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Abstract. We generalize the class of Abelian models of paper I which lead to a 
linear potential between opposite charges. The electric field E is here taken as a 
power series in the electric displacement D raised to the o t~ power. We solve to 
first order the case of two opposite static point charges asymptotically for large 
separations. 

1. Introduction 

In a recent paper [1] (hereafter referred to as I), we investigated classical models of 
confinement. These models are essentially those previously studied by Pagels and 
Tomboulis [2] and more extensively by Adler and Piran [3]. They can be viewed 
as ordinary electrostatics with a field-dependent dielectric constant. 

In I we considered the case 

E = f ( D )  = E  o + biD + b2D 2 + . . . .  (1.1) 

with b 1 > 0. Without loss of generality we can set E0 = bl = 1. For two unit static 
charges of opposite sign, separated by a large distance 2R, it was found that the flux 

is confined within an ellipsoid of revolution with semi-minor axis (2RIVe)  1/2, 
leading to a linear potential with a correction of order In R. We also studied briefly 
the more general case, 

E = f ( D ) =  1 + D ' +  . . . .  (1.2) 

with a > 0 and we showed that the transverse dimension of the confinement 
domain increases as R 1/~1 +~) for large R. 

It is the purpose of the present note to examine further the case (1.2). This more 
general ease is of interest in view of the uncertainty in the shape of the confinement 
domain for a realistic theory such as QCD. 
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2. Zeroth-Order  Solut ion  

With the charges located at _+ R along the z-axis of a cylindrical coordinate system, 
we can express D in terms of a flux function 7-'(z, q) as [3], 

1 
oD~= ~-~oT, ~D°= 2 ~ T "  (2.1) 

This 7-' satisfies the partial differential equation [Eq. (2.11) of I] 

L[(a3') +(a#,) ] J [(az~gl)2.~_(a t/.#)2]l/2j =0, (2.2) 

with the boundary conditions given by (2.10) of I. If we express 0 as a function ofz 
and 7 s, viz., 

Q = 0(z, 70, (2.3) 

(2.2) becomes 

- -  9(D) a=Q. sgn(0~,~) 
[1 + (~zQ)2] 3/2 

where 

f(D) 
g(D)= - -  - D .  (2.5) 

if(D) 

In the limit of large R, the weak field approximation f(D) = 1 + D <' and, hence, 

g(D)=a-lD 1-~ (2.6) 

can be applied far away from the charges. In this region, ~,0 < 0 and (2.4) simplifies 
to zeroth-order in R: 

The separation of variables 

leads to the results 

and 

Z= 

1 
(2n)" &s,~ ~" ~ = 0 .  (2.7) 

o(z, ~') = Z(z) GO'), (2.8) 

2R / 1  - Z 2<' + - - - 113 ) 
2'  2; 2 ; 1 - Z  2" , (2.9) 

(7('s') = (~<T)-  ~i~ ©t' _FF ~+1 

n(~+ lyl2V( 1 + 1~] 
\2 .  2]/ 

h _ 7s  l i 2  (2 .10)  
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where F is the hypergeometric function. For 0- = 1/n (n = 1,2, 3, ...) this hypergeo- 
metric function is elementary. 

It follows from this explicit solution that 
/ -2 \~+1  

kg(Z, Q) = / l  - Z ~ )  ° , (2.11) 

where ~ is related to Q by 

1) =/2 .............. -~ 0 (2.12) Q : (7~O-)--1/2 a(0-  ~- F ( L  _[_ ! ~ ]  " 

2// 
The boundary B of the confinement domain is accordingly given by 

0b=Z(z) .  (2.13) 

Note in particular that, when z = 0, Z = 1 and hence the maximal radius of the 
confinement domain is given by (2.12) with 0 =  1. 

3. Electrostatic Energy 
The total electrostatic energy V(R) is given by 

o ( -~1D~+1~0"+1 /" (3.1) V(R) = I d3x ! dO'f(D')  ~ ~ d3x O + 

The substitution of the zeroth-order solution (2.11) into (3.1) leads to 

/ / 1 1 \ \  2¢ 

2(1+o-) +, F ~-aa+5 R 1+~ (3.2) 
V(R)= 2R + (1 +20-) (1-0-) 

When a ~ l ,  this agrees with (4.17) of I. When ¢ >  1, a divergent integral is 
encountered which has been interpreted in the sense of distributions I-4]. With a 
suitable choice of an additive constant in V(R), (3.2) gives the leading correction to 
the linear potential. 

4. Reformulation of the Problem 
In (2.11) we have exhibited the zeroth-order of (2.2) for large R. To go beyond this 
zeroth-order in the present case of general a, the choice of variables is important. 
The underlying reason is that the zeroth-order solution already involves a 
transcendental function, as seen from (2.9). In the remainder of this paper, we shall 
consider the case f ( D )  = 1 + D ~ + b2D 2~ + . . . .  

We generalize the procedure of Sect. 5.2 of I. First we transform from z to a 
variable ~ by 

z =  F - + 2 ' 2 ;  ;~2 , (4.1) 
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where 

/~= 2R' F(2@ + I ) '  (4.2) 

and R', which by (2.9) is equal to R in zeroth-order, will be chosen later. Next, ~ is 
scaled by 

= - ,  (4.3) 

where 

e = ] ~  (o'+ I) 0.12 [ ~2°'/i~ R i . (4.4) 
/ 

Here R" is defined by the condition that the boundary B intersects the plane z = 0 at 
Q = 1/e. It follows from the last remark in Sect. 2 that R" is also equal to R in zeroth- 
order. Instead of 0 it is more convenient to use the variable T [see (4.22) of I] defined 
by 

0 v = - -  (4.5) r(~)' 

where the boundary B is given by 0b=r(~). We now define the expansion 
parameter A in terms of e and/3 by 

1 _2o" -o/ r(_) \o+1 
8a 2 4 (o'+I~-TT-[ \2a] ~ -z 

A = - ~ - = ; \ T ]  IF (  I +1~ l R'ZR "*+1 . (4.6) 
\2o 2# 

Finally, we rescale T by 

T= \R'] ~p" (4.7) 

[For the special case o = 1 treated in I, R' and R" are respectively A'/41//~ and 

A"/4[/~, while the A of (4.6) reduces to that of (5.9) of I.] 
For  the purpose of obtaining the first-order solution, we begin with (2.2) 

written as: 

g(D) 
D - -  [(ao~) 2 a=~ + (az~) 2 aQQ7 ~ -  2 (az 7') (a~ ~U) (a=~7')] 

+ [(~z~)= + (o~) 2] E~'/' + ~oo~'- L ~o~-] =o. o _I 
(4.8) 



Classical Models of Confinement 165 

To exhibit the dependence of 9(D)/D on A, we define I5 by 

~o- *D. 
15= ( a +  1)c~ z 

In terms of this 15, 

where 

g(V)_:A_O-Oh(40ot, 
D 4 \aA  J 

h(x)= 1 +(1 - a - 2 b 2 ) x +  .... 

Carrying out the change of variables, we obtain from (4.8) and (4.9) 

with 

(4.9) 

(4.10) 

(4.11) 

+ 0~p - o-(1 _~2) vdP + a(1 _~z) 

+ 8 ( 1 - ~ 2 ) 1  "Lk--r-- ) 

+ a ~ -  a(l _~2)o~ + a(1 _~2~ r (4.12) 

[ 8  ( a~\271/2 
15= 2 ( a +  1~ zr z (4.13) 

The partial differential Eq. (4.12), which is the generalization of (5.10) of I, is exact. 

5. First-Order Solution 

To first order in A-1, 

r ( ~ ) = ( 1 - ( z ) ~  1+ w(~) . (5.1) 

The fact that (4.12) is homogeneous in ~p simplifies the perturbation series of 
~p (~, z). To first order the implication is that 

In (5.1) and (5.2) w and k are even functions of ~. The zeroth-order solution (2.11) 
has been used. Because of the boundary condition at z = 0, 

(7 R ~- c 
to(~,O) = ~7 = 1 + ~ ,  (5.3) 

c does not depend on ft. 
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The substitution of (5.1) and (5.2) into (4.12) yields two ordinary differential 
equations for w(O and k(O: 

4(o.+4)( z 
o.(l - -  ~2)2  w H _ ff(o. or  1) (1 -- (2)W'-- 2(0- + 1)W + O.(C + k) -t ¢z(1 _ (2) = 0, 

(5.4) 
and 

8(0-+ 1)(t -2b2) 
o-(1 -~2)Zk"-~(o.+ 1)(1 - ~2)k'-4(2~ + 1)k-  ~2(1 _(2) 

32(o-+ 1)2( 2 = 0,  (5.5) 
o . 3 ( 1  

with the boundary condition w(0)= 0. 
The solution of (5.5) is 

2(o.+ 1) j f2o.-  1 4(o-+ 1)(3o-+2) 
k(O = a2(o-+ 3) ~ 2 ~ ]  - (1-2b2)+ o-(2o-+1) 

- 2 [ 1 - 2 b 2 4  4(o.+ 1)-1 (1_@~ } . o -  (5.6) 

The solution of(5.4) is more subtle. The following two points are relevant. First, 
this equation involves the constant c which we are at liberty to choose by varying 
R' as seen from (5.3). Secondly, the even solution of the homogeneous equation is 
transcendental. Therefore, the solution of(5.4) can be elementary only for a special 
value of c. This particular value of c can be found with the ansatz 

K~ 2 
w(0 = 1 _(2" (5.7) 

The substitution of (5.6) and (5.7) into (5.4) leads to a linear equation in (2. This 
determines both K and c: 

2 
K = o-2(o," _ 1 )  ((7 q-  3) [ -- o.(o. + 1)b2 + 2o-2 + a - 4], (5.8) 

2 
[6(o-+ 1)bz-2o. 3-o.z +8o-+ 1]. (5.9) 

c=  o-z(o._ 1)(o'+3)(2o-+ 1) 

This first-order solution is given by (5.1) and (5.2) together with (5.6)-(5.9). 
Unfortunately, this elementary solution is not completely satisfactory because it 
fails to reduce to our previous solution given in I for o.--* 1. Indeed, in this limit both 
K and c approach infinity. 

We proceed to give an alternative choice of e which avoids this difficulty. First, 
the even solution of the homogeneous equation corresponding to (5.4) is 

~ + a (  1 1 1 3 )  Wo(~)=1+o.+1~2.(1_~2) 2a F - + 5;~;(  2 (5.10) 
o. . 

In the limit o.+i  this Wo is simply 

1 -'t-ff 2 
WO--~ 1__~2. (5.11) 
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Since Wo(0) = 1 and w(0) = 0 for all a, we look for a solution of the form 

F1 ..~_ ~_2 WO(~)] ' (5.12) w(~) = const [_ ~ - _ ~  

where c~ = c~(a) must satisfy g(1) = 1. Aside from this condition, c~(a) is arbitrary. 
Therefore, there are many solutions. We have found that a convenient choice is 

1 
a(0-) = - (5.13) 

o- 

With this choice, it follows from (5.4) that w and c are given by 

2 ~z 
W =  0"2(0 - -  1)(0-+3) [-0-(0-+ 1)b2 +20-2 + 0 - - 4 ]  1 _~z 

, ( 5 . 1 4 )  

2 ( 0 - +  1) 
c = 0-5(0- + 3) (20. + 1) [ -  2 (20- + 3)be + 60- + 7] .  (5.15) 

Here (5.14) and (5.15) replace (5.7)-(5.9). 
It is seen from either (5.8) or (5.14) that the boundary B remains unchanged to 

first order when 
2o-2+0--4 

b 2 -  (5.16) 
0"(0- + 1) 

This is the generalization of the phenomenon found in I for the case b2 = - 1/2. 
The two versions of the first-order solution correspond to different choices of 

R'. By (4.1) and (4.2) a different choice of R' implies a redefinition of the variable 
which amounts to a non-elementary transformation between the old and the 
new ~. 
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