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Abstract. Mayer perturbation theory is designed to provide computable 
convergent expansions which permit calculation of Greens functions in 
Euclidean quantum field theory to arbitrary accuracy, including "nonper- 
turbative" contributions from large field fluctuations. Here we describe the 
expansions at the example of 3-dimensional 2~4-theory (in continuous space). 
They are not essentially more complicated than standard perturbation theory. 
The  n th order term is expressed in terms of O(n)-dimensional integrals, and is of 
order 2 k if 4 k -  3 < n < 4k. 

1. Introduction 

Mayer perturbation theory is designed to provide computable convergent 
expansions which permit calculation of Greens functions in Euclidean quantum 
field theory to arbitrary accuracy, including "nonperturbative contributions" from 
large field fluctuations. Their n th order term is given by 0 (n)-dimensional integrals, 
as is the case in standard perturbation theory. In principle such expansions have a 
chance of converging for asymptotically free theories - including superrenormaliz- 
able ones - for problems where a small coupling constant is effective. Some 
models will require a more sophisticated treatment of the large field region, 
though. In this paper we describe the expansions in their simplest form at the 
example of weakly coupled massive 2~b'~-theory in v = 3 dimensions. Part I of the 
paper presents the main ideas and constructions. It describes the expansions in 
an elementary way, and discusses the relation to standard perturbation theory: 
The sum of all terms in the Mayer expansion up to order 4n equals the sum of all 
renormalized Feynman diagrams up to order n, plus a computable correction of 
higher order or nonperturbative origin. The raison d'etre of Mayer expansions is 
their computability and convergence. Here we concentrate on computability. We 
plan to present estimates and discuss convergence properties in a subsequent 
article (Part II). 

Mayer expansions [i.e., iterative solutions of Kirkwood Satsburg or Mayer 
Montrolt equations, in place of Schwinger Dyson equations] were introduced into 
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quantum field theory in Symanzik's celebrated paper on Euclidean quantum field 
theory I-1]. Brydges and Federbush 1,2] used Mayer expansions to obtain an 
effective action for a Coulomb gas. The Mayer expansions on the staggered lattice 
that we are going to present here are equivalent to iterated Mayer expansions 
using successively lower lattice cutoffs (cf. end of Sect. 2). Iterated Mayer 
expansions with Pauli-Villars cutoff were developped by Grpfert  and Mack in 
[3, 4], and applied to prove permanent confinement of static quarks in 3-dimen- 
sional U(1) lattice gauge theory. The work presented here is a continuation of the 
program started there, but the paper will be selfcontained. The expansions 
presented here are examples of what is called a phase cell cluster expansion in 
constructive field theory. Phase cell cluster expansions were introduced by Glimm 
and Jaffe 1,5] and further developped by Magnen and Srnror [6] and Battle and 
Federbush 1,7, 8]. Our convergence proof (in preparation) combines elements of 
the analysis of Magnen and Srnror, and of 1,,43, with a UV-stability argument (the 
mass counterterm is dominated by the quartic interaction, cf. below). Elements of 
the exact renormalization group approach of Kupiainen and Gawedzki [9] are 
also incorporated 1. 

The space on which the theory lives originally 1,continuum R ~ or cubic lattice 
(aZ)" of lattice spacing a] will be called the base space. The generating function 
lnZ(~p) of the connected free-propagator-amputated Euclidean Greens functions 
depends on a field ~p on base space. Its derivatives at ~p = 0  give the Greens 
functions, see Appendix A. In Mayer perturbation theory they are computed from 
an expansion of the form 

lnZ(~p)= E f ... ~ ~'(xl , . . . ,x, l~p).  (1.1a) 
?1~'0 gl XnEA 

The resulting expansions for Greens functions become particularly simple when 
suitable normalization conditions are imposed, see Eqs. (1.16a), (1.19) below. The 
leading term n = 0 is given by 

J/{(OI~P) = - 2 b!~ ~P(z)4. (1.lb) 

The integrations over x~ in the later terms are actually summations over all points 
x of a staggered lattice A that is superimposed on the base space (see Fig. 1). The 
staggered lattice A=(Ao, A1,A2,...) consists of a finite or infinite sequence 
1,disjoint union] of lattices Aj of decreasing lattice spacing aj. For  instance, 
a~=L-Jao, where L is a suitably chosen integer > 1 and ao is the physical length 
scale 2. A point x ~ A is an element of Aj for some j = 0. In the presence of a lattice 
cutoff a, there is a finest lattice AN with lattice spacing aN = a. For  a continuum 
theory N =  oe - i.e. the sequence is infinite - and the staggered lattice admits as 
maps a semigroup of scale transformations by integer powers of L- 1 in addition to 

1 In recent announcements, Feldman, Magnen, Rivasseau, and Srnror promise an improved 
version of the expansions of [6], with application to the infrared behavior of massless lattice 
2~b4-theory in 4 dimensions [10], and Kupiainen and Gawedzki describe how they handle the 
same model [11]. This supports the belief that asymptotically free renormalizable models are not 
necessarily intrinsically more diflicult than superrenormalizable ones 
2 We believe that L = 2 is an optimal choice yet 
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Fig. la and b. The staggered lattice. A point xe Aj of the staggered lattice may be regarded as a 
cube of side length aj in base space. The cubes are positioned in such a way that smaller cubes fit 
into larger ones (i.e. do not intersect their boundaries), a base space with lattices of side length 
aj = L-Jao superimposed,j = 0, 1, 2, .... b Every cube in one of the lattices that is superimposed on 
base space is represented by a dot in this pictorial representation of the staggered lattice 
A =A o +A 1 +A2 + .... The dots in layer Aj represent cubes of side length aj. (Drawing for 2 
dimensions) 

the group of translations by integer multiples of ao. Integration over the staggered 
lattice includes a summation over length scales j. In v dimensions 

N 

(..-) = Z a~ x ~  ('" ")" (1.2) 
x ~ A  j = 0 

The augmented Mayer amplitudes J~(xl ,  ..., x,J~v) are finite sums of products of 
Mayer  amplitudes ~ ( x i l  . . . . .  xi~kv) with k~n ,  multiplied with combinatorial 
coefficients. The general formula is given in Eqs. (3.6) of Sect. 3. The Mayer 
amplitudes ~{ are defined for finite subsets X =  {xl, . . . ,x,} CA of the staggered 
lattice. That  is, they are symmetrical in their arguments and defined only when all 
their arguments are distinct. They are defined by considering auxiliary theories in 
which the interaction has been switched off, in a suitable way, outside finite subsets 
X of the staggered lattice. For  3-dimensional 2~b4-theory this is done as follows. 
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The interaction of the model is V(O)-bV(~I~b), 

V(~) = 4! u~s~ ~(z)4 ' (1.3) 

5g(vI~)=fe(v)+ S ½fm2(vlz)~(z) z. 
b a s e  

It is expedient to consider the counterterms as functions of the free propagator ~ of 
the theory. In our model [and, more generally, in asymptotically free theories], the 
counterterms are known a priori. For instance 

1 2 
fm2(~lz) = ½2~(z, z ) -  ~5-2 ~'~[as,_ ~(Z, Z') 3 . (1.4) 

There is a similar expression for the field independent ("vacuum energy") 
counterterm fie. Alternatively, fe may be fixed by imposing normalization 
conditions. One may also speed up UV-convergence by making oversubstractions, 
i.e. include wave function and coupling constant renormalization counterterms, 
and higher order terms in (1.4), if one wishes to. When the propagator ~ is 
translation invariant, then 5m 2 is independent of z. Both counterterms vanish 
when v = 0. 

One splits the field ~b into pieces g0 j that are constant on cubes of side length ai. 
The points x e Aj of the staggered lattice may be identified with cubes in the base 
space of side length .aj. As a result, the pieces ~o s specify a field on the staggered 
lattice, viz. (p(x)= (pJ(z) for z e x, x s Aj. The decomposition reads 

~b(z)= S d(z,x)go(x)-dgo(z) for z sbase .  (1.5) 
x ~ A  

The kernels ~/are  determined by a choice of block spin (and the free propagator v). 
To be specific, let us choose the block spin on the lattice Aj of lattice spacing a s as 

fbJ(x)=av(~(z)-a] ~ I O(z) for x ~ A  s. (1.5') 
g ~ x  

Then the kernels ~¢ are the same as in the work of Kupiainen and Gawedzki 
(except for the presence of a mass) [9], see Appendix B. There is a corresponding 
split of the free propagator 

v ( z l , z : )=  SS d(zl,xOv(xl,xz)xuC(zz, xz) for zl, z2~base.  (1.6) 
2¢1~¢2EA 

The propagator v(xl, x2) on the staggered lattice vanishes unless xl and x2 are in 
the same layer. Both s/(z,x) and v(xl,x2) decay exponentially with distance 
[between z and xCbase, or between xl and x2] with decay length 3 a~ if x eA~, 
xL2 ~ As+ ~, see [9]. The decay of the propagator on At is determined by the mass. 
The propagator v is positive semi-definite. 

The interaction may be considered as a function of the field go on the staggered 
lattice. We set 

~ ( ~ , ~ 0 ) = V ( ~ + ~ ) - ~  I ~(z) ~, 
• b a s e  

fiB(rip, g0) = 6V(~[p + 0), (1.7) 

3 This implies that the propagator of (pJ has infrared cutoff a)-_t~, while a UV-cutoff a~- ~ is 
supplied by the lattice Aj 
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when ~b and (p are related by Eq. (1.5). [The external field tp on base space is 
argument of the generating function for amputated Greens functions.] 

While it is custumary to call V the interaction, the reader is advised to think of 
interaction as being mediated by propagators. The interaction is switched off by 
putting the propagator equal to zero outside X. Given a subset X of the staggered 
lattice, let Zx be its characteristic function 

{10 f°r x ~ X  
Xx(X) = otherwise, 

and define X-dependent propagators by 

V x ( X 1 ,  X 2 )  = Z x ( X 1 ) l ) ( x 1 ,  x 2 )  )( .x(X2) , (1.8) 

, x(Zl, Z2)= if   (z,,xl)vx(x,,x2)d,(z2,x2). 
X 1 ~ x2~A 

Partition functions Z I(X[~p) for finite subsets X c A are defined using as free field 
measure the Gaussian measure d#v,,(cp) with propagator [covariance] Vx. Because 
the propagator vanishes outside X this measure is supported on fields q~ = Zx~0 that 
vanish outside X. Therefore the integral is effectively n-dimensional when X 
contains n points [cf. Eq. (3.15) of Sect. 3]. The interaction ~ is as before, but the 
counterterms are adjusted by substituting ~x for ~ in the argument of fi2~. 

Zl(Xllp) = ~ d#~x(Cp) exp [ -  ~B (tp, q~) + 6~B(~xl~p, q~)]. (1.9a) 

Our definitions are such that 

ZI011p) = 1. (1.9b) 

The generating function for the amputated Green functions is obtained as an 
"oo-volume limit" X / ' A  (see end of Appendix B) 

2 
l n Z 0 p ) = - ~ .  I lP(z)4+lnZI(A[lP) (+const). (1.10) 

b a s e  

This switchoff of interaction and induced counterterms on part of the staggered 
lattice is the central idea of this paper. It is the key to computability and simplicity. 
The adjustment of the counterterms becomes natural when the interaction is 
viewed as mediated by propagators. It is also essential in order to maintain 
stability. In and close to the continuum the bare mass squared is negative. The 
mass counterterm must therefore be dominated by the quartic interaction. The 
basic inequality is 

s Pb (Z)4qI(~m2(z)O(Z) 2 <62-1 I [6m2(z)] 2 (1.11) 
e • b a s e  

When the counterterm is switched off outside X, 2-1 ~ [6m z] 2 becomes of the order 
of 2. "volume of X" and its exponential can be controlled by powers of 2 in suitable 
units. 

Let us return to the computation of Mayer amplitudes ./g. They are defined by 
requiring validity of the following relations for arbitrary finite nonempty subsets X 
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of the staggered lattice A. Set 

A(X]to) = n!a(xl)L..a(x,)~dg(xl ..... x, lto) + 61,, 

for 

X = { x l , . . . , x , } ,  with a(x)--aj for x~Ai .  (1.12a) 

The dimension v = 3 in our model. We demand 

ZI(Xlto)= ~2 I-IA(Ylto) for all finite X. (1.12b) 
X = Z Y  Y 

Summation is over all partitions of X into disjoint nonempty subsets Y. Equations 
(1.9b), (1.12b) exhibit Z~(X) as partition function of a polymer system with 
activities A(Y) (see Sect. 2). It is well known that Eq. (1.12b) has a converse which 
determines the activity A(Y) uniquely, given the partition functions Z~(X) for 
X=Y. 

A(Ylto)= Y] ( -1 ) " -~ (n -1 ) !  52 [IZt(X~lto). (1.12c) 
n>=l Y=E~XI  i 

For practical calculations (and for deriving estimates) one uses other more 
convenient formulae for the Mayer amplitudes in place of Eq. (1.12c). They will be 
described in the following sections. It is now clear, however, that the Mayer 
amplitudes ~ ( x l  ..... Xnlto) are computable in terms of ____ n-dimensional integrals, 
because expression (1.9a) is an integral over n real variables ~o(xi) when X = {xi} 
has n points. 

Let us note, for comparison, that standard perturbation theory can also be put 
on a staggered lattice. This can be done Feynman graph by Feynman graph. 
Consider for instance a n th order graph with 4-leg vertices only. The Feynman 
integrand in coordinate space is a product of propagators v(zi, z j), multiplied with 
( -  2)" and possibly with a combinatorial factor. Split the propagator as in Eq. (1.5) 
and imagine that the zfintegration over base space are done. This produces 
nonlocal vertex functions on the staggered lattice, 

2 
Y/4(xl ..... x~)= 4! [" d ( z ,  xO. . .d(z ,  x4), etc. (1.13) 

zebase 

The Feynman integral becomes an integral over 4n arguments xi in the staggered 
lattice. It can be rewritten as a sum of "integrals" over k =< n arguments yi that 
assume distinct values in A (cf. Sect. 4). 

Now we will explain, briefly, how our renormalization procedure with 
X-dependent counterterms works. We begin with a perturbation theoretic 
illustration. For simplicity we will ignore tadpoles and the 0(2) piece of the mass 
counterterm that cancels them. To order 22 the generating function lnZ(to) is a 
polynomial in tp, and its quadratic term in to is given by 

lnZ(to)= ~S %. .452) . . . to -  S to... x ...to+... (1.14a) 
zl~base z 1, z2~base z 1 

in graphical notation, with ~2 
/ T x  

x = ~ to...~)...to. (1.14b) 
z 1 z2~base z 1 
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Inserting the expression for the counterterm gives 

In zOp) = l J" ~ . . . . . .  ~p - ~o . . . .  (M5a) 
z i ,  z 2 e b a s e  

( - 2 )  2 
- 3! ~ t ] ) ( Z 1 ) [ I ~ ( Z 2 ) - - I p ( Z 1 ) ] Z ~ ' ( Z 1 , Z 2 )  3 . (1.15b) 

Zl,Z2 

The counterterm differs from the main term by reversal of sign and a "shift of the 
field" W from zz to zl. Such "shift of the field" is also the basic operation in the 
recent work of Gallavotti and Nicol6 [12] on perturbation theoretic renormatiz- 
ation. In coordinate space language, the logarithmic UV-divergence of the self 
mass in continuous space appears in the guise of an ill defined product of 
distributions ~(zl, z2) s which contains a divergent piece proportional 6(z t -z2)  
[ t 3]. Expression (1.15) is a well defined distribution, however, for smooth fields tp, 
because of the zero of the factor [v2(z2)--I/)(Zl) ] at z2 =zl .  

To put the renormalized Feynman integral (1.15a) on the staggered lattice, we 
perform the split (1.6) of the propagator v in the factor v(zt, zz) s in expression 
(1.15b). This amounts to splitting the main term and the counterterm simulta- 
neously, and combining the two terms piecewise in the obvious fashion. The split 
introduces integrations over six variables x], x~(a= 1,2, 3) on the staggered 
lattice, and we imagine that the two integrations of z~, z2 over the base space are 
done first. [They converge because restricted propagators "Vx(zl, z2) are less 
singular at z~, z2 than v(zl, z2), by positivity.] After the split, UV-divergences 
would show up as divergences in the sums over scales j as j-~ oo. Such sums are 
implied in the integrations (1.2) over the staggered lattice. Consider now a term in 
the integrals (actually sums) over A which involves a propagator v(xa, xz) with x~, 
x2 ~Aj. It appears in the combination sJ(zD X1)I)(XI,X2)~(Z2, X2)~q~(Z1,Z2). 
Because of the decay properties of kernels d and v, the restricted propagator ~; 
becomes exponentially small with distance between zl and zz with decay length a t. 
Suppose now that the field ~p is smooth on length scale ak for some k <j. The zero of 
the factor [~p(zz)-~0(z0] in expression (1.15b) will then give rise to a suppression 
factor a/ak. This suppression factor is enough to eliminate the logarithmic 
divergence in the sum over length scales j ~  oo that would be present if the mass 
counterterm had not been included in (1.15). 

Self mass graphs (1.15a) may also appear as subgraphs of larger graphs. In this 
case the factor p(z0~(z2) is replaced by some function f ( z l ,  z2) that is determined 
by the rest of the graph. Since potential UV-divergences would show up as 
divergences in the sum over length scales a t a s j ~  oo (where a~ is the decay rate of 
the fastest decaying restricted propagator in the subgraph) one needs only consider 
the case that f(z~, z2) is smooth on some length scale ak, with k <j. (k is determined 
by the restricted propagators that appear in the rest of the graph.) 4 The effect of the 
counterterm is to substitute f ( z l ,  Zz)- f (zD zl) for f ( z l ,  z2). This gives rise to a 
convergence producing suppression factor a/ak as before. 

m .  

4 In the perturbative renormalization theory of Gallavotti and Nicol6 [t 2] ordering of lines by 
frequency j replaces the Zimmermann forests [t3] 
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Our discussion of renormalization has been perturbative so far. Our Mayer 
amplitudes may be thought of as given by low order Feynman graphs (split as 
described above) plus corrections. The corrections turn out not to produce new 
UV-divergences because they have explicit extra factors aj. In conclusion, 
renormalization suppresses dangerous contributions to individual Mayer ampli- 
tudes Jg(xl ,  ..., x,t~p) with some arguments xr in very fine lattices A i (j large). This 
works in such a way that the sums over length scales that have to be done as part of 
the integrations in (1.1) become convergent. 

In the analysis of Magnen and Sfnfor [6], part of the UV-convergence factors 
L - j  is used up to control combinatorial factors. They arise because a large cube 
x" eAk may be coupled to many smaller cubes x, x '3x  ~ Aj, j >k. 

We conclude our introductory discussion of renormalization with a remark 
about  renormalization conditions. The X-dependent mass- and vacuum energy 
counterterms fire z and fie are chosen in such a way that the following renormaliz- 
ation conditions are approximately fulfilled, for all finite nonempty subsets 
X = {xl . . . . .  Xa} of A and all z e base, 

rig(x, . . . . .  x,l~p = 0) = 0, (1.16a) 

fi2 
d[(x l ,  ..., x,l~p = 0) = 0. (1.16b) 

,~b~so 6w (z3 6p (z) 

The renormalization conditions (1.16) are not "too many" because there are 
counterterms fie(X) and fimZ(X[z) to be fixed for arbitrary X C A and z ~ base. 

Exact validity of Eq. (1.16a) may be enforced by fixing the constant term 
6e(X) in the action such that 

ZI(X]~p=0)= 1 for all X .  (1.17) 

If this is done, then the expansions for the Greens functions become particularly 
simple. The full, free-propagator-amputated Greens functions (including dis- 
connected parts) are given by 

fik 
G(zl, ..., _zk) = Z(A[p = 0)-1 Z(A]w = 0), 

6~(zO...fip(zk) 
(1.18) 

Z(XIp ) -  Z l ( X [ p ) e x p I -  ~ .f p(z)4-] . 
L • base [ 

Performing the differentations in expression (1.12b) one obtains with Eqs. (1.12a), 
(1.16a), and (1.17), 

V fi: 
C(z~,z~)= Z I . . .S  1-o ~ ~ , ,~g (x i  . . . . .  x , l~=O) 

.>= 1 ~...~.~a koPtzl)otptz2) 

+ Z ~ ( x l  . . . . .  x~l~ = o ) ~  ~¢(x~+ , . . . ,  x,l~ = o) 
k = l  

(1.19) 

and similar formulae for the higher n-point functions. In Eq. (1.19) the second term 
in [ ] is actually zero by symmetry. 
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The free-propagator-amputated Greens functions G(x,, ..., x,) are not 1-part- 
icle irreducible, and neither are the Mayer amplitudes Jg. 1-particle irreducible 
Mayer amplitudes J/#l 0 can be introduced by the following defining relation. We 
write it for activities A which are related to Mayer amplitudes J / /by  Eq. (1.12a). 

A(XI~p) = A<~')(XI~p) 

+ 
x=x~+x~l,~2~b.~o~x~ o~z~j  

x2~X2 

5A(X2t~P) 
" ~%/(Z1, X1)V(X 1, X2)~(Z2, X2) I~l~(Z2) (1.20) 

Summation is over partitions of X in two nonempty subsets X1 and X 2. 
Renormalization conditions (1,16) carry over to the one particle irreducible 
amplitudes ~(li) (and also to ~').  

One may want to impose also the second renormalization condition (1.16b) 
exactly. Description of such an alternative renormalization scheme is outside the 
scope of the present paper. 

Our method may also be used to compute effective actions in the sense of Wilson 
[ 15-1, and corresponding Boltzmann factors, for lattice cutoffs aj. They depend on 
a block spin ~ on Aj. Set 

At>jl=k~>jAj and ~J(x)=0 for x $ A j .  (1.21) 

Then inZ(At>jlldqM ) and Z(At>~ld~) ,  which are determined by Mayer 
amplitudes J/(Xllp) with X C AE>j1, are almost the desired quantities. ["Almost" 
because one needs to correct for the fact that the "partial bare mass" m~(z)= m 2 

- ~m2(~a [> j l  I Z) need not be exactly invariant under continuous translations.] This 
is of interest for theories which are not weakly coupled at the physical length scale 
a 0. We hope to come back to this problem in a future paper. Ultimately one may 
hope to design a Monte Carlo procedure for continuum theories in which correction 
terms in the effective Boltzmann factor are picked randomly. 

The plan of the rest of the paper is as follows: In Sect. 2 we recall results of the 
theory of polymer systems, and formulae for and properties of truncated 
expectation values. In Sect. 3 we show how the Mayer amplitudes can be 
computed as truncated expectation values of so-called "molecular activities" B 
that are determined by the interaction V and the kernels d (i. e. propagator v and 
block spin). Formulae for and properties of these molecular activities are 
discussed. The result is summarized in Theorem 3.3. Section 4 discusses the 
relation with perturbation theory. It includes a pedagogical discussion of the 
relation between standard perturbation theory and Mayer expansions on a simple 
(as opposed to staggered) lattice. In Sect. 5 the trivial, but still instructive, model of 
2~b4-theory on a lattice with only one point is considered. 

2. Theory of Polymer Systems 

Following Gruber and Kunz [16], a polymer system on a finite or countable set A 
is specified as follows. The elements of A are called sites. Certain finite nonempty 
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subsets P of A are declared to be polymers. Among them are the monomers which 
consist of a single site x e A. To every polymer P, a (real) activity A(P) is assigned. 
The partition function Z(X) for an arbitrary finite subset X of A is defined as 

Z ( X ) =  Z I~A(PI). (2.1) 
X = ZPi  Pi  

Here and in the following, we write Z and + for union of disjoint sets. The sum in 
Eq. (2.1) runs over all partitions of X into polymers. In particular 

Z(0) = 1. (2. i ) 

In our applications, the partition functions will be guaranteed to be positive, but 
the activities A(P) for polymers other than monomers are not necessarily 
nonnegative. An example of a polymer system is described in Fig. 2. By definition 
(2.1), the partition functions satisfy the following recursion relation, for any x e X 

Z ( X ) =  ~, A(Y)Z(X-  Y). (2.2) 
Y 

y c= X ,  x e Y  

They are known as Kirkwood-Salsburg equations. Equation (2.1) may be regarded 
as the iterative solution of (2.2) with initial condition (2.1'). Only a finite number of 
iteration steps is needed to obtain Z(X) for a finite set X. 

Monomers 

Potymers P 

Fig. 2. Example of a polymer system. A chessboard serves as A and any union of squares that can be 
cut out of cardboard without falling into pieces and fits on the board is a polymer. Choosing as 
activities A(P) =exp[-fi[P]], the partition function would equal e 6~p . (#  partitions of A into 
polymers) 
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It will be important for us that Eq. (2.1) can be inverted. That is, the activity 
A(P) is uniquely determined by the partition functions Z(X) for X = P. Indeed it is 
obvious from Eq. (2.1) that A(P)= Z(P)- Z I-I (activities of smaller polymers). 
Therefore the activities can be recursively determined. The result is well known 
[17] lel 

A(P)= 2 ( - 1 ) ' - ~ ( n - 1 ) !  Z I-[Z(X;). (2.3) 
n=l  P=E~Xi i 

The inner sum runs over partitions of P into nonempty subsets Xi, and IP[ is the 
number of sites in P. 

A function Z(- ) of finite subsets X C A may be regarded as a partition function 
of a polymer system on A if it obeys Eq. (2.1~). Arbitrary finite subsets of A must be 
admitted as polymers for general Z(.  ). Since validity of Eq. (2.1) follows from (2.2) 
and (2.V), it suffices to check validity of Eqs. (2.2) for some choice of x=x(X) in 
order to verify that some A(. ) are indeed the activities of the polymer system with 
partition function Z(.  ). The monomer activities A({x}) = Z({x}) are positive if the 
partition functions are positive. 

A central result of the theory of polymer systems is a series expansion for the 
free energies lnZ(X), together with a sufficient condition for its convergence. We 
state it first for finite sets X. Given X, a cluster ~ is a nonempty collection of not 
necessarily distinct polymers with the property that the following graph 7(Q) is 
connected. Draw a vertex for every polymer P in Q, and a line joining P to P' if P 
r iP '+0.  It is customary to write 

~ = ( p ] l  .... ,p~k) 

if (~ contains k distinct polymers Pi with multiplicities n i > 1. One defines reduced 
activities by 

A(P) = A(P)/x~e A({x}). (2.4) 

The expansion formula reads 

lnZ(X) = Y'. lnA({x}) + Z a(q~) l-[ ,4(P) • (2.5) 
xeX ~. P ~  

The sum over Q runs over all clusters of nontrivial polymers on X. Nontrivial 
polymers are, for now, all polymers other than monomers, a(Q) are combinatorial 
coefficients which are given by 

a((~)= Z (-1)l(C)/l-[ni!. (2.6) 
c ~ v(~) 

Summation is over all connected subgraphs C of the graph 7(Q) that was 
mentioned above, and l(C) is the number of lines in C. Alternative expressions and 
bounds on a(~) can be found in the literature [18]. 

For real ~ > 1 one defines 

~x(~) = sup!-x~x ¢ [1 + Z, ],~(p)i~lel]. (2.7) 
xeP~ X, IP[> 2 

The expansion (2.5) for the free energy lnZ(X) converges if~3x(¢ ) < 1 for some ¢ > 1 
[16]. 
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By differentiating Eq. (2.5) one obtains an expansion for the so-called "reduced 
correlation functions" of the polymer system 

Z ( X -  V) 
Ox(Y) = - - -  lnZ(X) ,  (Y___ X).  (2.8) 

Z(X) t?A(Y) 

If A is an infinitely extended lattice, then these expansions continue to converge in 
the infinite volume limit X/"  A, if !/3A(~ ) < 1 for some ~ > 1. Moreover, 

]ex(Y)l<=[1--f~x(~)]-l~nl-IA({x}) -1 with n=lg]  (2.9) 
x~g 

for all XC=A. For a more precise statement of these results, see [16]. For the 
renormalized Mayer expansions on the staggered lattice one uses these conver- 
gence results only at ~p = 0. One can avoid the need to use them (in the discussion of 
Greens functions) altogether by imposing the renormalization condition (1.16a), 
viz. ~ ' (XFt0=0)=0.  This can be seen from Eq. (1.19). Expansion (2.5) for lnZ 
serves then merely as a bookkeeping device for combinatorial factors in equations 
that could also be obtained by differentiating Eq. (1.12b) for Z. [In the expression 
for the connected amputated n-point Greens function that is obtained by 
differentiating expansion (2.5) with respect to the external field ~p at ~p = 0, all terms 
with (I) containing more than n polymers will vanish as a result of the 
renormalization condition (1.16a). There results a finite sum for finite X.] The 
point is that the convergence conditions mentioned above are much more 
restrictive than the condition for convergence of the sum (1.19) - in particular they 
remain nontrivial for finite X. 

It is convenient to introduce the notion of a polymer system with empty sites. 
Denote its activities by M(P). Its partition function is defined as 

Z ( X ) = I +  Z Z I-IM(Pi). (2.10) 
Y Y=ZP~ i 

O*YC=X 

Evidently this is equal to the partition function of a polymer system proper with 
activities 

A({x})=l+M({x}), A(P)=M(P)  for ]P]>2. (2.11) 

We may identify with a polymer system proper in still another way. Split each site 
of the original set A into two. Polymers of the original system, including its 
monomers (x}, shall occupy double sites. In addition we introduce a monomer 
with activity 1 which occupies only one site (either half of a double site). Applying 
the expansion formula (2.5) to this system we obtain 

lnZ(X) = ~2 , (Q) YI M(P). (2.12) 
Q P ~  

Summation is now over all clusters containing arbitrary polymers P (of the 
original system). The expansion will converge if 

+ ]M(P)] ¢ alel <1 (2.13) 

x~P 

for some ~ > 1. Monomers are included in the sum over P. 
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Let us now consider polymer systems whose activities depend on a field ~0 on A 

~(Xk0)= Y. I-IB(PI~0). (2.14) 
X=~,P P 

It will be required that the activity B(Pk0) depends only on the restriction of ~o to P. 
We wish to consider Gaussian integrals of such partition functions. To avoid 
confusion with quantities that will appear later on, the polymers of the polymer 
system (2.14) will be called molecules, with molecular activity B(. [q~). Let d#~(~o) be 
the Gaussian measure with covariance v (=  normalized free field measure with 
propagator v) and consider 

Z(X) = S d/~v(~ o) ~(Xk0) - (~(Xlq~))~ • (2.15) 

The symbol ( . ) v  stands for expectation value with respect to the Gaussian 
measure d#~. Evidently Z(0)= 1. We may therefore regard Z(X) as partition 
functions of a polymer system 

Z(X)=  Y, 1-IA(P). (2.16) 
X = £ P  P 

The activities A are uniquely determined by the partition functions Z as we know. 
If {M1, ..., M,} is a finite set of disjoint molecules, we may consider the truncated 
Gaussian expectation value 5 

(B(Mdq));B(M>q~); . . . ;B(M,k0))v-  [B(Mdq~); . (2.17) 
i =  v 

Truncated expectation values obey the defining relation 

- -  = 

Summation is over partitions of the index set I = { 1 ..... n} into nonempty subsets 
J. Note that this formula has the character of a polymer representation too, with 
the ordinary expectation values on the left-hand side playing the role of partition 
functions Z(I). The truncated expectation values are the corresponding activities. 

It follows from Eqs. (2.15) and (2.18) that the activities A in the polymer 
representation (2.16) of the partition functions Z(X) are given by truncated 
expectation values 

A(P)=/,==M y~ (~1~ [B(Mk0);]) v . (2.19) 

These relations can be transcribed into the language of polymer systems with 
empty sites. We leave this to the reader. 

Truncated Gaussian expectation values admit a tree formula which expresses 
them as integrals over auxiliary real variables s~ = 0... 1 of ordinary Gaussian 
expectation values. To state it we introduce some notation [19, Sect. 2.4]. 

An n-tree is a map 

n:[2 ..... n]--+[1 .... , n - l ]  with r/(0<i. (2.20) 

5 We use the customary "semicolon notation" for truncated expectation values 
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It specifies a tree graph with vertices 1...n, root 1, and links (i, ~7(/)). Given an 
( n -  1)-tupel s = (sl . . . .  , s,_ 1) of real variables in the interval 0... 1, one sets 

f (q l s )=  f i  Sa_2Sa_3...Sq(a), ds=ds~ . . .ds ,_ l .  (2.21) 
a=2 

Empty products which arise when t/(a) = a -  1 (in particular for a = 2) are read as 1. 
Given a set ofn disjoint molecules M~ (A ,  let Xi be the characteristic function of 

Mi (viz. Z~(x)= 1 for x s Mg, and = 0  otherwise) and define the interpolating 
covariance v[rc, s] by 

v[n, s] = ZZ~vxi+ Z si...s~- 1 [Z~(~)vz,~)+ Z~(j~vx~(o]. (2.22) 
i 1 < i < j < n  

It depends on a permutation rc of 1...n, besides the n -  1 tupel of real variables s. 
We assume that products of activities B(M, Jq0 are integrable with respect to the 
Gaussian measure d#~(~0), and differentiable. 

Proposition 2.1. Let M1, . , . ,M,  be disjoint subsets of d and suppose that the 
activities B ( M ,  ko) depend only on the restriction of ~o to M~. Then their truncated 
Gaussian expectation values admit the following representation in terms of  ordinary 
Gaussian expectation values 

( S  I=1 [B(M,[~o);]) =~ 5",~'~dsf(tl,s)~ 

Y6M~(n(b)) 

Summation over ~ is over all n-trees. Summation over rc is over all ( n - l ) !  
permutations of 1. . .n with 7r(1) = 1. Integration over the n -  1 variables s i runs Jbom 0 
to 1. 

This proposition is a standard result of constructive field theory [2, 19, 20]. It 
can be proven either by the method of partial integration of Gaussian measures 
of Glimm and Jaffe [19], or by making a Fourier transform in ~o and using the 
techniques of Mayer expansions for classical gases [20, 3]. 

Remark. This proposition covers the special case that no two factors B(M,]tp) 
depend on the field (p(x) at the same point x. A tree formula exists also in the 
general case where this condition is not satisfied. It can be used, for instance, to 
derive a tree formula for the sum of  all (unrenormalized) connected n th order 
Feynman integrals, on a lattice or in the continuum. As is well known, the sum of 
all connected n th order vacuum Feynman diagrams in a theory with interaction 
Lagrangian 2£P, equals 

~. < ~e,(~o(z0); ...- 2e,(q~(z.))>~. 
n[ zl ' - -  

The general tree formula is obtained with the help of the following trick which 
reduces the general case to the special case covered by Proposition 2.1. 

The covariance operator v in a Gaussian measure is permitted to have zero 
eigenvalues. The simplest example is the 1-dimensional Dirac f-measure d#o(~) 
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= 6(~)d~, which is a Gaussian measure with covariance 0. Consider the Gaussian 
measure for a field ¢(x, i) on A x . . .  x A (n copies i = 1...n) with covariance 

It equals 

if(x, i, y,j) = v(x, y).  (2.23) 

d#~(q~)=d#~(~b(., 1)) f i  I~ O(¢(x,j)--¢(x, 1))dO(x,j). (2.24) 
j = 2 x ~ A  

This can be verified by checking that (¢(x, i)¢(y,j))~= if(x, i, y,j). Set 

/J(M~kb) = B(M,[O(., i)). (2.25) 

Evidently, for any l_C_ [1 . . . . .  n], 

No two activities/~(Mit¢) depend on the field ~b at the same point (x,/), and the 
proposition can therefore be applied to find a formula for the truncated 
expectation value ( l~  [B(M~lq~);])~ in terms ofa Gaussian measure for a field on A 
x . . .  xA. [] 

Finally we wish to consider the case that the Gaussian measure d#~(q~) is 
represented as convolution of Gaussian measures with covariances v ~ by splitting 
the propagator v 6. If 

N 
v= ~ vi=v t<=~] with vi>O, (2.27) 

i=0 
then 

o N ~ (2.28) Id#v(q~)f(~0)= ~d#vo(~0 )...d#~N(~p ) f  qo . 

Gaussian measures are only well defined for propagators v that are kernels of 
positive semidefinite operators. Therefore the split of the propagator must be such 
that v i have this property, viz. vi>= 0 (as operators). 

Let us first give the result for a split of a propagator v into two. The general case 
will then be handled by iterating the result. 

Proposition 2.2. Let v = u + w with v > O, u >= 0 and w > 0 as operators. Then the 
truncated expectation values obey the following relations 

The expectation value ( . ) w  is computed with Gaussian measure d#w(~), and the 
expectation value ( . ) ,  with d#,(cb). Summation is over partitions of the finite set I 
into nonempty subsets J c= I. 

The proof of this proposition will be given below, at the end of this section. 

6 The material in the rest of this section is not needed for pedestrian calculations 
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Let us now iterate Eq. (2.29) to treat the split (2.27) of the propagator and 
corresponding split of the field in (2.28). Write 

I) ~ V[ <=N] = v N - [ -  v[ < N - 1 ]  : . . .  = V  [ >N-~ ' ]  dl.. l)[ < N - g ]  , 

/)[<N - 1] : V N -  1. + V[< N -  2] (2.30a) 

and 

O = OI=<N] = O~_k_ O[--<N-i I  = . . . = o [ > N - t ] + q ) [ < = N - e l  

o [ ~ N - I ] = o N - 1  . ~ O [  < N - 2 ]  
(2.30b) 

The labelling of the propagators shall be such that v N propagates the highest 
frequencies, and v ° the lowest. (It was the other way around in [-4].) Following 
[3, 4] we define f-vertices with constituents i ~ I and associated vertex functions 
inductively, for a given index set I = N. A O-vertex is a single element a e I which is 
its own constituent. The associated vertex function is 

~°(Ot--<m) =B(MoIot--<N1). (2.31) 

Higher vertices are defined inductively. An f-vertex ~' is a finite collection {~} of 
( f -  1)-vertices, no two of which share a constituent, a ~ I is a constituent of ~'ifit is 
a constituent of one of the ( f -  1)-vertices ~ e ~'. We write a ~_ ~' in this case, and 
C(c() for the set of all constituents of ~'. The vertex functions are defined by the 
recursion relation 

tre~,(ot<N-tI)= f ~E~ [O~- I(ot<N-eI + oN-e+ I);]) vz~. ~+ I (2.32) 

The truncated expectation value is computed with Gaussian measure 
d#v, " ,+ ,(oN-e+ 1). It follows from Proposition 2.2 by induction that 

1 / 

\b~J / v [> N -el C(~t~= d 

for all f = 0, 1 . . . . .  N. Summation is over all Y-vertices c~ whose set of constituents 
is C(ct). The special case f = N + 1 gives 

(I-[[B(MaIo);]~ : ~ a~+l(0).  (2.34, 
\,~i / 

v C(~=  I 

Summation is over all (N+  1)-vertices with set of constituents L (The present 
definition of vertex functions differs by a combinatorial factor from [3, 4].) 
Following Gallavotti and Nicol6 [12], the terms in the sums (2.33) or (2.34) [i.e. the 
(N+ 1)-vertex a] can be represented by tree diagrams. To avoid confusion with 
other kinds of trees that occurred before, we call them Gallavotti Nicol6 trees 
(GN-trees). 

The trees are drawn on ruled paper, with lines labelled by k = - 1 . . . .  , N. A 
Y-vertex a is represented by a point on line N - f .  If the Y-vertex ~ consists of 
( f -  1)-vertices ~ . . . .  , ak, then the point ~ on line N -  f is linked to k points ~ ... . .  ~k 
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I 2 3 
N 

i-1 

k-1 

1 

Fig. 3. Example ofa  GaIIavotti-Nicol6 tree. The tree shown in the figure represents the expectation 
value 

( ( B ( M 1 ,  ~0); (B(M2, 0); B(M3, ~0))~,)~ 

assuming M1, M2, M 3 consist of  points of A t and Ak only 

on line N - Y +  1. Then the procedure is repeated. If the (Y- 1)-vertex cq consists 
of (Y-2)-vertices ex 1 ..... etm, it is linked to m points e~i on line N - Y  + 2, etc. If 
had constituent set I then the procedure ends with the drawing of points on line 
N representing 0-vertices, one for each constituent = element of I. 

In this way, a one to one correspondence is established between Y-vertices and 
GN trees whose root is on line N - Y ,  and whose tips of branches on line N are 
labelled by the elements of the constituent set C(c0. In our applications it happens 
often that the activities B(M, Iq0 are all independent of some (pJ so that the 
integration S d#,,s(q ~) is trivial. In this case the GN-tree cannot branch on linej - 1, 
and we erase the vertices on this line. An example is shown in Fig. 3. 

These formulae embody the essence of the iterated Mayer expansions of [3, 4] 
in a succinct way. They are also the starting point of the perturbative renormaliz- 
ation theory of Gallavotti and Nicol6 [12]. The truncated expectation values in 
the right-hand side ofrecursion relation (2.32) can be expressed in a tree formula by 
Proposition 2.1 (and remark following it). 

It remains to prove Proposition 2.2. Since truncated expectation values are 
uniquely determined by ordinary expectation values by the defining relation (2.18), 
it suffices to show that 

(,~B~,(q@w+, =n~=:c~ ~ {K~=~j (HI I (b~s[Bb(cI)+O;]) wl;),,}. (2.35) 

By Eq. (2.28) the left-hand side equals 

By the defining relation (2.18) of truncated expectation values this equals 

H=ZJ \ J \ b e J  I w  u 

Using the defining relation (2.18) of truncated expectation values again to 
reexpress the outer ordinary expectation value, this becomes 

H = 2J {J} = E,~" ~ w u 



284 G. Mack and A. Pordt 

The inner sum is over partition of the set {J} (of subsets of H) into disjoint 
subsets ~r. Thus, J r  is a collection of sets J. Set K = ~ J. Then 

J~Yr 

H = ~ J { J ~ = g a g  ~ \ H = Z K  K 

by the distributive law. Upon inserting this, expression (2.36) becomes equal to the 
right-hand side of Eq. (2.35). q.e.d. 

3. Expansions on the Staggered Lattice 

Now we consider 2q~4-theory in v = 3 dimensions, in the continuum or on a cubic 
lattice of arbitrarily small lattice spacing a -  aN- This space, on which the theory 
lives originally, will be called the base space. Integration over the base space is 
written as 

[ ~ d3z in the continuum 
~3 

-- (3.1) 
zebase a 3 ~ on the lattice. 

z~(agr) 3 

The generating function for amputated Greens functions, the Mayer amplitudes 
etc., will depend on an external field ~p on base space. 

We put the theory on a staggered lattice A as described in the introduction. 
When the interaction and induced counterterms are switched off outside a finite 
subset X of A, the partition function becomes 

Z(Xl~)-Zl(Xl~p)exp[-~ { tp(z)4] = ~d#vx(~0)~(Xl~p+dq~). (3.2) 
L 4. b.s~ J 

Integration is over fields q) that vanish outside X, so that the integral has as man), 
dimensions as X has points, and 

Lr(Xl~p)=exp{~jb,~eI-~.~p(z)4+½fm2(~xlZ)~(z)21+6e(X)}. (3.3) 

The mass counterterm is given by Eq. (1.4), and the vacuum energy counterterm 
fie(X)- fie(~,x) can be determined so that 

Z(Slw = 0) = 1. (3.4) 

The factor exp [ - 2  ~ Ip4/4 !] is extracted in (3.2) in order to assure that Z~ (0I~P) = 1, 
as is necessary for partition functions of polymer systems by Eq. (2.1"). 

The Mayer amplitudes dg are related to the partition functions. 

Z,(XI~p)= Z I-[A(Yltp), (3.5a) 
X=ZY g 

A (XI~p) = 6,, ,  + M(XI~p), (3.5b) 

M(Xl~p) = n! a(xOL..a(x,yVe/(x~ ..... x,lw), (v-- 3) (3.5c) 

for X = {x~ . . . . .  x,} with a(x)=aj for x e Aj. A are the activities of the polymer 
system whose partition functions are Z~, and M are the activities of the 
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corresponding polymer system with empty sites. Arbitrary finite nonempty subsets 
of the staggered lattice are admitted as polymers. According to the discussion in 
Sect. 2, activities are uniquely determined by partition functions for polymer 
systems. Therefore the Mayer amplitudes are well defined for distinct arguments 
xl ... .  , x,. They are symmetrical in these arguments. 

It is useful to introduce also augmented Mayer emplitudes J{(x~, ..., x,l~p). 
They are defined for arbitrary, not necessarily distinct, values of their arguments, 
and symmetrical in these arguments. If all arguments xi are distinct 

J~(xl, ..., x, lw) = ~'(xa ..... x,lq~) (x~ distinct). (3.6a) 

The general definition is as follows. Consider clusters II) of polymers P CA 
(including monomers) as defined in Sect. 2. Let supplt) be the disjoint union of 
P e II) i.e. a point x e A is contained in suppQ with a certain multiplicity n(x). It 
equals the number of polymers P e tl) which contain x. Now define, for X = finite 
family of not necessarily distinct elements xi of A 

M(XI~p) = 5Z a(Q) [ I  M(Pt~p), (3.6b) 
supp~=X 

n!a(xl)L..a(x,)vfft(Xl,...,x,[q~):M(Xlw) I-I n(x)! (3.6c) 
distinct 

x~X 

for X =  {xl, ...,x,}. The combinatorial factors a(~) were defined by Eq. (2.6). 
Equation (3.6a) is a special case of(3.6b, c) because Q consists of a single polymer X 
if suppQ contain no point with multiplicity > 2, and a (~)=  1 in this case. In 
general, the total number of arguments x e P in the amplitudes M on the right- 
hand side of (3.6b) is n, and the sum over clusters ~ is a finite sum. 

It follows from Eqs. (2.12) and (3.6b) that 

lnZI(XI~P)=EffI(X[~P) = E ~... $ J~(xl ..... x,l~p) (3.7) 
X n>= 1 Xl xn~X 

in the sense of formal power series in the amplitudes J~(...). The sum is actually 
convergent if the Mayer amplitudes satisfy suitable bounds. For the computation 
of Greens functions this is not needed when the normalization condition (3.4) is 
imposed, and ~p may be considered as infinitesimal in this case. See the discussion 
in Sect. 2. 

Now we turn to the computation of activities A (or Mayer amplitudes rig). 
Write ~0 x for a field that vanishes outside X and set 

~(Xl~P+~q~x)=~t(Xl~P'q)x)exp[ - 2 ~ .  base ~/) (Z)4]_I (3.8) 

SO that ~I(0]~P, • ) = 1. We regard ~ ~ (Xl~p, ~Ox) as partition function of a polymer 
system. 

~°x(Xlw'~°x)--x=zPZ I-IB(Plw,~0P)e with q~e(x)={oX(X) f°rxePC=X(3.9)otherwise. 

The polymers of this polymer system will be called molecules, and their activities B 
will be called molecular activities. Arbitrary finite nonempty subsets of A are 
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admitted as molecules. A pedestrian way to compute the molecular activities from 
the given interaction (3.3) uses the inversion formula (2.3) viz. 

B(PI~P,q)e) = Z ( - 1 ) " - l ( n - 1 ) !  2 ~I(XiI~P, rPx). (3.10) 
n>= 1 P=~'~Xi 

A more convenient formula will be derived later on. 
By inserting Eqs. (3.8), (3.9) into (3.2), Zj(XIv2) becomes expressed as a 

Gaussian expectation of a partition function 5f1(X,--) of a polymer system. 
According to the discussion in Sect. 2 [Eq. (2.19)] this implies that the correspond- 
ing activities are obtained as truncated expectation values 

1 / 

X=EP \ P / Vx 

The Mayer amplitudes are given in terms of A's by Eqs. (3.5b, c). The truncated 
expectation values can be expressed in terms of ordinary expectation values by the 
tree formula, Proposition 2.1. Finally we note again that the resulting Gaussian 
integrals are n-dimensional integrals if X has n points. Let us elaborate on this 
point. 

Let X be a subset containing n elements of A, and suppose that the function F of 
the field 4o depends only on q~(x) for x e X. Set 

q~=a~q)(x) for x~Xc~Aj, with d = l ( v - 2 ) = ½ ,  (3.12) 

and consider the n x n matrix 

V=(V~y)x,y~x 
Yxy=a~av(x,y) for x~X~Aj  (3.13) 

~ris zero unless both x and y are in the same layer XnAj. By hypothesis 

F(q)) =f({40x}x~x). (3.14) 

In this notation 

S d/xv(4o)F(4o)=(det2,V)-½~'[~IJx d4ox]e-½~'<,,°:"(v-')~:,o,f({q):}). (3.15) 
The right-hand side of this formula is an n-dimensional integral as promised. 
Equation (3.15) can be verified by using the standard formula for the Fourier 
transform of a Gaussian measure 

f d~,,(cP)e i(q'e)= e- ½(q' ~). (3.16) 

Instead of using the explicit formula (3.10) for the molecular activities B in terms of 
the interaction, they can also be determined from a recursion relation which we 
will now describe. Let us set 

~Y(Xl,c+dq, x)=~(X+Yl~+d~Ox) for Xc~Y=O. (3.17) 

The quantity ~(X)=:~Y(X)/:~Y(O) obeys ~ ( 0 ) = 1  and may therefore be 
regarded as partition function of a polymer system. Denote the corresponding 
activities by BY(PI~p, 4oe). They obey the Kirkwood-Salsburg equations [for any 
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x = x(P) e P] 

£fY(Xl~p+d~Ox)= Z BY(PIw, q~e)LrY(x-PIq~+W~Ox-e). (3.18) 
P 

x~P c= X 

The molecular activities in which we are actually interested (for now) are 

B(PI% q~e)-- B¢(PIw, ~Pe). 

Let us write P + x in place of P u  {x} if x 6 P, and ~Px in place of ~p(x}. gop is short for 
Zeg o, Ze = characteristic function of P C A. 

Proposition 3.1. The generalized molecular activities obey the Jbllowing recursion 
relation for w ~ P + Y, x e P 

Bv(P+wl~P, goe+w) = ~, B Y ( P - R  +wIw,~Pe-R+w) 
R 

xeRC=p 

• [B r + ~(P[~v + d~p~, gop)- Br(PI~, goe)], 

and the initial condition 

Br ((x}lw, q~ x) = £f (Y  + xl~, + dq)~)/~;(Ylw) . 

The notation dgo was introduced in Eq. (1.5); the other quantities were introduced 
earlier in this section. 

The proof of Proposition 3.1 is given in Appendix C. This recursion relation can be 
solved by methods similar to those of Sect. 2. We shall defer their further analysis 
to Part II and record here only one result. 

Corollary 3.2. I f  P consists of n points, 4 k -  3 <_ n < 4k, then 

B(PI~, ~Op) = 51,, + O(2k) • 

It follows from Eq. (3.11) that the activities A(XIw) share this property. Let us 
summarize the results obtained so far as 

Theorem 3.3. Let the molecular activities B(PI~p, q~p) = B~(PI~, goe) be determined by 
the interaction Boltzmannian 

via Eqs. (3.8), (3.10) or Proposition 3. i. Then the Mayer amplitudes are expressed as 
truncated expectation values as follows. Let X =  {xl, ..., x,}. Then 

n! a(xOV...a(x,)~ Xg (xl, ..., x.lip) = A(XIw)-31 , . ,  

A(X[~o)-- Z (1-[[B(PIw,~Pp);]~ (3.113 

~ a 

X=ZP \ P ] Vx 

The truncated expectation value is expressed in terms of n-dimensional Gaussian 
integrals by Proposition 2.1 and Eq. (3.15). I f  4 k - 3  < n <_ 4k then 

d~(Xl, . . . ,  X n l ~ ) =  O(f~k)  . 
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The generating function for connected free-propagator-amputated Greens func- 
tions is expressed in terms of Mayer amplitudes by Eqs. (1.1) and (3.6). 
Alternatively, the full (disconnected) free-propagator-amputated Greens functions 
may be obtained from Eqs. (1.19). 

Let us note that the tree formula (Proposition 2.1) involves aIso integrations 
over n - 1  real variables s~=0...I, and summation over n - 1  integers 
t/(a) = 1 . . . a -  1 (apart from symmetrization re). They replace summation over all 
Feynman graphs in standard perturbation theory. The summation over order n 
and arguments xl ..... xn in Eqs. (I.I) or (1.19) for the Greens functions replace the 
sum over orders and integrals over coordinate space in standard perturbation 
theory. 

If one wishes to, one can compute the truncated expectation value (3.11) 
integrating out the fields cp j on Aj in sequence, beginning with the highest 
frequenciesj. How this is done is explained at the end of Sect. 2. The result is given 
by a sum of terms that are labelled by Gallavotti-Nicol6 trees. The tree formula 
(Proposition 2.1) can be used to do the Gaussian integration in the recursion 
relation for vertex functions, Eq. (2.32). 

Of course, the truncated expectation values (3.11) can also be evaluated 
without recourse to the tree formula (Proposition 2.1) by using their standard 
expression in terms of ordinary expectation values, and Eqs. (3.8), (3.10) can be 
used in place of the recursion relation (Proposition 3.1). 

In Eq. (3.11) the renormalization cancellation occurs between different terms in 
the sum over partition X = Y. P of X. In Part II we will show how to change this by 
giving the same s-dependence to the propagators that appear as arguments of 
counterterms and to the covariance of the Gaussian measure in the tree formula. 

4. Relation with Perturbation Theory 

The Mayer amplitudes may be expanded in formal (asymptotic) power series in the 
coupling constant 2. Theorem 3.3 asserts that ~{(xl ..... x,lp) is of order 2 k if 
4 k -  3 _ n _< 4k. It follows from their definition (3.6) that the same is then also true 
for the augmented Mayer amplitudes J~(xl ..... x,l~p). Therefore, if we truncate the 
series (1.1) for the generating function of the connected free-propagator- 
amputated Greens functions after the term n = 4k, the result will be correct to order 
2 k. In other words, the result differs from the sum of all Feynman diagrams up to 
order k by higher order and nonperturbative contributions. 

In order to deepen the reader's understanding of this fact we will now indulge in 
a pedagogical exercise. We will examine v-dimensional )~4-theory without any 
counterterms on a lattice A of lattice spacing a, and its Mayer expansions on this 
simple lattice. This may be regarded as a simple special case of the general one - the 
staggered lattice has only one layer, and the counterterms are zero. 

We will exhibit an explicit relation between the Mayer amplitudes, expanded in 
a formal power series in 2, and the Feynman amplitudes. Stated in words it says 
that the Mayer amplitude ~ ( x l  .... , x,l~p) equals the sum of all "point connected" 
Feynman diagrams whose arbitrarily many vertices occupy the n distinct points 
x a ..... x, of the lattice A. A Feynman diagram with given positions of its vertices is 
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called point connected if it is connected or becomes connected when vertices that 
are positioned at the same site of the lattice are identified. 

The partition function at zero external field for the simplified model is 

Z(A[O)=Sd#~(q~)exp[ -24! ~aS ~b(z)4] • (4.1) 

In perturbation theory, the partition function is obtained as a sum of coordinate 
space integrals associated with arbitrary not necessarily connected vacuum 
Feynman diagrams. 

Z(dlO) = ~2 (disconnected vacuum Feynman diagrams) 

I X1 X1 X2 

(4.2) 

We adopt the convention that Feynman integrands associated with arbitrary 
diagrams are to be evaluated according to the standard rules, including 
combinatorial factors. The combinatorial factors coming from symmetries under 
permutations of disconnected pieces imply, for instance 

I S @ x , =  ½[! ? I s  (4.3) 
XI X2 ~ X2 

As a result of these combinatorial factors, the series of Z(A[0) exponentiates to a 
sum of integrals associated with connected vacuum diagrams, 

lnZ(A[0) = 2 (connected vacuum diagrams) 

= S 0 + + + . . . .  (4.4) 
xl x i  1 2 L.  2 

Now we perform a reordering and partial resummation. In (4.2) we collect all the 
terms in the combined sum, over graphs and over n-tuptes of points (xl .... , xk) 
with arbitrary k>n, whose vertices {x~}~=l...k occupy the same set 
Y= {ya ..... y,} ____A of n distinct lattice points. 

o ] 
+ I I  + + + . .  

Xl :~X2 

-t-  . . .  

- 1 +  I l(x0+ II [dg2(xl,x2)+ ½~l(xl)~gi(x2)]+... (4.5) 
X1 X1 ~ X 2  

etc., d/ln(x 1 .... , x,) is the sum of all point connected vacuum Feynman diagrams 
whose vertices are positioned at n distinct sites Yl,..., Y, of the lattice. There are 
infinitely many such diagrams because arbitrarily many vertices may be positioned 
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on the same site x. In effect we are summing up diagrams with arbitrarily many 
propagators joining any two (identical or distinct) sites Yl . . . . .  y, of the lattice. 

By construction, . ~ , ( x l  . . . . .  xn) will be of order 2 n as 2--+0. An expansion for 
lnZ(AI0) is obtained from the expansion for Z(AI0) by multiplying de, with 4", 
expanding in powers of ~ and setting ~ = I in the end. This expansion will include 
correction terms that come from the constraints xx ~= x 2 etc. in the sum for Z(AIO)  
("excluded volume effect"). 

lnZ(AI0)= S ./¢/~(xl)+ S~ X g z ( X l , X 2 ) + . . .  
X;t X.t :#X2 

i /< (x0  2---- 
=1 (4.6) 

[- °°, 

= I J ~ I ( X 1 )  @ 5 f  J ~ 2 ( X 1 ,  X2) - ~ ' . "  
xl xix2 

with 
"J~l ( X t )  = J[/~l (X1)  

~ d g 2 ( x l , x 2 )  if x l + x 2  (4.7) 
J~2(XI 'X2)~"~-  [ - - l ~ / ~ l ( X 1 ) 2  if X 1 ~-~-X 2 . 

The whole discussion can be repeated for Z(d]~0) with general external field ,p (see 
Appendix A). One starts from 

Z(AI~P)=I + * r© + c> + tp ::.:: tp] + ... .  (4.8) 
x1 L '"  

to to 
The Mayer amplitudes dC.(x, . . . . .  x . )  will now depend on ~p through 
tp(x,) . . . . .  lp(x.). The general form of the expansion for Z(AI*p) is 

z(Atvo)=I+ Z Z Z c({1))S...5dee&l,...,x¢l) 
~j Xl x~ N > I  k .=}lk N distinct 

(4.9) 
• "/~2(X~',  + 1 '  "'"X~,+gz)"" J~k("" XN)" 

The combinatorial factor is 

c({fi})= f i  1 (4.10) 
~=1 /qI~, ! 

if m e of the integers E i > 1 equal ~. 
Let us state the relation between Mayer amplitudes and connected Feynman 

diagrams in general terms. 
Consider n x f matrices k (t) = (k~5)) whose entries are nonnegative integers. By a 

permutation of rows or columns, such a matrix can be brought to block form. We 
call it irreducible if it consists of only one block and no row or column is identically 
0. We write ~-(y, . . . . .  Y0 for the sum of all connected k m order vacuum diagrams 
with vertices positioned at y,  . . . . .  Yk- We abbreviate 

.o~(x 1, .;;, x~, x2 . . . ,  x ,  . . . .  ~ , x v ) -  Y ( x ~ *  . . . . .  x'2"). (4.1 t) 
m 1 - . .  m n 

arguments 

We shall not indicate the dependence on the external field ~p explicitly. 
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P,opositio.4, . ) 
k~ s ! 1 d 

~,(xl  ..... xn)=~  2; ~- -~- w e!  ; = _ , g ( x  " . . . . .  FI  k, Xkn'*Y) (4.12) 
n. e~l  k(,) IF[ 1~ k~j! 

j = l  i= l  

as Jbrmal power series in 2. The inner summation is over all irreducible n x [ matrices 
k (e) whose entries are nonnegative integers. 

Proof. Write 
Z(AI~p) = j" d#d¢) 1-[ e xf(ex), 

x ~ A  

where ~/f depends on ~p, and % = adq~(X), d = ½(v--2). Both the Mayer amplitude 
and the Feynman amplitude may be expressed as truncated expectation values 

" ' "  / ] 
J/[(xl .... ,x~)= ~ V( 1~ [e- ~(e~');] --~l,n (4.13) 

n, L \ i = i  /,~ j 

and 

i(jo, ) ff(y~,. . . ,yk)= ~. [ - 2 V ( % ) ; ]  f 

In the first expression one expands 

oo 1 
e- ~f(~o~)= =02 ~ [ - 2V(%)] ~. 

e 

Then one expresses the resulting "partially truncated" expectation value of a 
product of factors -2~(q~.) in terms of completely truncated expectation values 
with the help of the following 

Lemma 4.2. 

i ~, 
#1 

N=}ni! 1 ~ ( - - ,  - k!'~\ 
= 2 ' ~  i ,~- '----I~l i=1I~ [Fi(%);]  'J] (4.14) 

f>_-i k(e) I~I I - I  /c(g)l v - - i j  • (- k(~} =,, i=l j=l j=t 
Summation is over irreducible n x f matrices k m as above which satisfy indicated 
constraint. 

Sketch of the Proof of Lemma 4.2. One considers first the ordinary expectation 
value 

(F~(%,) 'L . .F , (%~) '~) .  

Using the defining relation (2.18) of truncated expectation values, this can be 
expressed as a truncated expectation value of k factors F , ( % f  ~ and also as a 
truncated expectation value ofN = ~. ni factors Fi(%).  It suffices to show that the 
two expressions become equal when Eq. (4.14) is inserted into the first. This is so 
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because of uniqueness of the activities of a polymer system, cf. remark after Eq. 
(2.18). After some combinatorics it is found that they are indeed equal. Details are 
spelled out in [21]. [] 

We mentioned in the introduction that standard Feynman perturbation 
theory may be put on a staggered lattice, graph by graph. The new graphs will 
involve nonlocal vertices which can connect different layers, and propagators that 
link only points in the same layer. Using this, the results of this section could be 
extended to the Mayer amplitudes on a staggered lattice. We think, however, that 
they are good enough as they stand to give the general idea. 

To make sure that there is no misunderstanding, let us emphasize one fact at 
the end of this perturbation theoretical section. Mayer amplitudes are not defined 
as divergent sums of Feynman amplitudes. They are defined as perfectly 
meaningful truncated expectation values like (4.13). These well defined expressions 
admit an asymptotic power series expansion in 2 whose coefficients are Feynman 
amplitudes. 

5. The Special Case of a Lattice with only One Point 

The partition function for 2q~4-theory on a lattice A = {0} that consists of a single 
point is given by a convergent 1-dimensional integral 

Z({O}llp)=(2gv)_l/2~dq)exp[_½v_l(o2 --~.{(P+~P) 2 .  .4 +~6rn 1 2 ((p + ~p) 2 + c]eJ, 

2>0,  ~>0, real. (5.1) 

Its perturbation expansion in powers of 2 will be divergent no matter how 6m z and 
6e depend on 2, because the integral makes no sense for 2 < 0, and is therefore not 
analytic at 2 = 0 [23]. 

On the other hand, a Mayer expansion for this model amounts to "do nothing". 
There is only a single Mayer amplitude, which is given by a convergent 
1-dimensional integral, and 

Z({0} kv) = Jl/(0l~P) exp [ - 2 ~v4]. (5.2) 

Greens functions are obtained by differentiation at tp =0. They do not involve 
divergent sums. 

Appendix A. 
Generating Function for Free-Propagator-Amputated Greens Functions 

In a theory with free propagator ~, the connected, free-propagator-amputated 
Greens functions G~(z~, ...,z,) are related to the corresponding unamputated 
Greens function G~(zl,..., zn) by 

Q(zl,...,z,)= ~ ... I ,(zl,zl)...,(z,,z;,)G~(z_i,...,_z',) (n>__3) (A.1) 
and zl za 

G¢(z1, z2) ~- q>(Zl, z2) ~- f ~ 'O(Zl, Zl)~(Z2, Zl) Gc(zI1, $2) = G(zl, z2)- 
zlz~ 
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Amputation is indicated by underlining the argument. The Greens functions can 
be obtained by differentiation from generating functions 

6" 
G~(zl, ..., z,) = G(J)ls = o, (A.2) aa(z0...aa(z.) 

6" 
G~(z~ ..... z,) = &p(z0...&p(z,) F(~)lt~= o- (a.3) 

The above relations correspond to the following relation between generating 
functions 

FOp = v J) = G(J) - ½JvJ (a.4) 

in obvious notation. In a theory with interaction Lagrangian V, the generating 
function G(J) is the logarithm of the partition function in the presence of a source 

eO(S)= ~ dp~(q5) e-v(¢~)+ s ,  

The free field measure is 

d#~(q~) = (det 2roy)- i/2 e- ½~-~o~b. 

It follows that 

Let us define 

We show that 

=e-½S~s+eeJd#d(b) if ~#=vJ.  

Z0P) = S dp~(~b) e-vt ,  + t~). 

FOp) =lnZ0p) 

obeys the relation (A.4). 
Making a shift of the field in (A.8) and using Eq. (A.7) we obtain 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

Z(~v) = J" dtt~(~b) e ½s~,J + o % -  v(,) 

=ear)-½ s~J if t p=vJ .  (A.t0) 

Making a shift in the field, we must verify that boundary conditions at infinity are 
preserved. They are preserved if ~p falls to zero at infinity. This will be the case for 
locally supported source J if v is a massive propagator. Equation (A.10) agrees 
with the desired relation (A.4). q.e.d. 

The connected free-propagator-amputated Greens functions are not 1-particle 
irreducible, and must not be confused with the so-called vertex-functions - full- 
propagator-amputated 1-particle irreducible Greens functions whose generating 
function is related to G(J) by a Legendre transform. 
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Appendix B. Block Spins, Propagators, and Kernels 

We will follow the procedure of Kupiainen and Gawedzki [9] to carry out the split 
(15), (1.6) of the field ~b and propagator ~ > 0 on base space. No summation will be 
implied by repeated indices. 

Let us assume that there is a finest lattice AN=base space. Results for 
continuum base space may be obtained by letting N ~ oo. As we have mentioned in 
the main text, the points x s A s may be considered as blocks of side length aj in base 
space. 

Given a field ~b = ~bN on base space, we define the blockspin ~ (x) on A s as block 
average of ~b 

cps (x)  = a v ~b(z) - CS~(x) . (B.1) 

Accordingly, the free propagators [covariances] ~ and u i of the [Gaussian] fields ~b 
and 4~ i are related by 

uj = CJ~C s* > O. (B.2) 

* is the adjoint with respect to the scalar products ( , )  that are furnished by 
integration over base space and A j, respectively. The field ~b may be split into a part 
that is determined by the block spin ~s, and a fluctuation field (i+ 1 on base space 
that has zero block average. 

¢...~,~JfI~J-{'(J+l with CS(S+l=0. (B.3) 

In the special case j = N this holds with (N+ 1 = 0, ~ U =  1. The kernel ~ J  is chosen 
as  

d s  = v C J . u [  1, (B.4) 

so that the two pieces on the right-hand side are orthogonal with respect to the 
scalar product ( , )  that is specified by the inverse propagator 

( f ,  g)  = ( f , v -  lg). 

Evidently 

CSs¢ j =  1. (B.5) 

We will define the pieces q)k of the field ~b in such a way that 

(J= Z sckrP k. (B.6) 
k>=j 

Expressed in words, the fluctuation field (s in the sum of the parts of the field (p with 
"frequency" k ~ j  (appropriately transported to base space with kernels sfi). For 
j = N + 1 this relation holds with ~0 N+~ =0. Insert (B.6) into (B.3) to obtain 

0 = s(/JcbS + Z ~k~  ok. (B.7) 
k>j 

Suppose this relation holds for somej. We determine ~o s so that it holds for j -  1. 
To this end we define the operation C i_ ~,j which averages functions on A s over 

cells of A j_ 1. Evidently, definition (B.1) implies 

4~i- ~ = Cs - ~,~s.  (B.8) 
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We split the field ~J into a piece that is determined by its block average ~ i -  t and a 
part ~o i on Aj whose block average vanishes, 

(~J : ";&/ j , j - -  1 ~ j  - 1 _[_ (pj (B.9) 

with 
C j_ 1 ,p  J = 0. (B.10) 

The kernel d j , j _  1 is chosen as 

d j . j -  i = u F * -  t.ju]--11, (B. 11) 

so that 
~¢Jdj, j_ ~ =z¢  g- 1. (B.12) 

Inserting Eqs. (B.9) and (B.12) into (B.7), we see that (B.7) remains true for j -  1, as 
promised. 

Equation (B.9), together with definitions (B.1) of the block spins and (B.11), 
(B.2) of the kernel d . . ,  defines the pieces q~J of the field for all j > 1 in such a way 
that (B.7) holds for all j. For j = 0 this equation is of the form (1.5) if we set, finally 

(po = 40. (B.13) 

~ ( z ,  x) is the integral kernel of d j if x ¢ A j, viz. 

s~cJf(z) = j s¢(z, x ) f ( x ) .  (B.14) 
xEAj 

It remains to determine the free propagator [covariance] v of ~o ~. Regard ~0 j as a 
function of $. We may then use the definition (B.9), (B.13) of ~# to compute 

v(x,y)=(rpJ(x)~ok(y)) for x e A j ,  y E A k .  (B.15) 

Using the relation (B.8) and the known propagator uj o f ~  j, it turns out to be of the 
form 

with 

v(x, y) = 6jkVJ(X, y) 

t) j = U j - -  u jC~f_  1,juj-_11 Cj ._  1 , j u j  for j => 1, 
(B.16) 

/)0 =/gO • 

v is positive semidefinite by definition (B.15). It follows from Eq. (B.15) and (1.15), 
viz. 

N 
~b= ~ ,~qrpJ (B.17) 

j=O 

that the relation (I.6) between propagators holds. That is 

v = Z dJvJ~4J* - d v d * .  (B. 18) 
J 

Decay properties of kernels M and propagators v were studied in [9, 22]. Finally 
we should transcribe Gaussian measures. We claim that 

d#~(~)F(q~) = I dl~v(rP)F(dgo) • (B.19) 



296 G, Mack and A. Pordt 

It suffices to verify this for F(~b)= e i(q'4'). Using the known Fourier transformation 
(3.16) of Gaussian measures, one finds 

dlz~(fb) e i(q'o) = e - ½(q' ~q) = e-  ½(q" ~¢~*q) , 

while 

d#~(q0 e ~ (q' ~ ' )  = e - ½('~, ~ )  = e -  ½ ~' °~'~). q.e.d. 

Using Eq. (B.19) it follows from the formula (A.8) for the generating function 
In Z(~p) of connected Greens functions, and definitions (1.7), (1.9a) that the relation 
(1.10) for lnZ0p) holds for finite volume and cutoff. 

Appendix C. Proof of the Reeursion Relation (Proposition 3.1) 

We start from the Kirkwood-Salsburg Eq. (3.18) which defines the generalized 
molecular activities B Y. Iterating it once we obtain, for w ~ X + Y 

LrY(S +w[w+ ~Cq~x+,~) = Z CY(P +wlw, q~v+w)~Y(X-Plw+ d~Ox-e) 
P 

x~v~ x (C.1) with 

CY (P + wisp, qh, + ~) = BY( P + wisP, q)v + w) 

+ Z BY(QI~P,q~)Br(P-Q+wI~p, cPe-~+w) • 
Q 

x~e_~v (C.2) 

CY(...) can be determined recursively from Eq. (C.1). Therefore, two expressions 
for Cr(...) which both satisfy Eq. (C.1) must necessarily be equal. By definition 
(3.17) we have 

~(X+wlv:+~C~Ox+w)=~Y+w(xltp'+s/q,x), ~'=~+se~o~. 
Inserting the Kirkwood-Salsburg Eq. (3.18) for the right-hand side gives 

~r(X +wlw+ seq)x+~)= Z BY+~(PIw',~oI,)~r+w(x-P[w' +,~q~x-v). 
P 

x~P c= X 

But 
Lrr + w (X -- P],4" + dq~x-  v) = ~ Y ( X  - P + wt'4 + ~¢~Ox- e + w) 

= Z BY(Q[tP, q~Q)~; f f (X-P+w-Q]tp+dq~x-e+w-q)  
(2 

w~QC__X-P+w 

by the Kirkwood-Salsburg equation. Inserting this and setting 

P + Q - w = R  so that x ~ R C = X , Q = R - P + w ,  PC=R, 

we obtain 

~ Y ( X  + wisp + dq~x+ w)= ~R I ~e BY+'~(PI~" q)e)BY( R -  P + wltp, ~oR_v+ w) 1 
xeRC-_X L xEP~_ R ) 

• ~er(X -- R[~ + d~o x_ R)- 

This is another equation of the form (C.2). Equating the coefficient in { } to 
CY(R+ w[...) produces the recursion relation (Proposition 3.1). 
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