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Nonlinear st)acc--lime tr,msformations in the radial path integral arc rib, cussed. A transformation R~rmula is derived, 
which relates the original path integral to the Gr,:cn function of a he,.,, quantum system with an effective potential contain- 
ing an observable qt, antum correction ~~2. As an example the formula is applied to spherical bro~vnian m~tion. 

In recent years Feynman's  path integral formulation of  quantum mechanics, statistical mechanics and quan- 
ttnn field theory [ 1,2] has proven a surprisingly powerful method in a large variety of  problems reaching from 
particlc physics, atomic physics, solid state physics, polymer physics, stochastic processes to quantum gravity [3,4]. 
41. It is. therefore, not exaggerated to say that functional integrals play a similar role in modem theoretical physics 
as did differential equations in tile last centuries. Curiously enough the most important system of  quantum mech- 
anics, the hydrogen atom. has resisted a complete path integral treatment for more than three decades. It was only 
recently that Durt, and Klcinert [5] (see also ref. [61) were able to derive from tile path integral the full Feynman 
kernel of  the Coulomb potential. The authors of  ref. [5] work with the phase space path integral in cartesian co- 
ordinates and transform it into the corresponding path integral of  the four-dimensional harmonic oscillator, whose 
path integral solution is known. This t,-ansformation becomes possible by the combined use of a new path-depen- 
dent time variable and the Kustaanheinlo-St iefel  transformation 17], the latter being a nonlinear mapping from 

I:t 3 to R 4 known from astronomy. 
For three-dilnensional quantum systems with spherically symmetric potentials one expects a simple solution to 

exist in terms of  spherical coordinates. In these coordinates the problem is reduced to a study of  an effective one- 
dimensional system, and one is left with the evaluation of  the one-dimensional radial path integral. At present, 
however, it seems rather hopeless to find a direct way for tile calculation of non-gaussian path integrals such as 

the radial path integral for potentials with a Coulomb singularity l/r. 
At this point one should remember that in ordinary calculus one often encounters integrals which can only be 

evaluated after a clever transformation of  integration variables has been employed. It is, therefore, natural to ask 
whether analogous transl'ormations can be performed in path integrals such that complicated path integrals are 

transformed into simpler ones. 
In this note I derive tile transformation formula for a large class of  nonlinear transformations in tile radial path 

integral. Our main result is a new relation between the time-independent radial kernel of  a given potential V(r) and 
the time-dependent radial kernel of  a new quantum system with potential |¢(r) - tile new potential being uniquely 
determined by a given transformation. As to applications, the idea is to find a transformation such that tile new 

potential W possesses a path integral whose solution is known. 
A careful treatment of  the path integral using Feynman's  time lattice subdivision process reveals that the lag- 

rangian of  the new quantum system contains a quantum correction proportional to fi2. which modifies the centri- 
fugal barrier. This additional term is missed in a straightforward transformation of  the classical action integral, and 
is a direct consequence of the stochastic nature of the Feynman paths, which are "'continuous but possess no deri- 
vative" [ 1 ]. Quantmn corrections of  this type have been discovered at several times (references will be given below). 
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in particular in connection with the operator  ordering problem and the quantization in a riemannian manifold, but 
since they are of  order h2, some people have doubted that such terms would be experimentally observable ( tee  
[3] p. 217). In the relation derived below the quantum correction has a direct physical meaning, since it determines 
the behaviour of the wavefunction at the origin. 

As a simple application and consistency check of  our relation, we use it to compute the Feynman kernel of  a 
free particle and (in imaginary time) of  spherical brownian motion (Bessel process). 

We consider three-dimensional quantum systems described by the Hamiltonian H =,o2/2 + V with spherically 
symmetric potentials V = V(r) (h = m = 1). In spherical coordinates r. 0, ~, the Feynman kernel K, which deter- 
mines the time evolution of  the system from "state a" to "state b", can be expanded into "partial  waves" IT = t b 

- t a, cos 0 = cos 0 b cos 0 a + sin 0 a sin 0 b cos(¢~ b - Ca)] 

o o  

/~0 2 l+  1 Kl(T;rb, ralV)Pl(cOsO ) (1) KCt b, X b t  a, x a 11/") = = ~ 

where the radial kernel K 1 (with fixed angular momentum l) is given by the following radial path integral [8--10] 

r(T) =r b T 

Kl(T;rb. ralV)= f Dr(t) exp(i f d t [ + ~  :2 

r(0) =r a 0 

l(I + l ) /2r  2 - VCr)l) 
o. N -  I N 

+,!itn(2nie)-N/2 f I I-I== I drk exp(ik~=l 
0 

[6~/2e - el(l + l)/2rkr k_ I - eV(rk )l) • (2)  

Here the path integral has 

fixed, and r k = r(tk), t k = 
with respect to r b, ra, and 

[ia/at b + ~a2/ar2b - lCl + 

with the initial condition 

been defined as the continuum limit of  a time lattice with lattice constant e = T/N, T 
ke, r(O)=r a ,r(T)=rb,6  k =r k - r  k l ' T h e k e r n e l K  IvanishesforT<O,issymmetric 
is a solution of  the inhomogeneous radial SchrSdinger equation 

l)/2r2b - V(rb)]Kz(T;r b, r a IV) = i S ( T ) a ( r  b - ra), (3) 

lira Kl(T;r b, r a IV)  = 6(% - ra ) .  (4) 
T--O+ 

In the following we study the combined transformations t -+ r, r -* R in the path integral (2), where the new path- 
dependent " t ime"  r = r(t;r(t)) [5] and the new radial variable R = R( r )  have to be determined from the equations 
(r(O; ra) = O) 

dr  = dt/f(r), r=g(R) ,  (5) 

with suitable real, positive f u n c t i o n s f a n d g .  Let us assume that the constraint 

rb 

f drf{g(R(r)))  = T (6) 
0 

has for all admissible paths a unique solution r b />  0. Of course, since T is fixed, the " t ime"  7" b will be path depen- 
dent. In order to incorporate the constraint (6), we insert the identity 
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rb 

[f(rb)f(ra)]l/2 f dr  b 5( f dr f (g (R ( r ) ) ) -  T)  
0 (} 

0o oo g b 

= [f(rb)f(ra)]'/2 f dEe-ikTdr, d [" 6% e x p ( i  f dr f (g (R) )E)  (7) 

• ~ 0 0 

under the path integral (2). 

Let us forget for a moment the stochastic nature of  the path integral (2). We then obtain for (2). after employing 
(5) and (7) [g(Ra) = ra, g (Rb)  = r b, g '  = dg(R)/dR, R = dR(r)/drl. 

" ~ R{rb)=Rb rl' (R~ )1 
N(r  b, r a ) f ~-~e lET f dr  b f DR( ) e×p[i f d r - ~  f(g)g'2 I(l+.~ 1) f(g)g2 f (gj[V(g)  -- E] 

. o~ 0 RI0)=Ra 0 
(8) 

[N is a norm',dization proportional to the jacobian of  the transformation (5)]. If l a n d  g fulfill the additional con. 
straints ( a  = const) 

g'(R)2/f(g(R)) -- 1 . f(g(R))/g2(R) = a/R 2 , 'dR E (0, oo). (9) 

it is clear that the transformed path integral (8) can be identified with the radi',d kernel K 1. ( r b ; R  b. Ra lW ) of  a 
new qtlantum system with angular momentum l '  (defined by 1'(1' + 1) = l(1 + l ) a )  and potential 

W(R) =f(g(R))[V(g(R)) - El . (10) 

For a given potential V(r) it may be possible to find functionsfandg [satisfying (5 )and  (9)] such that for the 
new potential W(R) the path integration (8) can be carried out. 

After this heuristic discussion, we have to investigate the transformation more carefully. To this end it is con- 
venient to make a specific ansatz for the f u n c t i o n s f a n d g .  Since we are mainly interested in potentials of the form 
V(r) ~ r b. b E R, eq. (10) suggests that functions f and g can be chosen with similar form. We are thus led to the 
simple ansatz 

f ( r ) = A v r  v .  g ( R ) = R  u .  v , ~ E R .  (11) 

The constraints (9) are fulfilled, if we set ~ 1 

p = 2 / ( 2 - v ) .  A v = 4 / ( 2 - v )  2.  a=A v,  v < 2 .  (12) 

which leads according to (10) to the new potential 

W,,(R) = [4/(2 - v) 2 ] R 2,,1~ 2. ,,) [ V(R 2/(2 - v)) _. 1:'1 . (13) 

Having defined by eqs. (5), (11) and (12) a class of  transformations in the continuum limit, we must specify a cor- 
responding lattice version, which enables us to apply the transformation in the lattice definition of the path inte- 
gral (2). If the lattice variables on the new lattice are defined by r k =g(Rk), R k = R(rk) ,  it follows from (5) that 
the new lattice "constant" .  e~¢, is now k dependent.  A discrete version of(5) ,  (1 1), which preserves the symmetry 
of  the Feynman kernel, is given by 

e' k = e [f(g(Rk )) f (g(R k _ l ))] -I/2 = eA ~.1 (RkR k-  l )- v/( 2 . v) (14) 

This leads to the following transformation formula for the measure Dr in path space 

tl Actually, cqs. (1 1), (12) with v # 2 represent the complete solution of (9). In the following we restrict the discussion to the case 
v<2 .  
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N 1 N N - I  

(2~ie) -N/2 I-I dr k = A v l / 2 ( R b R a )  - v / 2 ( 2 v )  11 (2hieS.)1/2 [-I d.R k , 
k=l k=l k=l 

i . e .  

Dr (t) = A v 1/2 (rbra)-V/4 DR ( r ) ,  (15) 
I 

where DR has now the same meaning as Dr (apart from e ~ ek). From (15) and (7) we deduce for the normaliza- 
tion N i n  (8) 

N(r  b, rat = [2/(2 - v)](rbra) ~/4 . (16) 

It remains to study the transformation of the lattice action in eq. (2). It is not difficult to see that the centrifugal 
and potential terms in (2) transform into the corresponding terms of eq. (8). The only term which requires a more 
careful treatment, is the kinetic energy term 62/e. Indeed, it is well known that under the path integral 52 is of  
order x/e, i.e. 62/e diverges as e ~ 0, "The important paths are, therefore, continuous but possess no derivative" 
[ 1 ]. Keeping this in mind, it is obvious from the expansion (A k = R k - R k_  1 ) 

(~k2/e 2 ,  4 , 5 , = A k l  % + [v(4 - v)/12(2 - v ) 2 R k R k  - 1] Ak/ek  + O ( A k / e k ) ,  (17) 

that the a 4 term cannot be neglected as we did in the heuristic derivation ofeq .  (8). The importance of such terms 
has already been stressed by Feynman in his basic paper [ 1 ]. As an example he discussed a hamiltonian with a vec- 
tor potential. A general analysis of  the relationship between the distance and time differentials in the case of  
riemannian coordinates was carried out by De Witt [ 11 ]. For the free Feynman kernel in polar coordinates the 
relevance of the fourth order terms was pointed out by Edwards and Gulyaev [8]. McLaughlin and Schulman [12] 
showed that the unpleasant higher order terms can be eliminated in favor of  an effective potential. Gervais and 
Jevicki [13] nicely illustrated how such terms contribute to two- and higher-loop calculations in Feynman diagrams 
(see also ref. [14]). In the mathematical formulation of  brownian motion, It6 was led to the def'mition of  the so- 
called stochastic integrals [15]. Without going into mathematical details, the result of  all these investigations (rele- 
vant to our discussion) may be stated in the following relation 

rq A 4 A(.~ ) ]  } 7k A 2 '  V ( 4 _ v  ) )1 

{ L2e k 24(2 -- v ) 2 R k R k _  1 e~. I_ \ 2 e  k 8(2 - v ) 2 R k R k _  1 

where the symbol - denotes equivalence as far as use in the path integral is concerned. Thus the additional term in 
the radial action amounts to a correction to the centrifugal potential, which added to the centrifugal term in (8) 
leads to an ef fect ive  angular m o m e n t u m  L v defined by Lv(L v + 1) = l ( l  + 1)A v + v(4 - v)(2 - v)-2/4.  With (12) 
one obtains 

L~ = (4 /+  v) /2(2  - v ) .  (19) 

Inserting the correction term in eq. (8), we observe that the path integral in (8) is precisely the path integral rep- 
esentation of the radial kernel K G ( r b ,  R b ,  Ral Wv) , where I¢,, and L v are given in eqs. (13) and (19), respectively 
From (8) and (16) we then obtain for the transformation of  the path integral (2) 

o o  oo 

dE 
e- iET f dr  b "Rb,  R a I Wv) .  (20) Kz(T;r b, r a I V )  = [ 2 / ( 2  - v)](rbra)~/4 f Tn KG(rb' 

- - ~  0 

If  the time-independent radial kernel k l is defined by ,2 

:2 A small positive imaginary part has to be added to E. 

359 



Volume 106A, number 8 PtlYSICS LFT!TERS 24 December 1984 

oe 

k l (E:r  b, r a IV) = i f dTei l :TKl(T:rb . r a l V ) .  

0 

we immediately obtain from (20) the transformation ]'ormula (u < 2) 

• l - v ~ 2  l . - u / 2  kl(E;r  b, r a i l / ) =  [2i/(2 - v)l(rbra)d4 f dr  b KLv(rb ,r  b , r  a IWv) . 

o 

(2] )  

(22) 

This is the inain result of  this paper. A few comments are in order: 
(i) For u = 0, the transformation (5) combined with (11) and (12) is the identity transfornlation. This is con- 

sistent with eq. (22), since in this case one obtains Wo(R ) = V(R) -- E, L 0 = 1. and the E dependence of the kernel 

KLo completely factorizes, KLo (IW{}) = exp(iErb)Kl(  I V). 
(ii) In the above derivation we assumed that the time integral in (22) exists. If the quantum system belonging 

to the new potential W v possesses zero modes, they must be properly subtracted. 
(iii) Relation (22) enables us to express the Feynman kernel of  a given potential V with fixed angular momentum 

I by the Feynman kernel of  a new potential W v with effective angular momentum L~,. The energy dependence of  
the l.h.s, o f (22 )  appears as a "coupling constant" dependence on the r.h.s, via the second term in the potcmial (13). 

(iv) The effective angular momentum L~,, eq. (19), is in general not an integer• The radial kernel on the r.h.s. {}f 
(22) has, therefore, to be understood as the analytic continuation from physical I values to the Lt, values implied by 
(19). From Reggc theory we know that this analytic continuation is always possible for Re L v > -- 1/2. This condi- 

tion implies (for v real < 2 )  Re l > --1/2, which is always fulfilled. 
(v) If the Schrrdinger wavefunctions are written in the form ~(r,  0, ~) = r-1Xln(r)  Y~(O, g}), the kernels K! and 

k I have the spectral decompositions ( to t  simplicity we assume that the system has only a discrete spectrunl) 

KI(T; r b. r a IV) = ~ Xh,(rb)XhT(ra) e x p ( - ~ ' / n  T ) O ( T )  , (23a) 

kt(E, r b, r a IV) = ~ Xln(rb)Xt"(ra) (23b) 
n l;'ln. E 

ltere n denotes the radial quantum number, and Eln are the energy levels of the system. From Regge theory ..a 
Xln(r) ~ rl+ 1 for r -+ 0. Re 1 > - 1/2, which implies for both kernels in (23) the "threshold behaviour" r/b + 1 for r b 
-+ 0. r a ~ 0 (with an analogous behaviour in ra). Thus the r.h.s, of  (9"})_, behaves for r b -+ 0, r a 4 :0  as r~} with X = u/ 
4 + ( 1 - v/2) (L,, + 1) = / + 1 consistent with the l.h.s, of (22) .  This demonstrates clearly the crucial role played by 
the addition',d potential term caused by the stochastic nature of  the functional integral. Without this quantum cur- 
rection the threshold behaviour would be violated with direct experimental consequences. 

(vi) If for a given potential V a transformation has been found for which the r.h.s, o f ( 2 2 )  can be calculated as 
a function ofl:', the energy levels and wavefunctions of  the original system can be obtained according to eq. (23b) 

by determining the poles and residues in the energy plane. 
(vii) If we define the radial Green function G 1 by 

c,o 

Gl(rb, ralV) = i f d T K I ( T ; r  b , r  a l V ) =  lira klCE;r b , ra lV )  , (24) 
E-~(} 

0 

the transformation formula (22) can be written in the colnpact form (t., < 2) 

I. ~/2IWD. (25} kt(E: rb, q I If) = 12/(2 - v)l (rbq)~/4Gt.~(r~- ~/2 ra 

As a simple application of relation (25), which will serve the purpose of  a consistency check, we put V(r) -= 0. v 
= 1, E = k2/2 > 0, and obtain with (19) for the free particle kernel k~] the relation 

t3 For potentials with limr_+ 0 r 2 I/{r) = O. 
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kl)(/f; r b, r a) = 2(rbra) 1/4 G~l~.'l/2(Xff b, N/~a) . (26) 

On the r.h.s, appears the radial Green function of  a harmonic oscillator (osc) with purely imaginary frequency g2 
= 2ik. Indeed, the new potential (13) becomes in this case the harmonic oscillator potential WI(R ) = -4ER 2 
- g22R2/2. The path integration for the harmonic oscillator with real frequency w can be carried out with the 
result [9] 

K?SC(T:rb , ra )=(_ i ) l+3 /2 ( s incoT)_ l~  1. 2 ra2) cot exp[~lw(r  b + wTlJl+l/2(corbra/sin coT) O(T))  (27) 

(Jl+ 1/2 is the Bessel function). Making the necessary analytic continuations in (27) and inserting the result in (22) 
we obtain (k = V ' ~ ,  rb ~>ra) 

kl)(E; rb, ra ) = 2 i (_ l ) l+  i rx,,~br a f a~ expIik(r b + ra) coth xlJ21+l(2krx/~bra/sinh x) si--ffff2 
o 

= irr rv"r~br a HI  1 I/2(%/~ffrb)Jl+ 1/2 ('Vr2-ff'ra) • (28) 

It is well known that the path integral (2) (with V -- 0), analytically continued to imaginary time, T ~  - i t  (t real), 
describes the distribution function of  a particle undergoing brownian motion (BM) with diffusion constant D = I/  
2. In this case eq. (21) becomes a Laplace transformation (with E ~ ---a). Denote the Laplace transform of  the dis- 
tribution function by pl(a; rb, ra). Then ,o I is given by (26) but with a real oscillator frequency ~BM = -2"V"2~. 
(This follows from the observation that the motion of  the oscillator in imaginary time takes place in a "mirror 
potential" - WI(R ) = 4ctR 2 = g22MR2/2). Thus Ol is given by (28), analytically continued to the point ~ = i 2V"2-&S. 
We then obtain in terms of  modified Bessel functions (see p. 952 in ref. [16] ) ( rb />  ra) 

Ol(a; rb, ra) = 2 r~braKl+ 1/2(X/~b)ll+ l/2(W'~-ffra). (29) 

This result a~rees with the known expression for spherical brownian motion (the Bessel process in three dimen- 
sions) [17] ,s 

Returning to (28), we notice that we can rewrite this equation in the form (see p. 957 in ref. [16])  

kO(E;rb, ra)= i f  dt e iEr ( r,v'7~br a (-i)t+3/2T -l exp[(i/2T)(r 2 + r2a)]Jt+l/2(rbra/T)}. 
0 

A comparison with (21) yields the time-dependent radial kernel 

K~)(T; rbra) = rxff'~bra(-i)/+3/2 T - I  exp [(i/2T)(r2r 2)]Jl+ l/2(rbra/T) O(T) .  (30) 

Inserting the radial kernel (30) in the partial wave expansion (1) we obtain the standard result for the Feynman 
kernel of  a free particle 

KO(t b, Xb; t a, Xa) = (2rriT) -3/2 exp [(i/2T)(x b - Xa) 2 ] O ( T ) ,  (31) 

This completes our check of  relation (26). Notice that eq. (26) read in the opposite direction leads to the surpris- 
ing result, that the Green function of  the harmonic oscillator can be computed from an analytic continuation of  
the free particle kernel. 

In a second paper we shall illustrate the full power of  relation (25) by applying it to the Coulomb potential, As 
a result we shall determine in a few lines the energy spectrum and the complete normalized wavefunctions of  the 

~4 After the substitution x = In coth(y/2) the integral in (28) can be found on p. 729 in ref. [16], where the result is given in 
terms of Whittaker functions. The latter have been expressed in terms of Hankel and Bessel functions, respectively, with the 
help of the relations given on p. 1062 and p. 952 in ref. [16]. 

,s In the notation of rcf. [ 17 ] we have Gn(a,/i, ,0) = (2//'0) -1 pn(a; '0,/i). 
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hydrogen  a tom.  A n o t h e r  app l ica t ion  will be the c o m p u t a t i o n  o f  the Green  fl, nc t ions  of  the sexlic a n h a r m o n i c  

osci l la tor  and the l inearly conf in ing  po ten t i a l  V{r) = Kr. 
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