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Applying a space - time transformation discussed in a previous paper, the Feynman path integral for the Coulomb poten-
tial is calculated exactly by reducing it to gaussian form. The resulting Green function leads to a simple derivation of the
energy spectrum and the complete (normalized) wavefunctions of the hydrogen atom.

In a previous paper [1] I derived a transformation formula for a class of non-linear space—time transformations
in the radial path integral. The formula makes it possible to transform non-gaussian path integrals into gaussian
ones. As a very simple illustration and consistency check we computed in ref. [1] the Feynman kernel of a free
particle and (in imaginary time) the distribution function of a particle undergoing brownian motion (Bessel
process).

In this note we shall apply the transformation formula to the Coulomb potential. To our knowledge, the follow-
ing treatment represents the simplest path integral determination of the energy spectrum and the complete (nor-
malized) wavefunctions of the hydrogen atom.

Earlier attempts to treat the Coulomb potential by means of path integrals can be found in the papers listed in
ref. [2]. The first complete path integral treatment of the hydrogen atom was carried out by Kleinert and Duru [3]
(see also ref. [4]).

In ref. [1] we considered three-dimensional quantum systems described by the hamiltonian H = p2/2 + V with
spherically symmetric potentials V' = V(r) (i =m = 1). In spherical coordinates the Feynman kernel K can be ex-
panded into “‘partial waves” (see ref. [1], eq. (1)), where the radial kernel X (with fixed angular momentum [} is
given by the radial path integral

r(T)=ry T
K((Tury,r V)= f Dr(t) exp(if dt [ — 1@ + 1)2r2 — V(r)]). )
r0)=r, 0

K determines for a given angular momentum / the time evolution of the system from time z, to the later time 7,
(T =ty - t,) for fixed radii r, = |x(2,)|, r, = |x(t, ). For the class of space—time transformations t > 7, r(¢)
- R(r) specified by

dr=302 - v)2rvdr, R=r1-v2 y<2, )

we derived in ref. [1] the transformation formula

2i

ki(Ery, raiV) = 5 V(rbra)"/4 f dTKLV(T;rg_”/Z,ral'"/zlwv). 3)
0

Here k; denotes the time-independent radial kernel defined by
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k(rgr V) =1 [ AT SET K(Tory r V). (4)
0

Eq. (3) connects the time-independent radial kernel k; of the original quantum system with potential ¥ to the
radial kernel K7 | of a new quantum system with the new potential

W,(R) = [4/(2 = v)?|R2¥IQ2 D[y(RHUQ=2)) . E] (3)
and effective angular momentum
L,=@41+p)/212 -v). (6)

(The kernel K, in(3)is again defined by the corresponding path integral representation (1).)
If we put v =1, V(r) = —e2/r, we obtain from (3) the following relation for the kernel k1H ot the H-atom

KR g r) = 2irgr )Y [ A7 Koy )2 (i Vg VLW ) (7)
0

Eq. (5) gives for the new potential

W (R)= -4e? — 4ER? = —4e2 + JQ2R? | (8)
which leads to a complete factorization of the dependence on the coupling constant ¢2

Ka1e1/2(:\VFo VP I Wy ) = exp(ide® 1) K§5S) 12(1i3/rg, Vi) . (9)

Here K©5¢ is the kernel of a harmonic oscillator with frequency § = 24/=2F. Inserting (9) in (7) we obtain

K E ry, ry) = 2i(rgr )M f dr exp(ide®r) KSP812(m: Vg V) (10a)
o 0
ki Ery, 1) = 2ror )V KSES) 2(4e? N V) (10b)

Since the path integration for the harmonic oscillator can be carried out, eqgs. (10) represent the complete path
integral solution of the hydrogen atom. It only remains to extract the energy spectrum and the wavefunctions
from (10). There are several ways to achieve this.

Inserting the path integral result for the kernel K*¢ (sec ref. [1], eq. (27)) in (10a) we arrive at the following
integral representation for the kernel of the hydrogen atom

~ dx . . .
k;I(Elrb,ra)=2i(—l)l*l\/Ef m—;exp[mux+1k(rb+ra) COth] J21*1(2k\/rbra/51nhx), (]1)
0

with k =2E, u=e2/k (J141 is the Bessel function). In order to determine the energy values and the wavetunc-
tions, we make the variable transformation y = ¢- 2% in (11)

1
k,”(E;rb,ra)=2\/rbrafdyyl " 0r141(4,Bp). (12)
0

Here we have introduced the function
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-A/2 +B1+y\, {2V : ,
Q)\(A.B:y)=’vl 5 cxp(—A "B ;_;)g( l__Afy), A=_2ikr,, B=-2ikr, . (13)

(/, is the modified Bessel function). @, can be expanded in a power series in y (ref. [S], p. 1038 for a proof see
ref. {6]) 7! .

QA(AB};) = Z;O ynr (AB)A/26_(A+B)/2L2r(A) Lﬁr(B) i (14)
ne=

n!
L(n, +x+1)
where Lzr denote the Laguerre polynomials defined by
nl’

+A
)F(—n,,l+)\;x), (15)

I

Ly, (x)= (

n

(F(a, b;x) is the confluent hypergeometric function). With (14) the y-integration in (12) generates poles in the
energy plane (the dots indicate a contribution which is regular for £ < 0)

1 4 -3
. etn +1+1)
[T T — ' ; (16)
3 (n,t1+1)—iu [—e4/2(nr+1+1)2]—5
which by means of eq. (23b) of ref. [1] determine the discrete energy spectrum of the hydrogen atom
Efy = -e* 2, + 1+ 1) = —e*/2n? . (17)

Obviously, n is the principal quantum number (defined by n =n, + 1+ 1), and n has the meaning of the radial
quantum number.
With (14), (16) and (17) we obtain for (12)

kE:r,,r,) = bD ¢ - ; d - t... (18)
n, =0 (nr+1+1)2 (n, +21+1)! Ellz _E
T

[t 1s now a simple matter to determine the residues of the energy poles and to obtain thereby the reduced (normal-
ized) radial wavefunctions (see ref. [1], eq. (23b)) of the hydrogen atom

Xih(P) = ey [(n — 1 = 1) (n + D21 =0 /2 L2H] () (19)

expressed in terms of the principal quantum number n and the angular momentum ! (!=0, 1, ...,n — 1, p = 2e2r/n).
This completes our path integral treatment of the hydrogen atom.

Another way to solve the problem [which avoids the integrations involved in (10a), (11) and (12)] starts with
relation (10b) and replaces both kernels by their respective spectral decompositions

w H -

Xino)Xin,(ra) 5> X3751/2 n, (V1) X3151/2 n, (V76)
Z_;O H + kI (E:ry, Tadcont = 2(ryra) ~ osc 2 ) (20)
ne= Elnr_E n.=0 EZI#I/an—4e

(“‘cont” denotes the contribution from the continuous spectrum, £ > 0). From the well-known eigenvalues of the
three-dimensional harmonic oscillator (which can be determined from eq. (27) of ref. [1] by using again the series
(14)), Eﬁ,ic = Q(2n, +1+ 3/2), one obtains (2 = 24/-2E)

ESi1/2n, = W -2E(n, +1+1)= &/2En , 1

*1 The series (14) is absolutely convergent for arbitrary real or complex values of 4 and B as longas |y} < 1.
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and
1 _{(e? ++/-2En)/8n? (2
ESfijan, —4€r  [—e*2n2] - E

A comparison of the poles in the energy plane on both sides of eq. (20) leads tor £ < 0 immediately to the H-atom
spectrum (17). It is amusing to see how the hydrogen spectrum is generated by the completely different oscillator
spectrum via eq. (22)! Comparing the residues of the poles on both sides of (20) one is led to the wavefunctions of
the hydrogen atom expressed in terms of the well-known wavefunctions of the harmonic oscillator. The result
agrees, of course, with eq. (19).

If one is only interested in the determination of the energy spectrum, there is still another way. One simply
notices that the integral (11) can be carried out *2 with the result (ry =r,)

K[ E iy r) = ik DA+ 1 — i1+ D)W, 1012 (B My, 14q/2(A) (23)

where W and M are the Whittaker functions as defined in ref. [S]. p. 1059. The gamma function in (23) has simple
polesat/+1 -iu=—n, n =0,1,2, .. which yield again the hydrogen spectrum (17).
Inserting the integral representation (11) in the partial wave expansion (cos 8 = x - x,/ryr,)

H S+ g .
) = . 24
kK (E xy, x,) IzZ:; rr—y ki (E;ry, r)Py(cos 8), (24)
and using
120 Q1+ 1) (= 1) T4 (x) Py(cos ) = bx Jo(x cos(8/2)) , (25)
we obtain the following integral representation for the time-independent Feynman kernel of the hydrogen atom
kK F . . (Zk\/rbra cos(0/2))
Hep . - ) _ ‘b4 "7 B
KWE xy,x,) 3 Of i exp[2iux +ik(r, +7,) cothx] J, snhx . (26)

Relations (26) and (23) have been first derived by Hostler [7], and (in momentum space) by Schwinger [8].
We conclude with the remark that the results of this note can be extended to the more general potential (g, e
and V|, are real constants)

2

Viry=g/r? - etir+ v, . (27)
which (for v = 1) leads according to (5) to the new potential (£ = 24/2( Vo-E))
Wi (R) = 4g/R? — 4e2 + ;Q2R2 . (28)

The kernel IEI (belonging to the potential ¥) satisfies again relation (7), but with K141/ replaced by

K2,+1/2(T;\/r_b, VW) = exp(i4ezr) Kioq(f;\/;,, V). (29)

Here 7 is defined by I(7 + 1) = (21 + 1/2)(21 + 3/2) + 8g and OsC refers to a harmonic oscillator with frequency Q.
We thus obtain (in analogy to (10b)) the relation

ki (E . 1y) = 2rpr) M K (de /g V) (30)

Looking for the energy poles and their residues in (30), we get for the discrete spectrum of the potential (27)
*2 The calculation proceeds as in ref. [1], eq. (28), where we already performed the integration for the special case u = 0.

366



Volume 106A, number 8 PHYSICS LETTERS 24 December 1984

(k= [(1+1/2)? +2g)1/2 g>—1/8)
Elnr=V0—e4/2[nr+l/2+K]2, 3D
and for the reduced radial wavefunctions (p = 2ezr/(nr +1/2 +k))

e 1
n.+1/2+k D(1+2

Xinr) = Ny 0%+ 2e=PI2F(—ny 1+ 2k:p), Ny, = )[r(n,+ b+ 2)/n, 112 (32)
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