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Abstract. We propose a new algorithm for Monte 
Carlo calculations in spin models or gauge theories. 
It is supposed to speed up the convergence to 
equilibrium in situations where long range corre- 
lations are important. 

1. Introduction 

A new Monte Carlo upgrading procedure (NUP) is 
proposed for spin models as well as for pure gauge 
theories. It is worked out for the two-dimensional 
0(3) sigma model, for the Ising spin theory in two 
and in three dimensions and for the Z(2) gauge 
theory in three dimensions. Common to the last 
three models are their second order phase tran- 
sitions, which occur at certain values of the inverse 
temperature (coupling)/3. The critical temperature of 
the 0(3) sigma model is believed to be a t /3=0 .  Well 
established procedures used in Monte Carlo experi- 
ments are the heat and the Metropolis algorithms 
[1]. They satisfy certain conditions that guarantee 
the convergence of the distribution of configurations 
in the statistical ensemble towards the Boltzmann 
distribution, after a sufficiently large number of con- 
figurations has been generated. In both algorithms 
only a single spin- or gauge field variable is upgraded 
at a time. Doing this successively for all sites (links) 
of the lattice in a random or systematic way com- 
pletes one Monte Carlo sweep. In the heat bath 
procedure, the choice of the new variable is inde- 
pendent of its old value, but weighted according to 
the temperature of the local heat reservoir the new 
variable is brought into contact with before it is 
selected. The Metropolis algorithm substitutes the 
new variable for the old one independently of the 
environment, but dependent on the local change in 
the action. 

We believe that these properties of locality are 

responsible for the critical slowing down near sec- 
ond order phase transitions, where the correlation 
length ~ tends to infinity. In a model like the 0(3) 
sigma model they might prevent a transition from 
one topological sector to the next within a reason- 
able computing time. 

N U P  is proposed to speed up the convergence to 
the Boltzmann distribution using "long range up- 
grading" procedures in order to simulate long range 
correlations. 'Long range upgrading' means the si- 
multaneous upgrading of spins or gauge fields of a 
whole sublattice A s of the lattice A. 

As an illustration of the idea consider the two- 
dimensional Z(2) spin theory with action 

s =/3 Y (1 - s(x ib s(#b),  (1) 
(i j )  

s(x(~ are spins attached to sites x (i). 
The sum runs over all links (i j )  of the lattice. 

The situation near the critical point at/3c = 0.4407 
is well described by the droplet picture, which essen- 
tially says that in each island of up-spins there are 
smaller islands of down-spins and so on. The size of 
the islands ranges from one lattice spacing a to the 
correlation length ~ >~ a. In other words, Peierls con- 
tours [2] of each length scale are abundant. (A 
Peierls contour is a set of links (i  j )  with 
s(x(~ �9 s(x(J))=-  1. They are sufficient to characterize 
an arbitrary spin configuration uniquely up to glo- 
bal spin reflections.) 

As a second example consider the three-dimen- 
sional Z(2) gauge theory with action 

S =/3 ~ (1 - Tr U(@)). (2) 
pEA 

The sum runs over all plaquettes p of A. U(@) is the 
product of Z(2) variables U(b) associated to links b 
along the boundary 0p of a plaquette p. This model 
undergoes a second order phase transition at /3c 
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=0.7613 [-3]. The analogous quantities to Peierls 
contours are now Z(2) vortices, i.e. sets of frustrated 
plaquettes p with U ( @ ) = - I .  They characterize a 
Z(2) gauge field configuration uniquely up to local 
gauge transformations. At the critical point vortices 
of each length scale are abundant. (The length of a 
vortex is defined as the number of plaquettes it 
consists of.) 

NUP as described in the next section shall sim- 
ulate such situations in a few steps. 

applied to spins s(x) of a block B(x(~i),d,); a(Bl) 
stands for flips applied to gauge fields U(b)eZ(2) 
with beB I. R(B)~O(3) represent rotations of spins s(x) 
with xeB(x~ ~ d,). The flips or rotations will be cho- 
sen according to a certain probability distribution 
which will be specified below. 

Then NUP consists of the following steps. 

I. Choose a block center x~ ~) from all sites, ran- 
domly, with a uniform distribution. 

2. The Algorithm NUP 

We use the following Imtations. 
x is a coordinate vector on the d-dimensional 

lattice A, d=2,3,  depending on the model. The lat- 
tice volume is Ld=N with N lattice sites. A block 
B(x~ ~), d,) is the union of all sites of a d-dimensional 
sublattice A~ c A, x~ ~ is the block center. (i) labels the 
different choices of block centers, d, is the block 
size, n (1 <=n<n~a~) labels the different choices of 
block sizes. A block Bg(x~ ~ is the union of all 
links ( j k )  pointing in positive directions /~= 1,2,3 
from sites x(J)eB(x~ ~ A block plaquette 
Bp(x~ ~ d,, xp) is the union of d 2 plaquettes p(xp) lying 
in the plane xp=const(pe{1,2,3}) such that at least 
two links of 8p belong t o  Bg(x~ i), tin). To each pla- 
quette p(xp)eBp(.,.,.) we associate a link ( x x + K )  
pointing in positive direction K orthogonal to /2 and 
v from a site which is corner of the plaquette. This 
set of links is called ~) Bl(x ~ , d,, x p). For the defini- 
tions of B, Bg, Bp, and B~ compare Fig. la-d .  

s(x)~Z(2) [0(3)] are spin variables attached to 
sites x. We denote by U(b)~Z(2) gauge field vari- 
ables living on links b, by a(B) Z(2)"fl ips" E{+_I} 

2. In the same way choose a block size d, between 
l <__d,< L. 

3. Now specify the rotation or flip, respectively. We 
will discuss two alternatives which reduce to the 
heat bath- and the Metropolis algorithms in the 
special case of d,---1. Step 3 depends on the model. 
First we concentrate on spin models. 

3.1.1. The 0(3) sigma model with action 

s = ~ Y, s(x ~) s (x% (3) 
(i j )  

where s(x ~)) are three component unit vectors Now 
choose R(B)EO(3), randomly, with a probability 
measure dP, given by 

dP(R(B)) 
1 

= K e x p { - f i  ~ s(x(1))R(B)s(x(m))}dR(S). (4) 
(lm)e~ 

dR(B) is the normalized Haar measure on 0(3). ~ is 
the set of links ( lm) where one and only one site of 
O(lm) belongs to B, cp. Fig. 2. 

o o e e e  o o e e e  

�9 | �9 | �9 ~ ~ " 

�9 O 0 . .  �9 _ ~ � 9  �9 
�9 | 1 7 4  - �9 
e e o e o  e e e o o  

a b 

e o e o e  e e e o  

" I " " | " | " 

c d 

Fig. l a - d .  Sets B (a with fat dots), Bg (b), Bp (c), and B 1 (d) as 
defined in the text The circled dots are block centers 

3.1.2. For the Z(2) spin theory in two and three 
dimensions with action given by (1) replace R~O(3) 
by o-~Z(2). Instead of dR(B) insert the discrete Haar 
measure on Z(2). 

3.1.3. In the case of a Z(2) gauge theory one could 
think of flipping all variables U(b)eZ(2) with 
bEBg(x~i),d,). The probability density would be given 
by (1/K' )exp{-f i  ~ a(Bg) U(@)}, where ~g is the 

p e  ~ 

set of plaquettes p with an odd number of links 

�9 o �9 �9 �9 �9 �9 �9 
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Fig. 2. Set Z as defined in the text for d, = 4 
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beBg in @. However, this proposal does not include 
the usual heat bath algorithm for d ,=  1. Therefore it 
is suggested to use the following alternative [4]. 

3.1.3.1. For a fixed block B(x~i),d,) choose a block 
plaquette (0 Bp(x~,d,,xp), i.e. choose xp, randomly, 
uniformly distributed from the set {xm,...,xpd..}, 
p~{1,2,3}. For d , = 2  and d=3,  {...} contains six 
elements. 

define a "block Metropolis algorithm" in the follow- 
ing sense. Select randomly, e.g. according to a uni- 
form distribution on the group manifolds, rotations 
R, flips a. Next calculate the change in the action 
AS when all spin- (gauge field) variables of a block 
B (B~) are flipped, respectively. Extract a (pseudo) 
random number r, generated with uniform probabili- 
ty distribution between 0 and 1. If e-ZS>r accept 
the selected rotations (flips), otherwise reject them. 

3.1.3.2. Flip all variables U(b) with br ~ d,,xo) 
according to the measure 

1 
dP(a(Bl))=~;;exp[-fi ~ a(B1) U(@)]da(Bl) (5) 

pElF  

4. Multiply all s(x), x~B(x~ ~, d,), with R(B), [a(B)], 
while s(x) for xr remain unchanged. (In the Z(2) 
gauge theory multiply all U(b), b~Bg(x~ ~, d,, xo), with 
a(B~).) 

da(Bt) is the discrete Haar measure on Z(2). r is 
the set of plaquettes which contain an odd number 
of links of B~. It is shown in Fig. 3. If all U(@)= + 1 
and o-(Bz)=-1, #v coincides with a planar Z(2) 
vortex V, which was generated by the flip along the 
"boundary" of the block plaquette Bp. Arbitrary 
vortices which wind through three dimensions can 
be composed of planar vortices. 

The probability densities of (4) and (5) can be 
generated numerically in the usual way. If the no- 
tations of (4) and (5) are simplified for a moment to 

4- 4- 4- 4- 4- + + 

4- 4- + 4- + ~ 4- 

4- + 4" ~ 4- 4" 

4- + + + l - i +  + 

4- 4- ~ + U 4- 4. 

+ 4- 4- 4- 4- 4- 4" 

4- + 4- 4" 4" + + 
a 

dx = g(y) dy, (6) 

first determine the maximum gmax(Y), Y~[Ymin, Ym,x]" 
Next select randomly yre[ymjn,Ymax] from a uniform 
distribution between Ymln and Ym,x" Compute g(Yr). 
Now select g,.~[0,g~,,x(y)] , again randomly, from a 
uniform distribution between 0 and gmax(Y)' If 
g(yr) > g~ accept y~, otherwise reject it. Finally the set 
of numbers y~ will be distributed with a probability 
density g(y). In this way we can generate sets {W}, 
({a~}) of rotations W, (flips ~r), l<r<rma• in several 
cycles of NUP, which are distributed according to 
(4) and (5), respectively. One cycle of NUP consists 
of steps 1-7, cp. below. 

3.2.1,2,3. Alternatively to steps 3.1.1,2,3, which are 
a kind of block heat bath algorithm, one could 

L - A / Z : 2 ! : ~ i ~  I;, . x 
:iii~i~? s ,  v 

Fig. 3. Set ~v- Bp is the shaded region 
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Fig. 4. a An initial configuration in a two-dimensional  Ising spin 
system with spins up  ( + )  and spins down ( - ) .  The full lines 
represent Peierls contours,  b Effect of a flip o r = -  1 of all spins of 
a 3 x 3 block, dR=3. The situation described in terms of Peierls 
contours  is still similar to that  of a. c A long Peierls contour  is 
generated in addition, when d , =  5, i.e. all spins of a 5 x 5 block 
are flipped 
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5. Write the just generated configuration on tape. 

5a (only for the Z(2) gauge theory). Repeat steps 
3.1.3.1-5 for different values of x o. 

6. Repeat steps 2-5(a) for different block sizes d,, 
until all (or most of) the values between 1 and L 
appeared in the sequence. It might be useful to 
weight the local fluctuations (corresponding to d, 
=1) stronger than the "super long range" fluc- 
tuations with d , ~ L .  Then steps 2-5(a) should be 
repeated for d,, = 1 several times in addition. 

7. Repeat steps 1-6 for different choices of block 
centers, until most of the sites of A have been the 
center at least for one time. Steps 1-7 complete one 
cycle of NUP. 

8. Repeat the cycle several times in order to gener- 
ate distributions according to (4) and (5). 

Figure 4 for the two-dimensional Z(2) spin model 
shows the creation of Peierls contours in a spin 
configuration (Fig. 4a), when all spins in a block of 
size d 1 = 3 (Fig. 4b) and of size d2=5 (Fig. 4c) are 
flipped. 

Our expectation is the following. 
For a certain range of the temperature /~-~, 

where long range correlations become important, be- 
cause long range topological excitations are present 
or a second order phase transition (~ ~ oe) is close, 
NUP speeds up the convergence to equilibrium. It 
should be less CPU-time consuming than the usual 
algorithms to produce an importance sampling. 

3. Proof of Detailed Balance 

If the sequence of distributions of configurations 
generated in the Markov process converges to a 
Boltzmann distribution, the Boltzmann factor which 
appears in the path integral is absorbed in the selec- 
tion of configurations. Expectation values of observ- 
ables can be calculated as arithmetic averages. To 
ensure the convergence, the transition probabilities 
from one configuration to the next have to satisfy 
certain conditions which we recall below. We label 
the configurations of a discrete set of configurations 
by numbers #, yEN, the members in the sequence of 
the Markov chain by k. W(v ~ #) denotes the proba- 
bility density for the transition from {V}k~{#}k+~. 
The density is understood as a density on the pro- 
duct space of group manifolds. W(v ~ g) depends on 
the specific algorithm. {v} and {#} are configura- 
tions that finally enter the calculation of expectation 
values. (In NUP they were collected on tape.) 

To an ensemble of k configurations {vl}, 
{v2},..., {vk} in the sequence of configurations, gen- 
erated so far in the Markov process, we associate a 
vector {~Uu(k)}u~ ~, constructed in the following way. 

~Uu(k)---probability to find {#} in the ensemble of 
k configurations 

k 

= Z 
i = l  

The dimension of ~ can be finite or infinite depend- 
ing on the total number of configuration {#}, which 
are only assumed to be a countable set. The se- 
quence of vectors {~(1)}, {~Uu,(2)} . . . .  ,{~Uu(k)}, ... 
converges to a unique limit given by the Boltzmann 
distribution, i.e. 

-- , 8S( (2} )~  

lira {%(k)}= /' (8) 
k ~  cc -/~S({u}) 

if the conditions of normalization (i), ergodicity (ii), 
and balance (iii) are satisfied. 

(i) ~ W(v--, #) = 1. (9) 
v 

(ii) If e ~s(~), e-~S((,~)>0, there exists a 
number koeN such that Wk~ (corre- (10) 
sponding to/Co steps)�9 

(iii) ~ W ( v ~ # ) e  ~s(~)=e-~S(~"}). (11) 
v 

In the next section we will show instead of (iii) 
the stronger condition of detailed balance (iiia) 

(iii a) W(v ~ #) e -  ~s((~) = W ( #  ~ v) e -  ~s(~}). (12) 

The proof of (12) will be outlined only in the no- 
tation of the 0(3) sigma model. Given a configu- 
ration {v}, we have to distinguish two cases for a 
transition (according to NUP) from {v}k to an arbi- 
trary {#}k+l. (# may coincide with v.) 

1. The transition from {v} to {#} in one step is 
impossible, then (12) is fulfilled with vanishing left 
and right sides. 

2. {#} is a configuration that can be reached from 
{v} within one step. In the case #=v,  Eq.(12) is 
obviously true. If ##-v then at least one block B 
with center x(~ ) and size d, exists such that all spins 
of B are rotated with R compared to those of {v}. 
(In the case of the Z(2) spin model, the parameters 
x~ i), d, and o- are uniquely determined by {#} for a 
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given {v} for # + v ;  in the O(3)-case they are "almost 
always" unique (i.e. except for a set of measure zero) 
if # # v.) Then the probability W(v ~ #) to find just 
these parameters x~ ~ d, and R during NUP is given 
by 

W(v - ,  #) = prob (x~i)) �9 prob(d,) - prob (R) (13) 

with 

pro b (x~ i)) = 1/N, (14) 

prob(d,) = 1/nm, x (15) 

if nm~ x is the maximal number of different block 
sizes, and 

1 
p r o b ( R ) = ~ e x p [ - f i  ~ s(x(~ (16) 

(lm>E.~ 

for NUP in the block heat bath version, 

fconst .  1 if AS < 0 
prob(R) 

(const e {s({,~)-s({~})) if AS>O 
(17) 

with AS:=S({#}) -S({v})  as defined in steps 3.2.1, 
2, 3 for NUP in the block Metropolis version. 

Equations (14) and (15) hold, because x~ i) and d, 
were chosen randomly according to uniform distri- 
butions. They are symmetric in k and k + 1 and drop 
out of both sides of (12). A systematic choice of x~ i) 
and d, could prevent detailed balance marking a 
certain direction in the process. 

For W(#--+v) we have instead of (16), (17) 

1 
prob(R- 1) = k  exp [ -  fi ~ s(x (1)) R -1 Rs(x("))], (18) 

( lrn)e~ 

4. Remark on a Further Alternative of N U P  

We would like to comment briefly on an alternative 
upgrading procedure, which is proposed in the same 
spirit as the previous NUP but differs in the proba- 
bility distributions of R, o-, respectively. It consists in 
a heat bath upgrading of block spins in the follow- 
ing steps. 

1. Choose a block size d,, 1 <__ d, <= L. 

2. Define a block spin s(x,), e.g. according to 

y~ s(x) 
S(XB):_ x~B (20) 

II ~ s(x)ll ' 
x~B 

as is commonly used in spin models, x B is a site on 
the block lattice, s(x) are spins on the original lat- 
tice. The sum runs over all sites of a block B of size 
d n �9 

3. Now apply the usual heat bath- or Metropolis 
algorithm to the block spins s(xB) with respect to 
the effective action Sefr which determines the in- 
teraction of block spins. Then s(xB)~s'(x~) 
=:R(B)s(xB) which defines R(B) for all blocks B of 
A (uniquely only under additional conditions). 

4. After one sweep on the block lattice multiply all 
s(x) on the original lattice with R(B) for x~B; write 
{s'(x)} with s'(x): =R(B)s(x) for xeB  on tape. 

5. Repeat steps 2-4 for several sweeps on the block 
lattice starting in each sweep from the last con- 
figuration {s'(x)} which was calculated in 4. 

fconst .  1 
prob(R- 1) = (const �9 e-(s({~)- s({~/)) 

if AS <O 
(19) 

if AS>O 

with AS: = S({v}) - S({#}), respectively. 
Equation (12) follows now from (13)-(19) and the 

definition of S. This completes the proof of detailed 
balance. 

The normalization condition (i) is fulfilled for a 
suitable choice of normalizations constants k ('') in 
(4) and (5). 

Condition (ii), i.e. ergodicity, is implied for NUP 
by the heat bath- and the Metropolis algorithms, 
since they are included in NUP for d , = l ,  respec- 
tively, for spin models as well as for the Z(2) gauge 
theory. 

A disadvantage of NUP may be the time consum- 
ing computation of factors e -~z or of AS, since the 
number of links (plaquettes) summed over in ~ or in 
AS is proportional to the "boundary" of the block. 

6. Repeat steps 1-5 for different block sizes d, in- 
cluding d ,=  1, which corresponds to the usual heat 
bath - or Metropolis algorithm. 

Step 3 may involve a principal difficulty. Gener- 
ally, the precise form of Ser  f is unknown. Therefore 
conditions (i), (ii), (iii) of Sect. 3 cannot be proven as 
long as the systematic error, arising from a trun- 
cation of Serf, is not under control. 

5. Remark on the Use of Boundary Conditions 

It is well known that certain topological configura- 
tions are excluded by the use of periodic boundary 
conditions. As an example consider the pure SU(2) 
gauge theory with Wilson's action in a four-dimen- 
sional box. Define twisted boundary conditions by �9 

g(b)~a(b)  U(b) for b ~ r  
(21) 

U(b) ~ U(b) otherwise, 
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~ set T 

Fig. 5. Three-dimensional projection of a box A illustrating twisted 
boundary conditions 

Therefore  we p ropose  (for whatever  upg rad ing  is 
used) to s tar t  f rom n > 1 ini t ia l  conf igura t ions  with n 
topo log ica l ly  inequiva lent  b o u n d a r y  condi t ions .  In 
the case of gauge groups  SU(2) and Z(2) we would  
s tar t  f rom two conf igura t ions  differing jus t  by a 
twist. 

Acknowledgement. I would like to thank Prof. G. Mack for useful 
discussions. 

U(b)eSU(2), a(b)eZ(2). T is the set of links in ~A 
which is coclosed in 0A and  winds a r o u n d  A as 
shown in Fig.  5. SU(2) vort ices can be charac te r ized  
by so called vor tex  souls. F o r  the precise def ini t ion 
of vor tex  souls see [5]. Only  an  even number  of 
vor tex  souls passing a cross sect ion Z (cp. Fig. 5) is 
compa t ib l e  with per iod ic  b o u n d a r y  condi t ions ,  while 
an odd  n u m b e r  is forced into the box  by twisted 
condi t ions .  Measu remen t s  of long range  quant i t ies  
like cor re la t ion  funct ions might  be influenced by  
neglect ing a whole  class of  SU(2) configurat ions.  
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