = 3.0675 ...): point A, 

/3 = 5.3, Kq =0.168 ~q  = 2.9762...): point B. 
(12) 

The 84 lattice was first equilibrated by the pure gauge 
SU(3) Wilson action at/3 = 5.6, which roughly corre- 
sponds to the effective/3-value of point A as given by 
eq. (11). Then the unquenched updating in the point 
A was started with the ratio of quark determinants cal- 
culated up to the 12th order of hopping expansion. In 
the first 80 sweeps the expansion coefficients were 
actually calculated up to 8th order and the 12th order 
determinants were determined by a correction factor, 
as described in ref. [4], using the measured correlation 
between the coefficients. In the last 6 sweeps genuine 
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Table 1 
I 

Wilson-loop expectation values Wi/-= ~ Tr Cif in the points A and B (see eq. (12) for parameters). The numbers in parentheses are 
the estimated errors in last numerals. In the last line the Wilson-loop expectation values on the configurations used for the 
quenched calculation at ~ = 5.7 are given. 

Wll W12 W13 W22 [4/23 [4/33 

A 0.5298 (9) 0.2996 (12) 0.1719 (11) 0.1099 (10) 0.0428 (8) 0.0128 (7) 
B 0.5428 (10) 0.3205 (12) 0.1912 (13) 0.1295 (8) 0.0546 (9) 0.0175 (9) 
N f = 0  

fl = 5.7 0.5468 (10) 0.3218 (11) 0.1922 (11) 0.1298 (8) 0.0557 (7) 0.0186 (7) 

1 2 t h  order determinants were taken at every link. The 
masses were then determined by the same method as 
in the quenched calculation, choosing 10 random ini- 
tial points for the 32nd order quark propagators on 
each of  the last 5 configurations. Besides, a large num- 
ber of  planar and non-planar Wilson loops were mea- 
sured on the same configurations, in order to obtain 
information on the static energy of  an external quark 
-ant iquark pair. The expectation value s of  the sim- 
plest Wilson-loops are given in table 1. We checked in 
both points that the off-axis Wilson loops are, to a 
good approximation, consistent with the rotation in- 
variance of  the static energy, suggesting that points A 
and B are in the scaling region. More results on the 
static q~l-energy will be given in a later publication 
[15].  

The obtained hadron masses, as a function of  the 
quark mass parameter/~ = (2K) -1  in the quark propa- 
gators, are shown in fig. 3. In the point, where the 
quark mass in the determinant and in the propagators 
coincide: ~q =/~ = (0.326) -1  (i.e. in point A of  the 
(/~,/aq)-plane) we have 

am~r=0.69-+O.O1, am o=0.95+0.01,  

amp= l.62_+0.02, am a=l.74-+0.02. (13) 

These numbers correspond to some non-zero quark- 
mass (about r~q ~ 70 MeV, as we shall see later), there- 
fore they cannot immediately be compared to the 
quenched results eq. (2). At a qualitative level one can, 
however, see that the p-curve lies relatively higher in 
fig. 3 than in fig. 1. Comparing eq. (13) e.g. to  the 
point/~ = 3.126 in fig. 1, which has the same distance 
to the critical point with m~r = 0, the value of  
(mp - m~r)/m = is there 0.164, whereas in eq. (13) it is 
0.377. The pip mass ratio is also somewhat smaller 
(about 5%) in eq. (13) than at/a = 3.126 in fig. 1. 

a m  
J~ 

2.0- 

Nf  =3 

Kq=0163 I.tq = 3 0 6 ? 5  ...... 

1.5- 

~ J  

1£- 

05-  

29 ,o 4, ; 

Fig. 3. The hadron masses as a function of the quark mass # 
in the propagators at # = 5.4 and ~q = (0.326) -1 . 

Therefore, the effect o f  virtual quark loops corrects 
tlae quenched approximation in the right direction. A 
more quantitative statement can, however, be made 

only if more information in the (/3,/aq)-plane is avail- 
able (for instance, for the lattice spacing, quark mass 
etc.). 

For the updating in our second point (point B in 
eq. (12)), we started with the last configuration in 
point A repeating the same procedure as before, with 
80 + 6 sweeps and measuring the masses. The ob- 
tained Wilson-loop expectation values are given in ta- 
ble 1, and the masses for/a = #q = (0.336) -1  are: 
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= n  q+O.1 =0.65 + 0 . 0 5 ,  amTr v . ,_0 .2  , amp 

amp = 0.85 + 0 .15 ,  a(m A - m p )  = 0.24 + 0 .09 .  
(14) 

The larger errors here are due to the fact that/.tq is al- 
most equal to the critical value/2cr, where the pion 
mass vanishes. In addition to the larger errors of  the 
masses near/~cr, our approximation to the quark de- 
terminant is also deteriorated somewhat, in compari- 
son to point A. There the estimated average error of  
the determinant ratios is less than 10% in the first 80 
sweeps, and less than 6% in the last 6 sweeps. In point 
B the corresponding error estimates are, respectively, 
about 15% and 10%. Therefore, point B lies, within 
our errors, on the critical line/2cr with zero quark 
mass. Using this information, the non-perturbative 
quark mass and the lattice spacing can be obtained in 
both points from eqs. (8), (9): 

r~q(pOint A) m 70 MeV,  

a(A) -- (1.08 + 0.06) GeV -1 , 

~q(poin t  B) - 10 MeV,  

a(B) = (0.87 + 0.09) GeV -1  . (15) 

Assuming the validity of  eq. (4) in point B would mean 
Alatt(Nf = 3) = (1.5 -+ 0.3) MeV or [16,17] "a=lam°m 
-- (160 + 30) MeV. 

In conclusion, first of  all we would like to stress 
that the present calculation demonstrates the possibil- 
ity of  the numerical determination of  hadron masses 
with light dynamical quarks. The required amount of  
computer time is large but not prohibitive: the updat- 
ing for the two points (A and B) took  about 190 CPU 
h on the CYBER 205 at the University of  Karlsruhe, 
and the mass determination on the configurations re- 
quired, in addition, about 150 CPU h on the Siemens 
7.882 at the University of  Hamburg. The results in 
point A with quark mass ~ q  ~ 70 MeV show, that the 
effect of  light dynamical quarks decreases the pip 
mass ratio and increases the spin splitting. The mass 
values in point B, corresponding to ?nq ~ 10 MeV, are 
in agreement with the experimental numbers, although 
the errors are still somewhat large to draw a definite 
conclusion. A striking consequence of  eq. (15) is the 
relatively fast change of  the lattice spacing within a 

rather small range of  hopping parameter values: for in- 
stance, for fixed ~ = 5.4 this could mean more than a 
factor 1.5 change between K = 0.163 (tSq ~-70 MeV) 
and K = 0.167 (rSq --- 0 MeV). 
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for supporting us with computer facilities for the part 
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