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Correlations in SU(2) lattice gauge theory with a Higgs doublet are studied by Monte Carlo calculation. Some qualitative 
consequences for the particle spectrum in isoscalar and isovector channels are discussed. 

The SU(2) Higgs model with scalars in the funda- 
mental (doublet) representation is of  great theoretical 
and phenomenological interest, because it is the Higgs 
sector of  the standard SU(2) ® U(1)electroweak mod- 
el [ 1 ], if fermions and electromagnetism are neglected. 
This model is known to have two phases: the Higgs 
phase with massive gauge vector bosons (with com- 
pletely "broken gauge invariance") and a QCD-like 
confinement phase with composite particle states 
made out of  confined scalar Higgs particles. In both 
phases there is a mass gap and external colour charges 
are screened by the scalar doublet (i.e. large Wilson 
loops obey the perimeter law). In fact, the two phases 
are not really qualitatively different, there are only 
quantitative differences [2]. There is a correspondence 
between the physical states in the two phases: the 
massive gauge bosons, for instance, can be considered 
also as a bound state made out of  two confined Higgs 
scalars. A more confinement-like situation may even 
phenomenologically be a viable alternative [3]. This 
is due to the fact that low energy electroweak phe- 
nomenology is not sensitive to the gauge structure of  
the theory. It can be explained by global SU(2) invari- 
ance and 7 - W  0 mixing [4]. 

After the discovery of  the W and Z bosons [5] the 
problem of  the spectrum of the SU(2)® U(1) model 
became acute, and it will become even more acute as 
soon as the 100 GeV energy range is available for a 
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detailed study by the next generation of  accelerators. 
Some, at least qualitative, insight into this question 
can be obtained by studying different types of  corre- 
lations in the Higgs model on the lattice. 

The phase structure of  some simple Higgs models 
was numerically investigated on the lattice in several 
previous works (see e.g. ref. [6]). The present status 
of  our knowledge of  the phase diagram for the SU(2) 
Higgs model with a scalar doublet is summarized in a 
recent paper by Ktihnelt, Lang and Vones [7], where 
the phase diagram was determined, including the ef- 
fect of  the radial degree o f  freedom for the Higgs field. 
In accordance with expectation, there is a phase-transi- 
tion line between the Higgs-like and confinement-like 
regions. This line, however, ends at some finite values 
of  the couplings, therefore the two regions are contin- 
uously connected. The radial degree of  freedom does 
not seem to be crucial for the phase structure, although 
the position and shape of  the phase transition line is 
somewhat changed. 

In this letter some results of  a Monte Carlo calcula- 
tion of  correlations in the SU(2) Higgs model with 
Higgs scalars in the fundamental (doublet) representa- 
tion will be presented and discussed. The lattice formu- 
lation of  the model uses the SU(2) gauge link variables 
U(x, la) E SU(2) (x is the lattice site; ta = -+1, 2, 3, 4 is 
the direction) and the SU(2) doublet (complex) scalar 
field q~x on lattice sites. Following the conventions of  
ref. [7], the euclidean lattice action can be written 
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÷ ) ' 
O x + ; U ( x ,  la)Ox + (3 ~ (1 - ~ Tr Up). (1) 

P 

The last term with t3 ~- 4/g  2 is the usual Wilson action 
for the SU(2) gauge field: P is a positive orientation 
plaquette and Up is the plaquette gauge variable (the 
product of  the four link variables around the plaquette). 
The lattice Higgs field 0x and the lattice Higgs cou- 
plings K, X are related to the usual continuum variables 
by 

a0eont (a, x) --> 0xX/~ (a = lattice spacing), 

~cont -> )kt¢-2, (a/.teont) 2 -> 8 - (1 - 2X)K -1 . (2) 

The tree-level vacuum expectation value in the contin- 

uum is Otree =/Jcont/V~cont, therefore in the limit 
--> oo we have O2re e --> 2Ka -2. In this limit the tree- 

level mass of  the physical Higgs particle goes to infi- 
nity: mHigg s = X/~/~cont , and the theory becomes per- 
turbatively non-renormalizable. Nevertheless, the 
Higgs self-interaction becomes infinitely strong, there- 
fore it is not clear whether perturbation theory has 
anything to say at all. On the lattice X ~ oo implies 
that the length of  the Higgs field is frozen to [0xl = 1. 
In this paper I shall use this simplification of  fixed 
length Higgs field mainly because of  technical reasons. 
Previous studies showed that in the phase structure 
there is not very much difference compared to X < oo 
[except for very small X -~ 0, but this case has presum- 
ably not much to do with the situation in standard 
SU(2) ® U(1)]. In any case, the radial Higgs degree of  
freedom can be easily restored at some later stage. 

In the lattice action (1) it is more convenient to 
use, instead of  0x, other variables for the Higgs field 
(¢x = 1, 2): 

0 ~ ~ x = PxOx,~l  , x = Px°x,o~2 " (3) 

Here ~Px > 0 is a real variable and o x E SU(2). (The 
field 0x is often used in the standard SU(2)® U(1) 
model: it has hypercharge Y = -1 /2 ,  in contrast to 
the hypercharge Y= +1/2 °fOx.)  In terms of  the new 
variables the lattice action is 
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- K ~ Ox+;,px Tr[o~+;,U(x,U)Ox]) 
~>0 

1 +/3 ~ (i ~ Tr Up). (4) 
P 

The integration measure in these variables is p3 x dPx 

d3ox  d3U(x,/a) with d3g as the invariant Haar mea- 
sure i n g E  SU(2). The actions in eqs. (1), (4) have an 
exact global SU(2) "weak-isospin" symmetry generated 

t by o x = o x V, V C SU(2). This symmetry is broken in 
the standard SU(2) ® U(1) model by the fermion mass 
differences and by electromagnetism. 

Using local SU(2) gauge invariance the SU(2) Higgs 
degree of  freedom o x can be integrated out. This can 
be easily seen by making a gauge transformation 

0 x = V x  I o x = i~- 2 = . (5) 
1 0 

The choice of-i~" 2 on the right-hand side is conven- 
tional in the standard model. (It corresponds to the 
electric charge definition Q = T 3 + Y.) The action in 
the remaining variables is 

- n ~ Px+f, Px Tr U(x, la)) 
~>0 

+/3 ~ (1 - ~- Tr Up). (6) 
P 

This can be called the "unitary gauge action" because 
it exhibits the physical degrees of  freedom. In the 
limit X -+ oo the length Px is frozen to Px = I, and we 
are left with 

1 
SuX~Co=_n ~ TrU(x ,  l a ) + ( 3 ~ ( 1 - ~ T r U p ) .  

x,~>0 P 
(7) 

The numerical Monte Carlo simulation l made was 
based on the action in eq. (7). On an 8 4 lattice the up- 
dating of the SU(2) gauge-field link variables was done 
by the Metropolis method with six hits per link. The 
correlations were measured in different channels. In 
all cases the three-momentum was projected out both 
to p = 0 and ap = 7r/4 (1 in lattice units) in all possible 
space orientations. 
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In the isoscalar spin-zero channel the same operator 
was taken as in QCD glueball calculations + 1, namely, 
the symmetric combination of  the three orientations 
of space-like single plaquettes. Since the C-parity trans- 
formation on the lattice is equivalent to the complex 
conjugation of  link variables, the jPC ( j  = spin, P = 
parity, C = charge parity) quantum numbers, in this 
case, are given by jPC = 0++. In the isovector spin-one 
channel a suitable operator can be defined from a 
single space-like link: 

O(r) = Tr(rrU(x ' rn)) (m, r =  1, ~, 3) (8) Vm - • 

This has C parity - 1 .  The parity transformation of  
the zero three-momentum projection is identical to 
the charge conjugation, because of  the summation over 
space-like points (in the "time-slice") and U(x, - m )  
= U(x - rh, m) +. Therefore, the operator  in eq. (8) 
has jPC = 1-  - .  The quantum number assignment of  
o(r) is quite clear also in the continuum limit, because Vm 
for a ~ 0 the dominant  contr ibution is just the gauge 
field in point x. Another  single link operator,  which 
comes to one's mind, would be simply Tr U(x, m). 
This is an isoscalar and has C = +I.  The spin assignment 
is, however, more complicated: the lowest spin is ac- 
tually JP = 0 + +2. Therefore, this operator  can be 
alternatively used for the isoscalar 0 ++ channel. Of 
course, the coupling to the lowest 0 ++ state can be 
different and it can also depend on/3 and ~¢. 

Besides the correlations, also the expectat ion values 
of planar and off-axis Wilson loops were measured in 
order to determine the static energy, E, of  an external 
SU(2) colour charge pair: 

aE(R) = - lim T -1 In W(R, T) .  (9) 
T~oo 

Here W(R, T) stands for a Wilson loop with length T 
in the time-direction and euclidean distance R between 
the endpoints in fixed time-slices. On the 84 lattice T 
is, of  course, restricted to T ~< 4 by the periodic bound- 
ary conditions and R has the possible values R = 1, 
X/~, X/~, 2, X/~, and 3. (Some other values like R = 
X/'6, x/8, ... were not used in this paper.) In addition 
to the Wilson loops, the Polyakov lines winding around 

+1 For a recent review and references see, for instance, ref. [8 ]. 
+2 In the first version of this paper Tr U(x, m) was erroneous- 

ly interpreted as being a spin -1 operator. I thank the ref- 
eree for pointing out to me the correct assignment. 

the periodic lattice in some given direction were also 
determined for some values of  the coupling constants. 

The general features of  the correlations in the 0 ++ 
("glueball")  channels are rather similar to the situation 
in glueball calculations of  pure lattice gauge theory, 
where a large amount of  experience was gained recent- 
ly [8]. The correlations in the 1 - -  (vector boson) 
channels seem to be even nicer: they are easily deter- 
mined up to the largest distance on the 8 4 lattice. 
Representative examples of  the 1 -  isovector correla- 
tions are shown in fig. 1 (for p = 0) and in fig. 2 (for 
p = 1). The statistics on the correlations were col- 
lected, after 1000-2000  equilibrating sweeps, from 
7000-10000  sweeps (a modest number compared to 
some recent QCD glueball calculations). The inverse 
correlation lengths (=  lowest masses) obtained in dif- 
ferent points of  the (/3, K)-plane are summarized in 
table 1. 

The static energy of  an external charge, calculated 
from eq. (9), and the expectat ion value of  the Polyakov 
lines X / ( ~  are shown in two representative cases in 

, Cp=o 

~ , ~  SU{2I F p=O 

" ~  o { 13=z.s.x=os} xlO 
o { i3= 2., .~=o.6} 
zx { [3= ,6 .~.=o7} xO, 

lo -~ 

10 

i t~ r/a 
o ~ ~ 3 , -  

Fig. 1. A sample of the zero momentum correlations in the 
isovector 1--  channel. 

443 



Volume 150B, number 6 PHYSICS LETTERS 24 January 1985 

~s 
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SU(2) F p=l 

o {p=z~, x°a6)  xO.~ 

. .t.~, r / a  
0 I 2 3 

Fig. 2. The same as fig. 1 for the lowest non-vanishing momen- 
tum value on the lattice a p  = 7r/4. 

aE S U { 2 ) F  

Q6 8 ~ lattice 

• 1 3 = 2 . 5 ,  ~ .=03  

o [3=2.5, ~=0.8 

(15 

0.~ 

0.2 

÷ 

= 0067  "- Ct007 

~ / ~ o  = 0.252 ± O00t, 

r /a 

2 ¢'~ 3 

Table 1 
The inverse correlations (mass estimates) in lattice units, at 
different points of the (13, K)-plane as shown in fig. 4. The 
mass in the isovector JPC = I - -  channel is mv,  in the iso- 
s c a l a r ,  JPC = 0++ channel it is m S. 

13 K a m  V a m  S 

3.0 0.45 0 .32±0.08  2.2 ±0.4 
3.0 0.6 0 .46±0.05 2.7 ±0.4 
3.0 0.8 0 .66±0.05 2.8 ±0.5 
2.6 0.3 2.9 ±0.6 1.5 ±0.5 
2.5 0.3 3.1 ±0.6 1.2 ±0.3 
2.5 0.35 2.6 ±0.6 1.4 ±0.2 
2.5 0.4 0.65 ± 0.14 1.5 ± 0.5 
2.5 0.45 0.35 ± 0.07 2.3 ± 0.5 
2.5 0.6 0.68 ± 0.07 2.7 ± 0.5 
2.5 0.8 0 .82±0.08  2.2 ±0.6 
2.3 0.8 0 .97±0.08  3.0 ±0.5 
2.1 0.6 0 .85±0.07  2.0 ±0.5 
2.0 0.55 0 .63±0.05 1.8 ±0.3 
1.9 0.6 0 .95±0.08  1.8 ±0.4 
1.8 0.65 0 .86±0.08  1.8 ±0.2 
1.8 0.8 1 .16±0.05 2.3 ±0.3 
1.6 0.65 1.4 ±0.2 1.37±0.08 
1.6 0.7 1.2 ±0.2 1.4 ±0.3 
1.5 0.8 1 .32±0.08 2.0 ±0.4 
1.4 0.65 1.8 ±0.4 1.7 ±0.5 
1.4 0.7 1.6 ±0.3 1.7 ±0.3 

fig. 3: one  po in t  in the  conf inemen t - l ike  region w i t h  

(/3 = 2.5;  K = 0.3) ,  and  a n o t h e r  in the  Higgs-like region 

w i t h  (/3 = 2.5 ; K = 0.8).  The screening o f  ex te rna l  

co lour  charges is obvious  in the  Higgs-like region.  In 

the  conf inemen t - l ike  region,  however ,  the  screening 

is no t  evident .  P resumably ,  one can see it on ly  at larger 

dis tances.  For  small  d is tances  some th ing  like a 

C o u l o m b  po t en t i a l  domina t ing ,  s imilarly to  QCD w i t h  

dynamica l  quarks.  

A n  i m p o r t a n t  general  feature  o f  the  cor re la t ions  is, 

accord ing  to  table  1, t ha t  the  co r re l a t ion  l eng th  in 

lat t ice uni t s  in the  i s o v e c t o r - v e c t o r  c h a n n e l  is large 

near  the  phase - t r ans i t ion  line in the  (/3, K)-plane. (The  

measured  po in t s  and  the  phase  t r ans i t ion  line accord-  

ing to  ref. [7] are s h o w n  in fig. 4.)  Above  th is  l ine,  i.e. 

in the  Higgs-like region,  the i s o v e c t o r - v e c t o r  mass is 

m u c h  smaller  t h a n  the  i sosca la r - sca la r  one:  a m  V "~ 

Fig. 3. The static energy of an external colour charge pair ob- 
tained from eq. (9). The point (13 = 2.5; K = 0.3) is in the con- 
finement-like region, the point (/3 = 2.5 ; ~ = 0.8) is in the Higgs- 
like region. The expectation value ~ x / ~ )  of the Polyakov lines 
is also given. 
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Fig. 4. The position of the points in the (~3, K)-plane, where 
the correlations were calculated (the results are given in table 
1). The dashed line is the phase transition line according to 
ref. [7]. 

am S. Below the phase-transition line, i.e. in the con- 
finement-like region we have, on the contrary, am S 

am V.  Near the endpoint of  the line there is also a 
region with a m  S ~ a m  V.  As a general rule, a m  V grows 
for decreasing 13 and for increasing K. By crossing the 
line somewhere not very near the endpoint, a m  V 

changes rather rapidly. Such a fast change is not ob- 
served for am S. In fact, the measured correlation 
length in the isoscalar-scalar channel is never large: 
in all cases smaller than one lattice unit. This may be 
partly due to the known difficulty of  measuring large 
correlations with single plaquette operators. Strictly 
speaking, the values in table 1 can only be considered 
as upper limits for the masses. Therefore, it may be 
that a m s ,  in particular, is smaller at some points than 
given by table 1. 

The most probable interpretation of  these findings 
is that the whole phase transition line in the (/3, n)- 
plane is a critical line corresponding to a second order 
phase transition with infinite correlation length. At the 
present level of  precision it is, however, also possible 
that the phase transition line is first order with some 
small specific heat. In this case the vector meson mass 
(amv)  could have a jump along the phase transition 
line and the correlation length could stay finite. A 

critical line with infinite correlation length would 
mean that the lattice theory has a continuum limit. 
This is, of  course, a very important matter, which 
should be investigated in great detail in the future. In 
particular, the study of  the volume dependence of  the 
correlations near the critical line ("finite size scaling") 
could give important hints in this respect. For the mo- 
ment, the existence of  some continuum limit is sug- 
gested by the fact that rotation invariance is restored 
to a good approximation in the measured points. This 
can be seen in fig. 3, for instance, by comparing the 
energies in the points r/a = x/-3, 2 and vr5. Another 
sign of  the nearby continuum limit is the approximate 
validity of  the Lorentz-invariant energy-momentum 
relation, shown by the comparison of  the p = 0 and p 
= 1 correlations. The situation in both aspects is rather 
similar to what happens in pure gauge theory in the 
coupling constant region where the correlation length 

is about 1. It is interesting that the situation along the 
critical line seems to change qualitatively with/3. For 
instance, m S ~ m V occurs only near the endpoint at 
/ 3 -  1.5. I f m s / m  V should stay finite in some contin- 
uum limit it would mean something rather remarkable: 
the physical Higgs particle is, namely, also an isoscalar 
0 ++. Therefore, in spite of  the fact that the physical 
Higgs was formally removed by the limit k ~ 0% a state 
having the same quantum numbers is still there as 
some glueball-like bound state of  gauge vector bosons. 
ls it possible, that the lattice Higgs theory does not 
like to become non-renormalizable? 

It is quite clear already from the above discussion 
that the question of  the continuum limit and the re- 
normalization group scaling in the SU(2) fundamental 
Higgs model is of  great interest. It should be investi- 
gated by different means, for instance, by the direct 
study of  the renormalization group flow, as suggested 
e.g. in ref. [9]. An important question in this respect 
is the role of  the third coupling parameter k. A first 
step in this direction is the extension of  the correlation 
study to the whole (/3, •, X)-space. 

From the point o f  view of  the phenomenology of  
high energy weak interactions an intriguing possibility 
is that the mass in the isoscalar-scalar (Higgs) channel 
is nearly equal to the mass of  the W and Z mesons. 
This occurs in the lattice calculation near the end point 
of  the critical line in the (13, K)-plane (see table 1). The 
existence of  such a "glueball-like" state in the standard 
SU(2) ® U(1) theory was recently suggested by Veltman 
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[10]. (His arguments are, however, based on some dif- 
ferent theoretical considerations.) Such a state would 
most probably signal strong interactions, therefore a 
rich spectrum of glueball-like and other composite 
states in the mass range of W and Z would follow. 

Part of this paper was completed in the very pleas- 
ant atmosphere of the 1984 Glueball Workshop of the 
Aspen Center for Physics. It is a pleasure to thank P. 
Hasenfratz, U. Heller, J. Kogut, H. Neuberger, J. 
Shigemitsu, D.K. Sinclair and M. Teper for useful dis- 
cussions at the workshop or at some other occasion. 
The numerical calculations for this paper were per- 
formed on the Siemens 7882 computer at the Com- 
puter Center of the University of Hamburg. 
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