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If a quantum field is enclosed in a spatial box of finite volume, its mass spectrum depends 
on the box size L. For field theories in the continuum Liischer has shown to all orders in perturbation 
theory that for large L this dependence is related to certain scattering amplitudes of the infinite 
volume theory. We derived the corresponding relations for lattice field theories. Assuming their 
validity for lattice gauge theory outside the perturbative region the magnitude of finite size effects 
on the spectrum is determined by a glueball coupling constant. This quantity is estimated by strong 
coupling methods. 

1. Introduction and summary 

Consider quantum field theory in a finite spatial volume, whereas time is assumed 
to be unrestricted. For definiteness we take the case of a periodic box of linear 
extent L. Then the spectrum of particle masses A4i will depend on L. We assume that 

lim 
L-m’ 

Mi = rni 

exists and yields the mass spectrum of the infinite volume theory. In particular we 
shall concentrate on the mass gap M,, and the corresponding infinite volume mass 
gap mo, which we assume to be nonzero. 

For small L the behaviour of M,(L) is accessible to perturbation theory. For 
gauge field theory in the continuum this has been studied in [l]. 

On the other hand one is interested in the way the masses approach their infinite 
volume limits. Knowledge of the relative deviation 

would be important for all attempts to obtain the mass gap m. from calculations 
in a finite volume, as it is the case for the Monte Carlo method. 

For scalar field theories in the continuum a relation between a0 and a forward 
scattering amplitude of the infinite volume theory has been established by Lilscher 
to all orders in perturbation theory [2]. It implies the asymptotic behaviour 

&-- Cl-’ exp (-4, 
659 

(3) 
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where 
(4) 

(5) 

and C is some constant. 
It is the purpose of this paper to study the large-L behaviour of 8, for euclidean 

field theories on a lattice. I derived a relation between i& and the four-point function 
at certain on-shell momenta, analogous to the one in the continuum, in perturbation 
theory. Furthermore an expression for the asymptotic decay of So similar to (3) is 
obtained. 

These results refer to the case of a scalar field in perturbation theory. They do, 
however, not depend on the detailed kind of interactions and are of a purely 
kinematical nature. Therefore it appears reasonable that they also apply in more 
general situations. In particular I believe that they are also true to all orders in the 
strong coupling expansion of lattice gauge theory. A rigorous proof of this would, 
however, be laborious and I did not carry it through. 

Assuming the relations mentioned above also to hold for lattice gauge theory, 
the constant C in (3), which determines the magnitude of finite size effects on the 
mass gap, and the other two parameters cy and p are in the scaling region given by 

where A is a 3-glueball coupling constant, i.e. the value of a three-point function 
at certain on-shell momenta. I studied this quantity in the framework of the strong 
coupling expansion. Its order of magnitude is estimated to be 

A2/mi=2 * lo’, (7) 
implying 

C=lOO. @I 

2. The mass shift in scalar lattice field theories 

We consider a (d + I)-dimensional hypercubical lattice of spatial extent L and 
impose periodic boundary conditions for the real scalar field 4(x). The lattice is 
infinite in the time direction x,,. The euclidean action is 

S=C {f Z (V,~(x))‘+fm2~‘(x)+~,(cb(x), Vd~b))], (9) 
s P 

where 

yu4w=4(x+&-~(x), p=O,...,d, (10) 

A=&“, (11) 
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and the interaction S, should not depend on L. 3, does not include a kinetic term; 
otherwise it is an arbitrary polynomial in the field and its derivatives and will in 
general contain a mass term. 

Let 

G(x) = M4WJh-(4(Wt (12) 

be the full propagator. The mass gap M,,(L) governs the exponential decay of CL 
in the time direction. In the absence of an interaction the propagator equals the 
free lattice propagator 

AL(X) = 
= dpo -d GL 2C(l-cospp)+m2 
--?r P 

Here the momentum sum ranges over 

(14) 

for k=!,...,d. 

In this case the mass gap m, does not depend on L and we have 

cash m. = 1 +fm2. (15) 

In the interacting case the mass counterterm contained in 3, is chosen in such a 
way that in the limit L+co the mass gap M,(L) coincides with the one of the free 
theory: 

M,(cO) = mo. (16) 

The self-energy EL(p) and wave-function renormalization Z3 are then given by 

~L’(p)=z;‘d”-‘(p)-~;L(p), (17) 

where GL is the Fourier transform of CL and 

d-‘(p)=2C(l-cosp,)+m’. (18) 
P 

We have 

&L(Po,O) =o, 
po=into 

(19) 

and Z, does not depend on L. The relative mass shift can now be obtained from 

So = -Z3(2mo sinh mo)-‘&( p^) + 0( 5;) (20) 

with 

p^ = (im,, 0) . (21) 

As in the continuum case [2] PIis in perturbation theory given by the sum of all 
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one-particle-irreducible amputated Feynman graphs with two external vertices. The 
analysis of [2] can be carried over to the lattice case and one can isolate a class of 
graphs which dominate for large L, leading to 

&( p^) = d(27r)-d-’ 
I 

T dd+‘p eiPIL&( p) 
-7r 

x{r~(-lj,~,o)~~(o)r3(PI -P,O) 

+r,(-~,P,p*-P)~‘,(p^-P)r~(~, -p,p-a 

+ r,(-c, c, p, -p)} + O(exp (-4; m,L)) . (22) 

r, and r, are vertex functions of the L = co theory, i.e. full propagator amputated, 
one-particle-irreducible 3-point and 4-point functions. I do not give the details of 
the derivation of (22) here, because it is analogous to the continuum case. The main 
new ingredient on a lattice is the following estimate on the lattice propagator. 

Lemma: Let A = A, be the free lattice propagator for bare mass m, as in (13), 
and m. be defined by (15). Then there exists a constant K(m) > 0 such that for all 
XEhd+’ 

IL - * * V,A(x)lS2jK(m) exp (-molxl) . (23) 

This estimate is needed to get the bound on the remainder term in (22). 
The next step is to shift the contour of the p, integration into the upper half-plane 

and to collect contributions from poles in the integrand. For convenience I inter- 
change p. and p,, such that now 

p^ = (0, imo, 0,. . . ,O) . (24) 

Again I do not bother the reader with the details of the calculation but merely state 
the result. For this we have to define some quantities. Let E(p) be the energy- 
momentum dispersion relation. This means that for fixed real p the propagator 
G,(p) has in the upper half p. plane a first simple pole at p. = iE( p). The minimum 
of E(p) for real p is 

E(o) = m,. (25) 

Furthermore E(p) is assumed to be analytic in p, in the region IIm p,I~fm,, when 
P2, * * .> pd are real. Let the residuum of d, be given by 

= iZ;‘A-‘(p) , 
pg=iE(p) 

(26) 

where 

Finally let 

A(o) = (2 sinh mo)-’ . (27) 

41 
I. =--grmo, q=(%,--*,qd), 90 = iE(9) . (28) 
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Then one obtains 

I 

r 
&( p^) = z,d(27ry d$ A( p) emE(“jL7( 6, -$, p, -p) 

-77 po=iE(p) 

+ i&d(27r)-“+’ 
I 

lr 
dd-‘q A(q) e- E(q)L Res T( i, -A p, -p> 

-77 l7=9 

+ O(eeEL) , (29) 

where T is the amputated four-point function. It is expressed [3] in terms of vertex 
functions as 

T(PI, P2, P3, P4) = T‘l(P,, P2r P3, P‘l) 

+r3(P,,P2> -Pl-P2)G~(Pl+P2)r3(P3,P4, -P3--P4) 

+(P2HP3)+(p2HP4) for pl+p2+p3+p4=o. (30) 

In the second term of (29) the residuum of T at its pole p = q appears, which is due 
to the last term in (30). For the remainder term we have 

E = min (4 mO, mB) , (31) 

where mB is the lowest bound state mass above m, giving rise to a pole in the 
propagator. Above eq. (29) combined with (20) represents So in terms of the 
amputated four-point function at certain on-shell momenta, which actually is a 
forward scattering amplitude. 

The asymptotic behaviour of a0 for large L is obtained from (29) by a saddle-point 
integration. Let 

E(P) = mo+(2ml)-‘p2+O(p4), m>O, (32) 

E(q) = E+(2m2)-’ t qf+O(q4), m2>0, 
i=2 

(33) 

with 

and let 

E = E(-fim,, 0,. . . ,O) , (34) 

F = z:T( $, -j?, 0, 0) , (35) 

A = z:“r,( I;, k, -6 - k) , (36) 

where 

k=(-$m,,O ,..., 0), k,,= i,??. (37) 

F is a forward scattering amplitude and h is a three-particle coupling constant. 
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Finally define 
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B-‘=2iZ&&(p) p=k 

= 2iA(k)-’ g(k) . 

The saddle-point integration leads to 

(38) 

6, = -d(2m0 sinh mo)-’ 

x{F* A(o)(rn,/2~L)~‘~ e-“‘uL 

+A2A(k)B(m2/2,L)c”-““e-“L}{l+O(L-’)}. (39) 
For comparison let us consider the continuum case. Euclidean invariance implies 

E(p) = (mi+p2)“*, 

B=m2=$mo, 

A-‘(P) = ME , B-’ =2m,, m=m, (40) 

and in the prefactor we have to substitute 
sinh mO= a-’ sinh (amo) - m,, (41) 

lMl”+O 

where Q is the lattice spacing. In this way the asymptotic formulae (16) of ref. [2] 
are recovered. For theories with a nonvanishing three-point function the second 
term in (39) dominates and yields the asymptotic behaviour (3) with 

CX=+Ji, p=$(d-I), 

(42) 

The results discussed above are obtained in the framework of perturbation theory. 
Naturally one wonders whether they are valid also nonperturbatively. For the 
two-dimensional Ising model the asymptotic behaviour (3) can in fact be derived 
from the exact solution [2]. In general it is also true in the framework of the 
high-temperature expansion for the d-dimensional Ising model, and for other spin 
systems with vanishing three-point function an analogous derivation is certainly 
possible. In case the three-point function does not vanish a rigorous proof would 
be more complicated, and I did not attempt to carry it through. However, the results 
above are of a purely kinematical nature and it appears reasonable that they are 
valid generally. 

3. The mass shift in lattice gauge theory 

The most interesting case is of course quantum chromodynamics. For perturbative 
calculations of the spectrum in a finite volume [1] as well as for Monte Carlo 
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calculations it would be desirable to supplement them by information about finite 
size effects. In the following I consider pure gauge theory without quarks in d + 1 = 4 
dimensions, the gauge group being SU( N). Since there are not yet any data available 
about glueball-glueball scattering, I study the relevant quantities in the framework 
of the strong coupling expansion. 

The calculations are based on the assumption that the kinematical structure of 
finite size effects, as expressed in (39), also holds for lattice gauge theory. However, 
we have to take into account that the propagator as well as the vertex functions are 
no longer scalar quantities but are matrices, whose indices account for the different 
orientations of plaquettes in the lattice. 

For lattice gauge theory, in particular concerning the strong coupling expansion, 
I use the notation and conventions of [4]. The three-plaquette correlation function 
does not vanish and the relevant piece from (39) is 

& = -3(2m, sinh m,)-‘A’AB 

x(m,/2rrL)exp(-EL){l+O(L-I)}, (43) 

A=A(k). (44) 

Let us consider the kinematical quantities $ m2, A and B. ,?? and m2 follow from 
the energy-momentum dispersion relation for the lowest O+ glueball, see (33). For 
SU(2) the dispersion relation has been calculated in [5] in the strong coupling 
expansion in the form 

E=m,+(2m,)-’ i 2(1-cosp,)+O((l-cosp,)2). (45) 
*=I 

In our case we have 

l-cosp,=l-coshfm,=~u-2(l+O(u)), (46) 

where u is the usual strong coupling expansion parameter. Therefore (45) is not 
sufficient for our purpose and we have to know the higher powers of (I- cos p,) in 
this expansion in order to get a systematic expansion for E. I solved this problem 
by deriving an effective transfer matrix for the low-lying Of and 2+ glueball states 
in the strong coupling expansion [6]. This effective transfer matrix acts on wave 
functions in the space of all space-like plaquettes at fixed time x0. When diagonalized 
with respect to eigenvalues of momentum it reduces to a 3 ~3 matrix. Further 
diagonalization of this matrix yields the dispersion relations for the glueball states 
under consideration. It also yields the proper wave functions of these states for 
arbitrary momentum in the strong coupling expansion. Taking the O+ glueball and 
momentum q as in (28) the result is 

E=&~~(&-ij~)~(8-&c$)-‘+O(u~), (47) 

E=-4logu-log(l+W)-u2-+4+O(u”) forSU(2), 

E=-4logu-log(l+ W)-u2-$u’-Tu4+O(u5) for SU(3), (48) 
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where (see [4]) 
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w=3u-4u2 for SU(2)) (49) 

W=3u+6u,+8v2-18u~forSU(3), 

p1;=2(1-cospP). (W 

(47) implies that my’ is of order u6, which cannot be calculated from the presently 
available strong coupling graphs of the ordinary eighth-order calculation. 

Next we turn to the quantities A and B. Let pi and p2 be two plaquettes and 

G(p,,p2)=(Retr Wp,) Retr WP& (51) 

the connected plaquette-plaquette correlation function. Let Xi be the center of pi 
and oi its orientation, where 

u = b-4 VI , O</A<uG4, (52) 

can take six different values. Then the propagator in momentum space is defined, by 

&,Jq) =I e-iq(Xl-XZ)G(p,,p2) . (53) 
x2 

When the momentum p is on-shell, 

PO= ME, (54) 

one of the eigenvalues of the propagator 6(p) has a simple pole. Its residuum 
yields Z;‘A-‘(p) according to (26). If we denote the corresponding eigenvector 
u(p), this means 

=;‘A-‘(~1 = (V(P)&%(P) b(P)) * (55) 
po=iE(p) 

In the strong coupling expansion I obtained for the particular momentum k, as in 
(37), for the gauge group SU(N), 

Z,A+(2-a,,) 2(1+ W)-‘{1+O(u4)}. (56) 

Using the dispersion relation one derives Z,B from (38): 

Z,B=$(2-i&r,) 

The wave-function renormalization constant 5 follows from 

(57) 

D=2Z3A(o)=2(2-&,r2) 2(1+ W)-‘{1+10u4+O(u5)}, (58) 
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and (27) which implies 

D = S(sinh m,,)-’ 

=Z32u4(1+ w){1+34u4+o(u5)}. (59) 

In particular Z, cancels out in 

Asinhm,=Z~A/D=~{l+O(u4)}, (60) 

Bsinh mo=Z,BID=$K. (61) 

Fortunately we know a priori the continuum limits of these quantities. According 
to (40) 

l?/mo, m2/mo+$h=0.866, 

A sinh m,, + g/5 = 0.577 , 

Bsinhm,+f. (62) 

For A sinh m, the leading term (60) is already near its limit. B sinh m, is plotted in 
fig. 1 for the gauge group SU(3) according to (61). It is a smooth function of /3 and 
in the strong coupling region it is a factor of 2 smaller than its continuum limit. 
Also plotted is E/m0 with B from (48) and 

m,=-4logu-log(l+ W)-34u4+O(u5) (63) 

up to the same order. This function is near 1 in the strong coupling region and then 
starts rising. This is of course the wrong direction, but the situation might change 
in higher orders of the expansion. The case of W(2) is quite similar. 

0.5 - 
Ebsinh me 

--VW--w--_-e---- _ 

0.0 . . ..‘..l.‘l..I’*lI.‘....‘.II. 
0.0 1.0 2.0 3.0 LO 5.0 6.0 

P 

Fig. I. I?/% and B sinh m, for the gauge group W(3) in the strong coupling expansion, as explained 
in the text following eq. (62). 
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Finally we consider the most important quantity, namely the three-particle coup- 
ling constant A. In the scaling region the mass shift is asymptotically 

s,=-C(m,L)-‘exp(-~m,L){l+O(L-I)}, (64) 

(65) 

and A/m, sets the scale for finite size effects on the mass gap. In order to get A one 
has to calculate the vertex r,. Analogous to the case of the propagator (53) the 
vertex function as well as the connected three-plaquette correlation function e:(3) 
carry indices for the orientations of plaquettes. They are related through 

The propagator and C?(‘) can be expanded in powers of u by the usual graphical 
methods. Inserting the results into (66) I calculated the vertex function up to order 
u4. The result is most compactly expressed in real space. Let p,, p2 and p3 be 
plaquettes on the lattice. Then 

-3 d2u 
dp’6(p,,p2,p,)+N-‘(2-B~2)U36~(P~,P~,P3) 

-N(2-6 
N2 

) 

C 6(pI,p2,P3)Sw(pl,p,)+2permutations +O(u’), 1 (67) 
Pi 

where 

(6% 

[ 1 if pi # pj pairwise 

WPI, Pz, P2) = 
and there exists a cube W such that 
PI,P2,P3Eaw, 

(69) 

0 else, 

and 6w( p,, p2) correspondingly. The Fourier transform of this expression, which is 
r ,+&qt, q2, 4, yields A according to (compare (36)) 

Z;3’2A = 1 u,(p)u,(k)v,(-p-~>~,,,(a k-t-k) * 
~.P.T 

(70) 

Here u(p) is the eigenvector which already appeared in (55). It is only known up 
to order u for the momenta under consideration. The final result is 

&‘A2 = N-2(2 - 8N2)23U-6( 1 + w)-‘{ 1 +o( U’)} . (71) 
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1.5 1.6 1.1 1.8 1.9 2.0 

P 

Fig. 2. The coupling constant A’/sinh’ m, for the gauge group SU(2) in the strong coupling expansion. 
Curve a represents eq. (72). whereas curve b shows the leading term not containing the factor (I + W)-‘. 

To this expression only the second term in (67) contributes. In order to get rid of 
the renormalization constant 2, and to have a dimensionless quantity, we consider 

Zy3A’D3 sinh mo= A2/sinh2 m, 

=$V-2(2-8N2)-‘U-‘0(1+ w)-‘{l+o(u*)}. (72) 

This is plotted as a function of p for gauge group SU(2) and SU(3) in figs. 2 and 
3, respectively. In the scaling region the true function A2/sinh2 m, approaches its 
continuum limit AZ/m:. The strong coupling expansion of other quantities and the 
results of Monte Carlo calculations suggest that in a crossover region around /3 = 2 
for SU(2) and p = 5 for SU(3) we might obtain an estimate for the continuum limit 

su (3) 

A2 
sinh* mo 

lOOO.- 

Fig. 3. The same as fig. 2, but for the gauge group SU(3). 
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from the strong coupling expansion. Here for both gauge groups we read off the 
values 

A2/mi=2. 103, (73) 

corresponding to 
c=102. (74) 

I consider these as rough estimates of the order of magnitude of the true values. 
The error of these estimates is completely unknown. Compared to other strong 
coupling expansions the uncertainty is relatively large, due to the fact that we only 
dispose of the leading term and the first correction. 

The values in (73) and (74) appear rather large at first sight, which may shed 
some doubt on them. However, the magnitude of finite size effects, which are 
observed in Monte Carlo calculations [7], is compatible with this order of magnitude. 

If we assume that the estimates are roughly right, what would this imply? First 
of all it would mean that in the gauge field case the obstacles for an extrapolation 
of the small-L expansions [l] of single masses to their large-l limits are much bigger 
than in the case of the two-dimensional nonlinear sigma model. Whether this is also 
true for mass ratios is.unknown. Secondly it means that glueballs do interact very 
strongly. This may be illustrated by the strength of the Yukawa potential 

-n+g 
.,,)=--gL 

r ’ 

which effectively describes the interaction between 
related to the coupling constant A through 

g2 A2 ,=%40. -=- 
4~ 16nrnE 3 

(75) 

nonrelativistic glueballs. It is 

(76) 

This number might be compared to the corresponding one for nucleon-nucleon 
interactions, which is [8] 

2f2= &&,. 16 
2mZ, 47~ ’ * 

The pion-nucleon coupling constant 

(77) 

(78) 

is the direct analogue of g2/4n, but in the Yukawa potential between nucleons an 
additional factor involving the pion-nucleon mass ratio enters due to the pseudo- 
scalar nature of the interaction. 

The 2++ glueball of course also contributes to So. Its contribution in the scaling 
region is asymptotically 

A&,=-C,(m,L)-’ exp (-G m,L){l +O(L-I)}, (79) 
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where ml is its mass. In the strong coupling expansion I obtained 

C,=C. 030) 

How much this contribution (79) is suppressed relative to the leading term depends 
on the mass difference ml - m,. 

I would like to thank M. Liischer for numerous discussions and H. Joos for a 
critical reading of the manuscript. 
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