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Topological Charge in SU(2) Lattice Gauge Theory
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Using the expression for the topological charge proposed by Liischer, we calculate the topological
susceptibility in SU(2) lattice gauge theory. This problem has become tractable numerically be-
cause we were able to integrate one variable analytically. We verify the validity of this definition at
present values of 8 and compare our results to previous work.

PACS numbers: 11.15.Ha

Differentiable non-Abelian SU(N) gauge fields on a seems that one should be able to view any lattice field
four-torus carry a topological charge! configuration as being a (discrete) copy of a smooth
1 . continuum configuration. This would always be topo-
0=— d*xtr{F,F,,}, logically trivial since F,, F,,=9,J, for some current

1672 Byt . By py BT .
_ (1) J, and is therefore a total derivative. This is, how-
F, = 1€ F,,, ever, not quite correct, at least in asymptotically free

my 2 Cuvpol po

theories where the critical point is at zero coupling

which assumes integer values. It has been suggested (B— ). In the continuum region, fluctuations in

that a nontrivial topological susceptibility the Wilson loop W at the scale of a lattice spacing a are
= (0% /v 0)) small. Furthermore, in this regime
—1_3g-1 -2

in QCD may solve its U(1) problem.? Using large-N (W(aa))=1-38""+0(B7?), 4)

expansions, Witten? has shown that this quantity is re-

lated to the »’ mass by* so for large B, most of the Wilson loops will have
m

values close to unity. We are justified, therefore, in
f2 . interpolating the fields defined only on the links of the

X, = N (’"1% +m ' "2mK) (180 MeV)*, (3) lattice to the whole volume by keeping the Wilson
4 loops at and below the scale of a near the identity.
where Ny is the number of massless flavors. The reso- This may force us into introducing gauge singularities
lution of the U(1) problem therefore reduces to show- which will result in a nontrivial topological charge.
ing that X, has the appropriate value. A nontrivial to- A lattice construction of Q, which appears to be the
pological susceptibility may also be at the root of spon- most natural (and geometrically straightforward), has
taneous chiral-symmetry breaking® and possibly will been proposed by Liischer?® for the gauge group SU(2).
lead to new phases (as a function of the vacuum angle The central idea is that the information about the to-
9) such as ‘‘oblique confinement.”’® It is therefore of pology of the gauge field configuration is carried by a
great interest to compute X, by means of nonperturba- set of transition functions v,,(x) defined on the
tive techniques. The lattice approach’ is one such cubes f(n,u) forming the intersection of two adjacent
technique and within this framework the problem has hypercubes cornered at n and n — . These transition
been studied by several authors.?-13 functions are simply gauge transformations which re-
On the lattice, continuity in space is lost and it late the gauge fields within neighboring hypercubes.
| The explicit expression for Qis® 14
0=--53 3 ueBf,  exule D0 80,501
24w 05 T et nudpvni) (Va5 00V
+ff('w)d3x [ (0,720,0,,) (Vird 8,00, (0 0gv,,) ). (5)
The sum is over all hypercubes and p(n,u,v) is the I
plaquette forming the intersection of the four hyper- urations are encountered. (c) Q has a local form. (d)
cubes cornered at n, n—a, n—7v, and n—Q—7b. Q reduces to the familiar expression Eq. (1) in the
Equatnon (5) can be shown to have the following prop- classical continuum limit. Property (b) in particular
erties”: (a) Qis defined for all lattice fields except for means that Q is a genuine topological object—X, will
a singular set of measure zero in the functional in- contain no perturbative contributions.
tegral, so-called exceptional fields. (b) Q takes integer As it stands, a numerical calculation of Eq. (5)
values and does not change under continuous defor- would be very time consuming in practice (if not im-
mations of the field provided no exceptional config- possible on present day computers) since the transition
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functions are rather complicated and the integrals must
be computed to a high precision. (We estimated —~ 20
hours for one smooth gauge field configuration on a 6*
lattice using a sequential computer.) In view of this, a
more tractable but nonlocal definition of Q on the lat-
tice was recently suggested by Woit.!*> One must pay a
price, however—namely, it does not always properly
reconstruct the topological charge for all field config-
urations. In the two-dimensional U(1) gauge theory,
where Eq. (5) reduces to a sum over plaquettes, it has
turned out!® that both definitions agree only occasion-
ally, configuration by configuration. Furthermore,
Woit’s definition depends strongly on the choice of the
time axis.

We circumvented the problem of time consumption
in a different way: We performed, analytically, one in-
tegral of the volume term and one of the surface term
thus bringing Eq. (5) into a form suitable for Monte
Carlo evaluation. The calculation!® can be summa-
rized briefly as follows: The transition functions in-
volve products of powers #” where 0=y <1 and the
u’s are parallel transporters along closed loops within
the hypercubes cornered at » and » — g and passing
through the corner point. Typically we start from a
product of the form

-1 )y =1, -1)y y
Ctpgpy ) Clpgpo o Uy o Uop, Y oo, Cpp;) ©)
where py, . . .,p; refer to the four corners of a pla-
quette. This function interpolates between Upop, and

Up,py By essentially repeating this procedure, and in-

troducing a new parameter each time, one obtains an
explicit expression for the transition functions.
For computational reasons we have defined

w=(1—y+yu)det(1—y+yu)~ 12 @)

for 0<<y=<1and u€SU(2), u= — 1. The differentia-
tions within the integrand are next performed analyti-
cally and then, if we write x = (x,x5,x3), the x; in-
tegrals reduce to

n

1 X1
Jy ;
0 det(l—x1+x1u)

(8)

for n=0,1,2,3,and m=1,2,3. These integrals are of
standard type and can be performed analytically. No-
tice that only integer powers of the determinant will
appear in the denominator so that after integration we
end up with at most arctangents and rational functions.
The expression for the once integrated function can be
written in a fairly compact way, and is no worse than
the original one. It is conceivable that even the in-
tegrals over x, can be done and we are investigating
this presently.

We have performed a Monte Carlo calculation of the
topological susceptibility Eq. (2) on a 5% lattice at
B=2.2 and on 6* lattices at 8=2.3, 2.4, and 2.5 using

750

the heat-bath algorithm. Before embarking on the cal-
culation, we checked that the remaining integrals
(which must be done numerically) can be carried out
sufficiently accurately so as to allow an unambiguous
assignment of an integer topological charge. To give
an indication of the accuracy of our calculation, we
state below the results of the first four consecutive
“measurements’” of Q at 8=2.2, demanding an accu-
racy of 0.03% in the numerical integrations:

Q;=1.00018 +£0.00262,
0,=0.99999 +0.00269,
03=—2.99969 +0.00230,
Q4= —1.00012 £0.00327.

9)

On the average the area and volume terms are of the
same magnitude, whereas in the naive continuum limit
the area term dominates. Given that the contribution
to Q from each lattice point is typically of the order of
0.02, we estimate that we could compute Q unambigu-
ously on lattices as large as 10* under the same condi-
tions. Our results for a*X,= (Q?)/L* are as follows:

B a*x,
2.2 (9.62+1.18)x10°3
2.3 (3.38+£0.37)x10~3 (10)

24  (1.09 +£0.12)x10~3
2.5 (0.41*392)x10-3

Each entry in the table corresponds to ‘‘measure-
ments’’ of Q over more than 100 independent gauge-
field configurations. Statistical errors are treated in the
following manner. We divide the data sets into eight
groups and for each group, we calculate the standard
deviation o (X,) on X,. The error on the whole sample
is then (AX,)?=02%(X,)/8. The relatively large error
at B=2.5 is connected with the fact that the charge
distribution becomes increasingly narrow at larger 8.
If we assume the two-loop renormalization group for-
mula for a,

67?2
11

2
a(B)=A[1exp[—3—Tr—,3 an

51/121
1 ]

this gives in units of A

B 107°A[ %,

2.2 2.89 +0.35

23 2.76 £0.30 (12)
2.4 2.43 £0.26

2.5 251433

which is in fairly good agreement with asymptotic scal-
ing.
We plot our data Eq. (10) together with the (fitted)
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FIG. 1. The topological susceptibility X, in units of a~*.
The solid circles are the data points obtained in this work,
the open circles are those of Woit. The line is the scaling
curve fitted to our data.

scaling curve in Fig. 1. Taking now A; =0.015Vo at
B~ 2.3 (where we believe our Ilattice to be big
enough) from averaging recent Monte Carlo calcula-
tions!” of the string tension o and assuming /o = 400
MeV, we obtain for X,

X,= (245 +8 MeV)* (13)

which is in the right ball-park. [It should be noted that
Eq. (3) is not exact and that we are dealing with N =2
here.]

The observation of scaling (within errors) indicates
that the lattice construction Eq. (5) of Q is physically
relevant at present values of B, i.e., it successfully
mimics the topological properties of the continuum
theory. On small lattices, such as ours, we would ex-
pect X, to fall below the scaling curve at larger values

of B. This is presently masked by our large statistical
error at 3=2.5. To increase the statistics here, the
strategy of Fucito and Solomon'® might prove useful.

In Fig. 1, we compare our results with those of
Woit.!*> We find that our values our X, lie consistently
higher than his by a factor of about 2.5. This suggests
that Woit’s algorithm may have similar problems here
as in the two-dimensional U(1) gauge theory.!®

In the lattice version of the two-dimensional O(3) o
model, it was found that the topological susceptibility
did not follow the expected scaling law.!® This unusual
behavior was found to be due to short-range fluctua-
tions of the topological charge?® (‘“‘dislocations’’) with
such a small action that they predominate over the
contribution of slowly varying fields. Although in
SU(2) gauge theory, no such large deviation of X,
from the scaling curve is observed, it may be that
‘“dislocations’’ still play some role. This remains to be
investigated.

Another interesting calculation which we are
currently looking at is the role played by topology in
spontaneous chiral-symmetry breaking.?! This in-
volves an investigation of the fermion zero modes and
employs the Lanczos algorithm to find the eigenvalues
of the fermion matrix and locate the fluctuations in
the lowest ones.
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