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Applying a space- time transformation discussed in a previous paper, the Feynman path integral for the Coulomb poten- 
tial is calculated exactly by reducing it to gaussian form. The resulting Green function leads to a simple derivation of the 
energy spectrum and the complete (normalized) wavefunctions of the hydrogen atom. 

In a previous paper [ 1 ] I derived a transformation formula for a class of  non-linear space-time transformations 
in the radial path integral. The formula makes it possible to transform non-gaussian path integrals into gaussian 
ones. As a very simple illust ration and consistency check we computed in ref. [1] the Feynman kernel of  a free 
particle and (in imaginary time) the distribution function of  a particle undergoing brownian motion (Bessel 
process). 

In this note we shall apply the transformation formula to the Coulomb potential. To our knowledge, the follow- 
ing treatment represents the simplest path integral determination of  the energy spectrum and the complete (nor- 
realized) wavefunctions of  the hydrogen atom. 

Earlier attempts to treat the Coulomb potential by means of  path integrals can be found in the papers listed in 
ref. [2]. The first complete path integral treatment of  the hydrogen atom was carried out by Kleinert and Duru [3] 
(see also ref. [4]). 

In ref. [ 1 ] we considered three-dimensional quantum systems described by the hamiltonian H = p2/2 + V with 
spherically symmetric potentials V = V(r) (h = m = 1). In spherical coordinates the Feynman kernel K can be ex- 
panded into "partial waves" (see ref. [1 ], eq. (1)), where the radial kernel K t (with fixed angular momentum l) is 
given by the radial path integral 

r(T)=r b T ) 
Kl(T:rb.ralV)= f Dr(t) exp( i  f 1)/2r 2 -  V(r)] . (1) 

r(O)=r a 0 

K l determines for a given angular momentum I the time evolution of  the system from lime t a to the later time t b 
(T = t b - ta) for fixed radii r a = Ix(ta)h r b = IX(tb)l. For the class of  space-time transformations t ~ r, r(t) 

R(r) specified by 

dr=~(2--v)2r-V dt, R = r  l-v~2, v < 2 ,  (2) 

we derived in ref. [1] the transformation formula 

kl(E;rb,ratV)= 22~_.v (rbra) v/4 ; dr KLv(r;rd-U/2, rl-v/2lWv). (3) 
o 

Here k I denotes the time-independent radial kernel defined by 
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Y 
kt(l'.' r b, ralV ) = i 3 dT e i ET KI(T: rb" ralV ) . (4) 

0 

Eq. (3) connects the time-independent radial kernel k I of the original quamum system with potential V to tile 
radial kernel KLv of  a new quantum system with the new potential 

Wv(R )= [ 4 / (2 -v )2 ]R2V/ (  2 u)IV(R2/(2-v)) . E] , (5) 

and effective angular momentum 

L v = (4 l+  t,)/2(2 - u). (6) 

(The kernel KLu in (3) is again defined by the corresponding path integral representation (1).) 
If we put u = 1, V(r) = -e2/r, we obtain from (3) the following relation for the kernel k H o t  the H-atom 

kH(E :rb, ra) = 2i(rbra) 1/4 f d'r K 21+l/2(r: xf~b, V~a[ WI ) . (7) 
0 

Eq. (5) gives for the new potential 

WI(R) . . . .  4e 2 - 4ER 2 -- - 4 e  2 + ~g22R 2 , (8) 

which leads to a complete factorization of  the dependence on the coupling constant e 2 

K21+l/2(r'.V~b, X/'77a [ WI) = exp(i4e2r) K~ffl/2(r;X~b, V~a). (9) 

ttere K °sc is the kernel of  a harmonic oscillator with frequency f2 = 2 ~ .  Inserting (9) in (7) we obtain 

J'~ . 
kH(E:rb,ra)= 2i(rbra)l/4 dr exp(i4e2r) K2l+l/2(r,,q~b,.~a)OSC (1Oa) 

0 
or 

k~t(E;rb, ra)= 91, - ~,l/41.osc ta~2 -~-'b'a) e'2/+l/2~": ' ~ b ,  V~a) • f l0bJ 

Since the path integration for the harmonic oscillator can be carried out, eqs. (10) represent the complete path 
integral solution of  the hydrogen atom. It only remains to extract the energy spectrum and the wavefunctions 
from (10). There are several ways to achieve this. 

Inserting the path integral result tk)r the kernel K/°sc (see ref. [1 ], eq. (27)) in (10a) we arrive at the following 
integral representation for the kernel of  the hydrogen atom 

f exp[2i#x+ik(rb+ra) cothx ] (11) 
dx 

k~l(E;rb , ra)= 2i(-1)1+1 r~/~bra J21+l(2k r~bra/sinhx), 
0 

with k = ~ / J  = e2/k (J2/+l is the Bessel function). In order to determine the energy values and the wavefunc- 
tions, we make the variable transformationy = e- 2x in (1 1) 

1 

= 2 f dyy  I iu Q21+I(A,B;y). (12) 
0 

Here we have introduced the function 
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y-X~2 ( A + B l + )' ]i [ 2 Ax/Ax/Ax/Ax/Ax/Ax/A~] A = - 2 i k r  a B = -2ikr b . (13) 
Qx(A'B:Y)=-(-- fy  exp " 2 l--L--y] x ~ - T - ' 5 ~ ] '  

(I x is the modificd Bessel function). Qx can be expanded in a power series in y (ref. [ 5 ] ,  p .  1038; for a proof see 
ref. [61) : t  

Qx(A,B: y) = ~ y nr nr! 
nr=O l-'(n r + X + 1) (AB)X/2e-(A+B)/2LXnr (A) LnXr(B) ' (14) 

where L x denote the Laguerre polynomials defined by t/r 

L~nr(X):(rtr+)k)F(_rlr, I+)%x),  (15) 
x F/t 

(F(a, b;x) is the confluent hypergeometric function). With (14) the y-integration in (12)generates poles in the 
energy plane (the dots indicate a contribution which is regular for E < 0) 

1 e4(nr + l + 1) -3 
f dyyl_iu+nr_ 1 ~- .... (16) 
0 ( n r + l + l ) - i #  [--ea/2(nr+l+l) 2 ] - E  

which by means ofeq.  (23b) of  ref. [1] determine the discrete energy spectrum of  the hydrogen atom 

Elltnr = e4/2(nr + l + I) 2 = -e4/2n 2 . (17) 

Obviously, n is the principal quantum number (defined by n = n r + l + 1), and n r has the meaning of  the radial 
quantum number. 

With (14), (16) and (17) we obtain for (12) 

~' nr (A)Lnr (B) + .... (18) kH(E: rb, ra) = ~ e 2 nr ! (AB)I+le-(A +B)/2L21+l 2/+1 

nr=0 (n r + l +  1) 2 (nr +2•+ 1)! E/Hnr - E 

It is now a simple matter to determine the residues of  the energy poles and to obtain thereby the reduced (normal- 
ized) radial wavefunctions (see ref. [1 ], eq. (23b)) of  the hydrogen atom 

H ×in(r) = (e /n)[ (n  - 1 - l ) ! / ( n  + l)!lXl2o t+l e -°12 LZt_+]_1(O), ( 1 9 )  

expressed in terms of  the principal quantum number n and the angular momentum l (l = 0, 1, ..., n - 1, p = 2e2r/n). 
This completes our path integral treatment of  the hydrogen atom. 

Another way to solve the problem [which avoids the integrations involved in (10a), (I 1) and (12)] starts with 
relation (10b) and replaces both kernels by their respective spectral decompositions 

~ l! H ~ .osc  osc 
)~2l+1/2 nr(V~b) X 21+1/2 n r ( ~ b )  

Xlnr(rb)Xlnr(ra) + kH(E; rb' ra)cont = 2(rbra)l/4 *z2/+l/2~°sc 4e 2 ' (20) 
nr=0 EH r - E nr=0 n r -  

("cont"  denotes the contribution from the continuous spectrum, E > 0). From the well-known eigenvalues of  the 
three-dimensional harmonic oscillator (which can be determined from eq. (27) of  ref. [ 1 ] by using again the series 
(14)), E/~SrC = ~2(2n r + l + 3/2), one obtains (I2 = 2 ~ )  

EOSC = ~ ( n r  + l + l ) = ~ n (21) 21+1/2 n r 

,1 The series (14) is absolutely convergent for arbitrary real or complex values of A and B as long as lYl < 1. 
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and 

1 _ (e 2 + x / - 2 ~ n ) / S n  2 
i - -  

EOSC - 4e 2 [ -e4 /2n  21 - E 2l+1/2 n r 
(22) 

A comparison of  the poles in the energy plane on both sides of  eq. (20) leads for E < 0 immediately to the H-atom 
spectrum (17). It is anmsing to see how the hydrogen spectrum is generated by the completely different oscillator 
spectrum via eq. (22)! Comparing the residues of  the poles on both sides of (20) one is led to the wavefunctions of 
the hydrogen atom expressed in terms of  the well-known wavefunctions of  the harmonic oscillator. The result 
agrees, of  course, with eq. (19). 

If one is only interested in tile determination of  the energy spectrum, there is still another way. One simply 
notices that the integral (11) can be carried out * 2 with the result (r b ~> ra) 

kl[l(E:rb, ra) = ik -1 [ r ( l  + 1 - ila)/(21 + 1)!1 Wiu,l+l/2(B) Miu, l+l /2(A) .  (23) 

where W and M are the Whittaker functions as defined in ref. [5], p. 1059. The gamma function m (23) has simple 
poles at 1 + 1 - i/a = - n r ,  n r = 0, I, 2 ..... which yield again the hydrogen spectrum (17). 

Inserting the integral representation (11) in the partial wave expansion (cos 0 = Xb'xa/rbra) 

o o  

i..~0 21+1 kl[l(E;rb,ra)Pl(cOsO),  (24) kH(E;Xb 'Xa)=  = 4~rbra 

and using 

(2l + 1)(- l) lJ21, l(X)Pl(COS O) = ix1 Jo(x  cos(0/2)),  (25) 
1=0 

we obtain the following integral representation for the time-independent Feynman kernel of  the hydrogen atom 

k "0 dx  [ 2 k  rX/~bra cos(0/2)'~ 
ktt(E;Xb,Xa)=~7~if - -  [2i/ax + ik(r b +ra)  cothxl J01, s-~-nhx ,~ (26) 

0 sinh2x exp 

Relations (26) and (23) have been first derived by Hostler [7], and (in momentum space) by Schwinger [8]. 
We conclude with the remark that the results of this note can be extended to the more general potential (g, e 2 

and V 0 are real constants) 

V(r) =g/r 2 - e2/r + V 0 . (27) 

which (for u = 1) leads according to (5) to the new potential (fi  = 2x/2(V 0 - E)) 

fi)l(R) = 4g/R 2 - 4e 2 + ~-fi2R2 . (28) 

The kernel/~l (belonging to the potential V) satisfies again relation (7), but with K21+1/2 replaced by 

Kzl+l/2(r;  V~b, V~al WI) = exp(i4e2r) KF~-¢(r; X/~b, "V/Ta) • (29) 

Here lis defined by 7(7+ 1) = (21 + 1/2)(2l + 3/2) + 8g and ~ refers to a harmonic oscillator with frequency (2. 
We thus obtain (in analogy to (10b)) the relation 

k/(E; r b, ra) = 2(rbra) 1/4 k~sC(ae2 V~b, V~a). (30) 

Looking for the energy poles and their residues in (30), we get for the discrete spectrum of the potential (27) 

• 2 The calculation proceeds as in ref. [1 ], eq. (28), where we already performed the integration for the special case ta = 0. 
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(K = [(1 + 1/2) 2 + 2g]1 /2 ,  g > _ i . /8 )  

E'ln r = V 0 - e4 /2 [nr  + I /2  + K] 2 , 

and for the reduced radial wavefunct ions  (p  = 2e2r/ (nr  + 1/2 + K)) 

e 1 
)(lnr(r) = N l n r P • + l / 2 e - p / 2 F ( - n r  , 1 + 2 K ; p ) ,  Nlnr = n r + 1/2 + g F(I  + 2g) [p(nr + I + 2K) /nr ! ] l /2  

(31)  

(32) 
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